829 research outputs found

    Transient Response Improvement For Multi-phase Voltage Regulators

    Get PDF
    Next generation microprocessor (Vcore) requirements for high current slew rates and fast transient response together with low output voltage have posed great challenges on voltage regulator (VR) design . Since the debut of Intel 80X86 series, CPUs have greatly improved in performance with a dramatic increase on power consumption. According to the latest Intel VR11 design guidelines , the operational current may ramp up to 140A with typical voltages in the 1.1V to 1.4V range, while the slew rate of the transient current can be as high as 1.9A/ns [1, 2]. Meanwhile, the transient-response requirements are becoming stringer and stringer. This dissertation presents several topics on how to improve transient response for multi-phase voltage regulators. The Adaptive Modulation Control (AMC) is a type of non-linear control method which has proven to be effective in achieving high bandwidth designs as well as stabilizing the control loop during large load transients. It adaptively adjusts control bandwidth by changing the modulation gain, depending on different load conditions. With the AMC, a multiphase voltage regulator can be designed with an aggressively high bandwidth. When in heavy load transients where the loop could be potentially unstable, the bandwidth is lowered. Therefore, the AMC provides an optimal means for robust high-bandwidth design with excellent transient performance. The Error Amplifier Voltage Positioning (EAVP) is proposed to improve transient response by removing undesired spikes and dips after initial transient response. The EAVP works only in a short period of time during transient events without modifying the power stage and changing the control loop gain. It facilitates the error amplifier voltage recovering during transient events, achieving a fast settling time without impact on the whole control loop. Coupled inductors are an emerging topology for computing power supplies as VRs with coupled inductors show dynamic and steady-state advantages over traditional VRs. This dissertation first covers the coupling mechanism in terms of both electrical and reluctance modeling. Since the magnetizing inductance plays an important role in the coupled-inductor operation, a unified State-Space Averaging model is then built for a two-phase coupled-inductor voltage regulator. The DC solutions of the phase currents are derived in order to show the impact of the magnetizing inductance on phase current balancing. A small signal model is obtained based on the state-space-averaging model. The effects of magnetizing inductance on dynamic performance are presented. The limitations of conventional DCR current-sensing for coupled inductors are addressed. Traditional inductor DCR current sensing topology and prior arts fail to extract phase currents for coupled inductors. Two new DCR current sensing topologies for coupled inductors are presented in this dissertation. By implementation of simple RC networks, the proposed topologies can preserve the coupling effect between phases. As a result, accurate phase inductor currents and total current can be sensed, resulting in excellent current and voltage regulation. While coupled-inductor topologies are showing advantages in transient response and are becoming industry practices, they are suffering from low steady-state operating efficiency. Motivated by the challenging transient and efficiency requirements, this dissertation proposes a Full Bridge Coupled Inductor (FBCI) scheme which is able to improve transient response as well as savor high efficiency at (a) steady state. The FBCI can change the circuit configuration under different operational conditions. Its flexible topology is able to optimize both transient response and steady-state efficiency. The flexible core configuration makes implementation easy and clear of IP issues. A novel design methodology for planar magnetics based on numerical analysis of electromagnetic fields is offered and successfully applied to the design of low-voltage high power density dc-dc converters. The design methodology features intense use of FEM simulation. The design issues of planar magnetics, including loss mechanism in copper and core, winding design on PCB, core selections, winding arrangements and so on are first reviewed. After that, FEM simulators are introduced to numerically compute the core loss and winding loss. Consequently, a software platform for magnetics design is established, and optimized magnetics can then be achieved. Dynamic voltage scaling (DVS) technology is a common industry practice in optimizing power consumption of microprocessors by dynamically altering the supply voltage under different operational modes, while maintaining the performance requirements. During DVS operation, it is desirable to position the output voltage to a new level commanded by the microprocessor (CPU) with minimum delay. However, voltage deviation and slow settling time usually exist due to large output capacitance and compensation delay in voltage regulators. Although optimal DVS can be achieved by modifying the output capacitance and compensation, this method is limited by constraints from stringent static and dynamic requirements. In this dissertation, the effects of output capacitance and compensation network on DVS operation are discussed in detail. An active compensator scheme is then proposed to ensure smooth transition of the output voltage without change of power stage and compensation during DVS. Simulation and experimental results are included to demonstrate the effectiveness of the proposed scheme

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Improved Accuracy Area Efficient Hybrid CMOS/GaN DC-DC Buck Converterfor High Step-Down Ratio Applications

    Get PDF
    abstract: Point of Load (POL) DC-DC converters are increasingly used in space applications, data centres, electric vehicles, portable computers and devices and medical electronics. Heavy computing and processing capabilities of the modern devices have ushered the use of higher battery supply voltage to increase power storage. The need to address this consumer experience driven requirement has propelled the evolution of the next generation of small form-factor power converters which can operate with higher step down ratios while supplying heavy continuous load currents without sacrificing efficiency. Constant On-Time (COT) converter topology is capable of achieving stable operation at high conversion ratio with minimum off-chip components and small silicon area. This work proposes a Constant On-Time buck dc-dc converter for a wide dynamic input range and load currents from 100mA to 10A. Accuracy of this ripple based converter is improved by a unique voltage positioning technique which modulates the reference voltage to lower the average ripple profile close to the nominal output. Adaptive On-time block features a transient enhancement scheme to assist in faster voltage droop recovery when the output voltage dips below a defined threshold. UtilizingGallium Nitride (GaN) power switches enable the proposed converter to achieve very high efficiency while using smaller size inductor-capacitor (LC) power-stage. Use of novel Superjunction devices with higher drain-source blocking voltage simplifies the complex driver design and enables faster frequency of operation. It allows 1.8VComplementary Metal-Oxide Semiconductor (CMOS) devices to effectively drive GaNpower FETs which require 5V gate signal swing. The presented controller circuit uses internal ripple generation which reduces reliance on output cap equivalent series resistance (ESR) for loop stability and facilitates ripples reduction at the output. The ripple generation network is designed to provide ai optimally stable performance while maintaining load regulation and line regulation accuracy withing specified margin. The chip with ts external Power FET package is proposed to be integrated on a printed circuit board for testing. The designed power converter is expected to operate under 200 MRad of a total ionising dose of radiation enabling it to function within large hadron collider at CERN and space satellite and probe missions.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Enhanced decoupling current scheme with selective harmonic elimination pulse width modulation for cascaded multilevel inverter based static synchronous compensator

    Get PDF
    This dissertation is dedicated to a comprehensive study and performance analysis of the transformer-less Multilevel Cascaded H-bridge Inverter (MCHI) based STATic synchronous COMpensator (STATCOM). Among the shunt-connected Flexible AC Transmission System (FACTS) controllers, STATCOM has shown extensive feasibility and effectiveness in solving a wide range of power quality problems. By referring to the literature reviews, MCHI with separated DC capacitors is certainly the most versatile power inverter topology for STATCOM applications. However, due to the ill-defined transfer functions, complex control schemes and formulations were emerged to achieve a low-switching frequency high-bandwidth power control. As a result, adequate controller parameters were generally obtained by using trial and error method, which were practically ineffective and time-consuming. In this dissertation, the STATCOM is controlled to provide reactive power (VAR) compensation at the Point of Common Coupling (PCC) under different loading conditions. The goal of this work is to enhance the performance of the STATCOM with the associated proposed control scheme in achieving high dynamic response, improving transient performance, and producing high-quality output voltage waveform. To evaluate the superiority of the proposed control scheme, intensive simulation studies and numerous experiments are conducted accordingly, where a very good match between the simulation results and the experimental results is achieved in all cases and documented in this dissertation

    System identification and adaptive current balancing ON/OFF control of DC-DC switch mode power converter

    Get PDF
    PhD ThesisReliability becomes more and more important in industrial application of Switch Mode Power Converters (SMPCs). A poorly performing power supply in a power system can influence its operation and potentially compromise the entire system performance in terms of efficiency. To maintain a high reliability, high performance SMPC effective control is necessary for regulating the output of the SMPC system. However, an uncertainty is a key factor in SMPC operation. For example, parameter variations can be caused by environmental effects such as temperature, pressure and humidity. Usually, fixed controllers cannot respond optimally and generate an effective signal to compensate the output error caused by time varying parameter changes. Therefore, the stability is potentially compromised in this case. To resolve this problem, increasing interest has been shown in employing online system identification techniques to estimate the parameter values in real time. Moreover, the control scheme applied after system identification is often called “adaptive control” due to the control signal selfadapting to the parameter variation by receiving the information from the system identification process. In system identification, the Recursive Least Square (RLS) algorithm has been widely used because it is well understood and easy to implement. However, despite the popularity of RLS, the high computational cost and slow convergence speed are the main restrictions for use in SMPC applications. For this reason, this research presents an alternative algorithm to RLS; Fast Affline Projection (FAP). Detailed mathematical analysis proves the superior computational efficiency of this algorithm. Moreover, simulation and experiment result verify this unique adaptive algorithm has improved performance in terms of computational cost and convergence speed compared with the conventional RLS methods. Finally, a novel adaptive control scheme is designed for optimal control of a DC-DC buck converter during transient periods. By applying the proposed adaptive algorithm, the control signal can be successfully employed to change the ON/OFF state of the power transistor in the DC-DC buck converter to improve the dynamic behaviour. Simulation and experiment result show the proposed adaptive control scheme significantly improves the transient response of the buck converter, particularly during an abrupt load change conditio

    A Silicon Carbide Power Management Solution for High Temperature Applications

    Get PDF
    The increasing demand for discrete power devices capable of operating in high temperature and high voltage applications has spurred on the research of semiconductor materials with the potential of breaking through the limitations of traditional silicon. Gallium nitride (GaN) and silicon carbide (SiC), both of which are wide bandgap materials, have garnered the attention of researchers and gradually gained market share. Although these wide bandgap power devices enable more ambitious commercial applications compared to their silicon-based counterparts, reaching their potential is contingent upon developing integrated circuits (ICs) capable of operating in similar environments. The foundation of any electrical system is the ability to efficiently condition and supply power. The work presented in this thesis explores integrated SiC power management solutions in the form of linear regulators and switched capacitor converters. While switched-mode converters provide high efficiency, the requirement of an inductor hinders the development of a compact, integrated solution that can endure harsh operating environments. Although the primary research motivation for wide bandgap ICs has been to provide control and protection circuitry for power devices, the circuitry designed in this work can be incorporated in stand-alone applications as well. Battery or generator powered data acquisition systems targeted towards monitoring industrial machinery is one potential usage scenario

    Analysis, Design and Modeling of DC-DC Converter Using Simulink

    Get PDF
    The purpose of this study is to model a synchronous switching step-down regulator using simulink and to characterize individual sub-blocks like buck converter, OTA, Comparator, gate drive circuitry and digital logic to facilitate easy and less expensive IC implementation. Small signal model of buck converter is developed considering components parasitics and various transfer functions are evaluated. A simple graphical method is deduced from traditional graphical method to arrive at loop transfer function for voltage control, current control and state of the art V2 control scheme easily. The loop transfer function is examined for its stability and compensation techniques are presented for stable closed loop operation. The complete simulink block diagram is built from parameterized sub-blocks for voltage and V2 control scheme. All the three control schemes are compared for different figures of merit. The system is simulated and transient response for load and line variations for voltage and V2 schemes are compared. Inferences are drawn for current mode control and it is concluded that V2 has fastest transient response with easy compensation and less stringent bandwidth requirement of OTA. The simulink model verified the figure of merits of V2 control scheme for which negligible literature exists on its small signal model and compensation. The modeling method and graphical analysis can be easily applied to any converter topology and control schemes.School of Electrical & Computer Engineerin

    Applications of Power Electronics:Volume 1

    Get PDF
    • …
    corecore