2,445 research outputs found

    PaPaS: A Portable, Lightweight, and Generic Framework for Parallel Parameter Studies

    Full text link
    The current landscape of scientific research is widely based on modeling and simulation, typically with complexity in the simulation's flow of execution and parameterization properties. Execution flows are not necessarily straightforward since they may need multiple processing tasks and iterations. Furthermore, parameter and performance studies are common approaches used to characterize a simulation, often requiring traversal of a large parameter space. High-performance computers offer practical resources at the expense of users handling the setup, submission, and management of jobs. This work presents the design of PaPaS, a portable, lightweight, and generic workflow framework for conducting parallel parameter and performance studies. Workflows are defined using parameter files based on keyword-value pairs syntax, thus removing from the user the overhead of creating complex scripts to manage the workflow. A parameter set consists of any combination of environment variables, files, partial file contents, and command line arguments. PaPaS is being developed in Python 3 with support for distributed parallelization using SSH, batch systems, and C++ MPI. The PaPaS framework will run as user processes, and can be used in single/multi-node and multi-tenant computing systems. An example simulation using the BehaviorSpace tool from NetLogo and a matrix multiply using OpenMP are presented as parameter and performance studies, respectively. The results demonstrate that the PaPaS framework offers a simple method for defining and managing parameter studies, while increasing resource utilization.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    An End-User Development Perspective on State-of-the-Art Web Development Tools

    Get PDF
    We reviewed and analyzed nine commercially available web development tools from the perspective of suitability for end-user development to compare and contrast alternative and best-of-breed approaches for particular problem areas within web application development (Getting Started, Workflow, Level of Abstraction, Layout, Database, Application Logic, Testing and Debugging, Learning and Scaling, Security, Collaboration, and Deployment). End-user development involves the creation of dynamic websites with support for features like authentication, conditional display, and searching/sorting by casual web developers who have some experience creating static websites but little or no programming knowledge. We found that current tools do not lack functionality, but rather have a variety of problems in ease of use for end users who are nonprogrammers. In particular, while many tools offer wizards and other features designed to facilitate specific aspects of end-user development, none of the tools that we reviewed supports a holistic approach to web application development. We discuss the implications of these problems and conclude with recommendations for the design of improved web development tools that would lower the entry barrier into web programming

    Applying the UML and the Unified Process to the Design of Data Warehouses

    Get PDF
    The design, development and deployment of a data warehouse (DW) is a complex, time consuming and prone to fail task. This is mainly due to the different aspects taking part in a DW architecture such as data sources, processes responsible for Extracting, Transforming and Loading (ETL) data into the DW, the modeling of the DW itself, specifying data marts from the data warehouse or designing end user tools. In the last years, different models, methods and techniques have been proposed to provide partial solutions to cover the different aspects of a data warehouse. Nevertheless, none of these proposals addresses the whole development process of a data warehouse in an integrated and coherent manner providing the same notation for the modeling of the different parts of a DW. In this paper, we propose a data warehouse development method, based on the Unified Modeling Language (UML) and the Unified Process (UP), which addresses the design and development of both the data warehouse back-stage and front-end. We use the extension mechanisms (stereotypes, tagged values and constraints) provided by the UML and we properly extend it in order to accurately model the different parts of a data warehouse (such as the modeling of the data sources, ETL processes or the modeling of the DW itself) by using the same notation. To the best of our knowledge, our proposal provides a seamless method for developing data warehouses. Finally, we apply our approach to a case study to show its benefit.This work has been partially supported by the METASIGN project (TIN2004-OO779) from the Spanish Ministry of Education and Science, by the DADASMECA project (GV05/220) from the Valencia Government, and by the DADS (PBC-05-QI 2-2) project from the Regional Science arid Technology Ministry of CastiIla-La Mancha (Spain)

    Unwind: Interactive Fish Straightening

    Full text link
    The ScanAllFish project is a large-scale effort to scan all the world's 33,100 known species of fishes. It has already generated thousands of volumetric CT scans of fish species which are available on open access platforms such as the Open Science Framework. To achieve a scanning rate required for a project of this magnitude, many specimens are grouped together into a single tube and scanned all at once. The resulting data contain many fish which are often bent and twisted to fit into the scanner. Our system, Unwind, is a novel interactive visualization and processing tool which extracts, unbends, and untwists volumetric images of fish with minimal user interaction. Our approach enables scientists to interactively unwarp these volumes to remove the undesired torque and bending using a piecewise-linear skeleton extracted by averaging isosurfaces of a harmonic function connecting the head and tail of each fish. The result is a volumetric dataset of a individual, straight fish in a canonical pose defined by the marine biologist expert user. We have developed Unwind in collaboration with a team of marine biologists: Our system has been deployed in their labs, and is presently being used for dataset construction, biomechanical analysis, and the generation of figures for scientific publication

    Determining criteria for selecting software components: lessons learned

    Get PDF
    Software component selection is growing in importance. Its success relies on correctly assessing the candidate components' quality. For a particular project, you can assess quality by identifying and analyzing the criteria that affect it. Component selection is on the suitability and completeness of the criteria used for evaluation. Experiences from determining criteria for several industrial projects provide important lessons. For a particular selection process, you can organize selection criteria into a criteria catalog. A CC is built for a scope, which can be either a domain (workflow systems, mail servers, antivirus tools, and so on) or a category of domains (communication infrastructure, collaboration software, and so on). Structurally, a CC arranges selection criteria in a hierarchical tree-like structure. The higher-level selection criteria serve to classify more concrete selection criteria, usually allowing some overlap. They also serve to leverage the CC.Peer ReviewedPostprint (published version

    Multi-modal Embedding Fusion-based Recommender

    Full text link
    Recommendation systems have lately been popularized globally, with primary use cases in online interaction systems, with significant focus on e-commerce platforms. We have developed a machine learning-based recommendation platform, which can be easily applied to almost any items and/or actions domain. Contrary to existing recommendation systems, our platform supports multiple types of interaction data with multiple modalities of metadata natively. This is achieved through multi-modal fusion of various data representations. We deployed the platform into multiple e-commerce stores of different kinds, e.g. food and beverages, shoes, fashion items, telecom operators. Here, we present our system, its flexibility and performance. We also show benchmark results on open datasets, that significantly outperform state-of-the-art prior work.Comment: 7 pages, 8 figure
    corecore