2,041 research outputs found

    Edge computing platforms for Internet of Things

    Get PDF
    Internet of Things (IoT) has the potential to transform many domains of human activity, enabled by the collection of data from the physical world at a massive scale. As the projected growth of IoT data exceeds that of available network capacity, transferring it to centralized cloud data centers is infeasible. Edge computing aims to solve this problem by processing data at the edge of the network, enabling applications with specialized requirements that cloud computing cannot meet. The current market of platforms that support building IoT applications is very fragmented, with offerings available from hundreds of companies with no common architecture. This threatens the realization of IoT's potential: with more interoperability, a new class of applications that combine the collected data and use it in new ways could emerge. In this thesis, promising IoT platforms for edge computing are surveyed. First, an understanding of current challenges in the field is gained through studying the available literature on the topic. Second, IoT edge platforms having the most potential to meet these challenges are chosen and reviewed for their capabilities. Finally, the platforms are compared against each other, with a focus on their potential to meet the challenges learned in the first part. The work shows that AWS IoT for the edge and Microsoft Azure IoT Edge have mature feature sets. However, these platforms are tied to their respective cloud platforms, limiting interoperability and the possibility of switching providers. On the other hand, open source EdgeX Foundry and KubeEdge have the potential for more standardization and interoperability in IoT but are limited in functionality for building practical IoT applications

    FIT FOR USE ASSESSMENT OF BIOZEN AS A BIOMETRIC SENSOR CONCENTRATOR FOR REMOTE PATIENT MONITORING

    Get PDF
    In recent years, COVID-19 highlighted the importance of virtual health solutions with regard to improving patient health and conserving valuable hospital resources. Currently, the Defense Health Agency (DHA) does not own a remote patient-monitoring solution and relies on external commercial entities to provide the application and services. This could potentially lead to the DHA not retaining complete data ownership when patient data would reside on or traverse through commercial remote patient-monitoring solutions. This thesis evaluates BioZen, a DHA-owned biomedical sensor concentrator designed to run on a mobile phone, as a remote patient-monitoring tool. From this analysis, several key measures of effectiveness and measures of performance for remote patient-monitoring tools are identified and operationalized to measure the overall value BioZen brings to the DHA. Based on this research, it was found that the current build of BioZen, 2.0.0, is unable to meet any of the measures outlined in the study as a remote patient-monitoring tool. A future build of BioZen, or any remote patient-monitoring tool, could then be assessed using the measures of effectiveness and measures of performance within this study to determine the overall value brought to the DHA.Defense Health Agency, 7700 Arlington Boulevard, Falls Church, VA 22042Captain, United States ArmyLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Devices and Data Workflow in COPD Wearable Remote Patient Monitoring: A Systematic Review

    Get PDF
    Background: With global increase in Chronic Obstructive Pulmonary Disease (COPD) prevalence and mortality rates, and socioeconomical burden continuing to rise, current disease management strategies appear inadequate, paving the way for technological solutions, namely remote patient monitoring (RPM), adoption considering its acute disease events management benefit. One RPM’s category stands out, wearable devices, due to its availability and apparent ease of use. Objectives: To assess the current market and interventional solutions regarding wearable devices in the remote monitoring of COPD patients through a systematic review design from a device composition, data workflow, and collected parameters description standpoint. Methods: A systematic review was conducted to identify wearable device trends in this population through the development of a comprehensive search strategy, searching beyond the mainstream databases, and aggregating diverse information found regarding the same device. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed, and quality appraisal of identified studies was performed using the Critical Appraisal Skills Programme (CASP) quality appraisal checklists. Results: The review resulted on the identification of 1590 references, of which a final 79 were included. 56 wearable devices were analysed, with the slight majority belonging to the wellness devices class. Substantial device heterogeneity was identified regarding device composition type and wearing location, and data workflow regarding 4 considered components. Clinical monitoring devices are starting to gain relevance in the market and slightly over a third, aim to assist COPD patients and healthcare professionals in exacerbation prediction. Compliance with validated recommendations is still lacking, with no devices assessing the totality of recommended vital signs. Conclusions: The identified heterogeneity, despite expected considering the relative novelty of wearable devices, alerts for the need to regulate the development and research of these technologies, specially from a structural and data collection and transmission standpoints.Introdução: Com o aumento global das taxas de prevalência e mortalidade da Doença Pulmonar Obstrutiva Crónica (DPOC) e o seu impacto socioeconómico, as atuais estratégias de gestão da doença parecem inadequadas, abrindo caminho para soluções tecnológicas, nomeadamente para a adoção da monitorização remota, tendo em conta o seu benefício na gestão de exacerbações de doenças crónicas. Dentro destaca-se uma categoria, os dispositivos wearable, pela sua disponibilidade e aparente facilidade de uso. Objetivos: Avaliar as soluções existentes, tanto no mercado, como na área de investigação, relativas a dispositivos wearable utilizados na monitorização remota de pacientes com DPOC através de uma revisão sistemática, do ponto de vista da composição do dispositivo, fluxo de dados e descrição dos parâmetros coletados. Métodos: Uma revisão sistemática foi realizada para identificar tendências destes dispositivos, através do desenvolvimento de uma estratégia de pesquisa abrangente, procurando pesquisar para além das databases convencionais e agregar diversas informações encontradas sobre o mesmo dispositivo. Para tal, foram seguidas as diretrizes PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), e a avaliação da qualidade dos estudos identificados foi realizada utilizando a ferramenta CASP (Critical Appraisal Skills Programme). Resultados: A revisão resultou na identificação de 1590 referências, das quais 79 foram incluídas. Foram analisados 56 dispositivos wearable, com a ligeira maioria a pertencer à classe de dispositivos de wellness. Foi identificada heterogeneidade substancial nos dispositivos em relação à sua composição, local de uso e ao fluxo de dados em relação a 4 componentes considerados. Os dispositivos de monitorização clínica já evidenciam alguma relevância no mercado e, pouco mais de um terço, visam auxiliar pacientes com DPOC e profissionais de saúde na previsão de exacerbações. Ainda assim, é notória a falta do cumprimento das recomendações validadas, não estando disponíveis dispositivos que avaliem a totalidade dos sinais vitais recomendados. Conclusão: A heterogeneidade identificada, apesar de esperada face à relativa novidade dos dispositivos wearable, alerta para a necessidade de regulamentação do desenvolvimento e investigação destas tecnologias, especialmente do ponto de vista estrutural e de recolha e transmissão de dados

    A Precision Post-Operative Wellness Monitoring Solution

    Get PDF
    Multiple orthogonal challenges around escalating costs and providing quality care plague healthcare delivery, especially in OECD countries. This research in progress paper addresses the post-operative discharge phase of the patient journey and proffers a technology enabled model that both supports a quality care experience post discharge but also prudent management to minimize costly unplanned readmissions and thereby subscribe to a value-based care paradigm. The chosen context is stoma patients but the solution can be easily generalized to other contexts. Next steps include the conducting of clinical trials to establish proof of concept, validity and usability

    Trustworthy Wireless Personal Area Networks

    Get PDF
    In the Internet of Things (IoT), everyday objects are equipped with the ability to compute and communicate. These smart things have invaded the lives of everyday people, being constantly carried or worn on our bodies, and entering into our homes, our healthcare, and beyond. This has given rise to wireless networks of smart, connected, always-on, personal things that are constantly around us, and have unfettered access to our most personal data as well as all of the other devices that we own and encounter throughout our day. It should, therefore, come as no surprise that our personal devices and data are frequent targets of ever-present threats. Securing these devices and networks, however, is challenging. In this dissertation, we outline three critical problems in the context of Wireless Personal Area Networks (WPANs) and present our solutions to these problems. First, I present our Trusted I/O solution (BASTION-SGX) for protecting sensitive user data transferred between wirelessly connected (Bluetooth) devices. This work shows how in-transit data can be protected from privileged threats, such as a compromised OS, on commodity systems. I present insights into the Bluetooth architecture, Intel’s Software Guard Extensions (SGX), and how a Trusted I/O solution can be engineered on commodity devices equipped with SGX. Second, I present our work on AMULET and how we successfully built a wearable health hub that can run multiple health applications, provide strong security properties, and operate on a single charge for weeks or even months at a time. I present the design and evaluation of our highly efficient event-driven programming model, the design of our low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. Third, I present a new approach (VIA) that helps devices at the center of WPANs (e.g., smartphones) to verify the authenticity of interactions with other devices. This work builds on past work in anomaly detection techniques and shows how these techniques can be applied to Bluetooth network traffic. Specifically, we show how to create normality models based on fine- and course-grained insights from network traffic, which can be used to verify the authenticity of future interactions

    Design of a man-wearable control station for a robotic rescue system

    Get PDF
    This report details the design, development, and testing of a man-wearable operator control station for the use of a low-cost robotic system in Urban Search and Rescue (USAR). The complete system, dubbed the "Scarab", is the 1st generation developed and built in the Robotics and Agents Research Laboratory (RARL) at the University of Cape Town (UCT), and was a joint effort between three MSc students. Robots have found a place in USAR as replaceable units which can be deployed into dangerous and confined voids in the place of humans. As such, they have been utilized in a large variety of disaster environments including ground, aerial, and underwater scenarios, and have been gathering research momentum since their first documented deployment in the rescue operations surrounding the 9/11 terrorist attacks. However one issue is their cost as they are not economical solutions, making them less viable for inclusion into a rescue mission as well as negatively affecting the operator‟s decisions in order to prioritise the safety of the unit. Another concern is their difficulty of transport, which becomes dependent on the size and portability of the robot. As such, the Scarab system was conceived to provide a deployable robotic platform which was lowcost, with a budget goal of US $ 500. To address the transportability concerns, it aimed to be portable and light-weight; being able to be thrown through a window by a single hand and withstanding a drop height of 3 m. It includes an internal sensor payload which incorporates an array of sensors and electronics, including temperature monitors and two cameras to provide both a normal and IR video feed. Two LED spotlights are used for navigation, and a microphone and buzzer is included for interaction with any discovered survivors. The operator station acts as the user interface between the operator and the robotic platform. It aimed to be as intuitive as possible, providing quick deployment and minimalizing the training time required for its operation. To further enhance the Scarab system‟s portability, it was designed to be a manwearable system, allowing the operator to carry the robotic platform on their back. It also acts as a charging station, supplying power to the robotic platform‟s on-board charging circuitry. The control station‟s mechanical chassis serves as the man-wearable component of the system, with the functionality being achieved by integration onto a tactical vest. This allows the operator to take the complete system on and off as a single unit without assistance, and uses two mounting brackets to dock the robotic platform. Key areas focussed upon during design were the weight and accessibility of the system, as well as providing a rugged housing for the internal electronics. All parts were manufactured in the UCT Mechanical Engineering workshop
    corecore