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Abstract

In the Internet of Things (IoT), everyday objects are equipped with the ability to

compute and communicate. These smart things have invaded the lives of everyday

people, being constantly carried or worn on our bodies, and entering into our

homes, our healthcare, and beyond. This has given rise to wireless networks of

smart, connected, always-on, personal things that are constantly around us, and

have unfettered access to our most personal data as well as all of the other devices

that we own and encounter throughout our day. It should, therefore, come as no

surprise that our personal devices and data are frequent targets of ever-present

threats. Securing these devices and networks, however, is challenging. In this

dissertation, we outline three critical problems in the context of Wireless Personal

Area Networks (WPANs) and present our solutions to these problems.

First, I present our Trusted I/O solution (BASTION-SGX) for protecting

sensitive user data transferred between wirelessly connected (Bluetooth) devices.

This work shows how in-transit data can be protected from privileged threats, such

as a compromised OS, on commodity systems. I present insights into the Bluetooth

architecture, Intel’s Software Guard Extensions (SGX), and how a Trusted I/O

solution can be engineered on commodity devices equipped with SGX.

Second, I present our work on Amulet and how we successfully built a wear-
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able health hub that can run multiple health applications, provide strong security

properties, and operate on a single charge for weeks or even months at a time. I

present the design and evaluation of our highly efficient event-driven programming

model, the design of our low-power operating system, and developer tools for

profiling ultra-low-power applications at compile time.

Third, I present a new approach (VIA) that helps devices at the center of

WPANs (e.g., smartphones) to verify the authenticity of interactions with other

devices. This work builds on past work in anomaly detection techniques and shows

how these techniques can be applied to Bluetooth network traffic. Specifically,

we show how to create normality models based on fine- and course-grained in-

sights from network traffic, which can be used to verify the authenticity of future

interactions.
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1
Introduction

In the Internet of Things (IoT), everyday objects are equipped with the ability to

compute and communicate. These smart things have invaded the lives of everyday

people, being carried or worn on our bodies, and entering into our homes, our

healthcare, and beyond. This trend has given rise to wireless networks of smart,

connected, always-on, personal things that are constantly around us, commonly

known as Wireless Personal Area Networks (WPANs).1 Devices within WPANs

have unfettered access to our most personal data as well as all of the other devices

that we own and encounter throughout our day. It should, therefore, come as no

1Indeed, the term WPAN was in use before the term IoT was popularized. Today WPAN is
sometimes seen as a subset of the umbrella term, IoT.
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Figure 1.1: An example of a Wireless Personal Area Network, where various IoT devices are
connected around a personal hub, such as a smartphone.

surprise that our personal devices and data are frequent targets of ever-present

threats. Securing WPANs, however, is challenging.

One specific concern is the fact that hub devices (e.g., smartphones, tablets,

laptops, and dedicated smart-home “hubs”) at the center of WPANs run applications

(e.g., health applications, finance applications, messaging applications, virtual assis-

tants) that interact with nearby devices and regularly handle sensitive information

(Figure 1.1). Threats to these applications and their information (e.g., theft of data,

tampering with data) are ever present: they can come from over the Internet, from

other software that coexists on the device, or even from other physically-proximate

devices.

Past work has largely focused on remote security, which aims to protect devices

from attacks arriving over the Internet (e.g., attacks exploited over the TCP/IP

stack). Local security, on the other hand, is concerned with issues such as protecting

devices from people and other nearby devices, or protecting applications within a

device from malicious software within the device. Local security, unfortunately, is
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generally regarded as less of an issue than remote security because localized threats

and attacks are expensive and often do not scale in terms of their impact. Indeed,

local attacks require that an adversary be physically present to carry out an attack, or

at least requires the adversary to compromise another device that will be physically

proximate to the target of the attack. However, if an adversary can compromise

even one device (be it remotely or locally), they can use that device as a vector to

attack other nearby devices. For example, an adversary may compromise a smart

light bulb and use it to attack other smart devices in the home; or, an adversary

may compromise a smartphone and use it as a vector to attack in-home or on-body

devices via local attacks. While these threats were once far-fetched, the rise in the

ubiquity and mobility of computers is making them real. Indeed, with the recent

interest in IoT, localized threats are possible and becoming more common. Thus, in

this dissertation we focus on local security and posit that the attitude of viewing

local security as a lesser threat is no longer acceptable.

In this dissertation, we outline three critical problems in the context of WPANs

and present our solutions to these problems At its core, our solutions are largely

focused on making WPANs more trustworthy: re-envisioning how we compose and

verify the software, systems, and connections that form the basis for trust in these

devices and networks.

1.1 Preliminary Definitions

Throughout this dissertation we specifically focus on WPANs, but use the umbrella

term of IoT interchangeably. WPANs are made up of hub devices (hubs), peripheral

devices (peripherals), and networks of these devices. Hubs, such as smartphones,

tablets, laptops, and smart-home hubs (sometimes referred to as “personal digital

assistants”), are so named because of their role as a central device within WPANs.
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Hubs generally run end-user applications, and support one or more local network-

ing technologies, such as those that enable Body/Personal Area Networks (via

Bluetooth or ZigBee, for example) as well as (Wireless) Local Area Networks (via

Wi-Fi, for example).

Peripheral devices, such as mHealth devices, wearables, sensors, actuators,

and user-interface devices, are so named because of their ancillary role within

WPANs. Some peripheral devices are used for input (e.g., input from an end-user

into a hub device) or output (e.g., provide feedback to an end-user from a hub

device, administer medication to an end-user per the instruction of an application

running on a hub device). Some peripheral devices sense (or actuate upon) the

physical world. Peripheral devices generally do not connect directly to the Internet,

but rather, connect with a hub device (which may in turn enable the peripheral

device to interact with applications on the hub device or over the Internet).

Networks of these hub and peripheral devices are what we refer to as WPANs.

Personal Area Networks (PANs) need not be wireless networks, but today, many

are (i.e., many PANs are WPANs). Body Area Networks (BAN) and Personal Area

Networks (PAN) are all common terms used to refer to networks that connect all

devices worn (or carried) on or near the body (or even within the body!); these

are often WPANs. Body Area Health Networks (BAHN) are a type of BAN that is

specifically made up of health and wellness devices. Home Area Networks (HAN)

are a kind of Local Area Network (LAN) that connect all devices within the home

(PCs, smartphones, televisions, etc.); these could be WPANs.

We state all of this for clarity as there are many ways of defining these net-

works. All of these networks and ones like it are relevant to our work. Generally

speaking, our work aims to address the threats and challenges that come along with

everyday end-users operating WPANs.
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1.2 The Insecurity of WPANs

Both hub and peripheral devices are commonly used by end-users that have little

or no technical insight into how the devices operate, yet they may have significant

dependence on their presence and the integrity of their operation. For example,

consider a patient that relies on these devices to manage a health condition and

interact with her clinician. Thus, throughout this work, we hold that it is vital

that security solutions in this context must consider their impact on factors that

ultimately impact the end-user; this includes factors such as performance, energy

consumption, usability, and compatibility (with respect to the technologies that

commonly make up these devices, such as commodity operating systems, network

stacks, and the applications themselves). To understand this better, and to illustrate

some of the insecurities that our work addresses, let us consider the following

scenario.

1.3 Scenario: IoT-based Patient Health Monitoring

Bob is an elderly patient that is clinically obese, has high systolic blood pressure, and

was recently diagnosed with type 2 diabetes. To help Bob successfully monitor and

manage his health, his primary care physician has prescribed a strict diet and activity

regimen, blood-pressure medication, as well as a suite of health devices. The devices

are intended to provide Bob meaningful feedback each day, monitor his adherence to

the prescribed plan, and enable Bob and his physician to interact regularly between

in-person visits. The suite of health devices includes a continuous glucose monitor

that will regularly measure Bob’s blood sugar levels, a head-mounted eating device

that will assist Bob in tracking his food and beverage consumption, and a wrist-

worn health device that runs multiple mobile health (mHealth) applications – some
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of which interact with the other prescribed health devices.

The wrist-worn device is a critical device for effective treatment as it is in-

tended to be an always-present device in situations where Bob is not near his

home computer or smartphone. This device has built-in sensors and wirelessly

communicates with the other health devices to aggregate data, which is offloaded

to companion applications on Bob’s laptop or smartphone when they are nearby.

The companion applications communicate with remote services to upload Bob’s

relevant data as well as render feedback for Bob.

At least three problems arise in scenarios like these, which pose significant

threats to Bob, his devices, and his data. We describe these problems briefly next.

Problem #1: Malware and Threats to Sensitive I/O Data

Data from the various health devices is continuously aggregated in the wrist-worn

health device and offloaded to Bob’s smartphone or laptop whenever possible. To

ensure Bob’s privacy, all of the health devices employ over-the-air encryption to

secure sensitive data in transit between devices. Unfortunately – unbeknownst to

Bob – Bob’s smartphone was recently the victim of a drive-by-download attack

that successfully installed a privileged malware – undesirable software with the

capability of accessing resources (e.g., protected files, network interfaces) that are

generally restricted to privileged entities only; the malware has been surreptitiously

siphoning-off any data in and out of the smartphone’s Bluetooth network interface.

The reality today is that communication is protected in transit between the

devices (using over-the-air encryption, for example), but not necessarily in transit

within the devices (between the intended companion application(s) and the network

interface, for example). This lack of protection within the devices leaves internal

I/O vulnerable to theft and tampering. Figure 1.2 provides an overview of the

components within a hub that pose a potential threat to sensitive I/O data.
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Figure 1.2: An overview of our system model and the threats to sensitive I/O data hub de-
vices. Components within a hub (left) that pose a potential threat to sensitive I/O data are
colored red.

Problem #2: The Vulnerability of Peripheral Devices

The wrist-worn health device and other peripheral devices like it run a variety of

software, including one or more applications. For instance, the wrist-worn health

device in our scenario runs multiple mHealth applications, including an activity

monitoring application, a food and beverage consumption tracking application, and

a continuous glucose monitoring application; this device also runs software that was

not specifically prescribed to Bob for his healthcare treatment, such as an alarm clock

application and a sleep monitoring application. While the mHealth applications

were developed by reputable companies, the alarm clock application that Bob

downloaded from an App Store contained malware.2 Once installed, the malware

exploited a buffer-overflow vulnerability in the system and obtained the ability to

execute arbitrary code. The malware has since used its access to the system to steal

information from other applications on the device, and to launch attacks against

Bob’s smartphone (in an attempt to compromise smartphone applications and

2In this case, Bob knowingly downloaded the application (though he did not know that it
contained malware). While this is one way that malware finds its way into devices, it is by no means
the only way.
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Figure 1.3: An overview of the threats to apps and data on peripheral devices. Components
within a peripheral (right) that pose a potential threat to apps and data are colored red.

obtain access to the Internet). Figure 1.3 provides an overview of the components

within a peripheral that pose a potential threat to apps and data.

The reality today is that malware and other threats can find their way into

peripheral devices through various means. And because of the nature of peripheral

devices – which are often small, battery-powered devices, operating on low-cost and

functionally-limited hardware – they often lack traditional resources that protect

against these threats. This lack of security in peripheral devices makes them ideal

targets to adversaries seeking to steal or tamper with data, to commandeer system

resources, or to obtain control over the device in order to carry out further attacks

on other nearby devices.

Problem #3: The Absence of (Re-)Verification of Trust Relationships

Even if the latter two problems did not exist, and even if hub and peripheral devices

employed a variety of state-of-the-art security and privacy solutions to protect

against known threats, one unfortunate reality remains: at some point the adversary

will be successful in compromising the system or network. For example, at some

point an attacker successfully installs malware on one of Bob’s devices. Or, at some
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point an attacker observes the identifiers of one of Bob’s devices and uses them to

masquerade as that device in order to establish a connection with his smartphone,

which can be used to carry out a subsequent attack on that device.

There exist efforts to address this reality today. For instance, antivirus software

installed on a device periodically scans file systems in search of patterns (“signa-

tures”) matching known malware. Alternatively (or possibly simultaneously),

software agents can run in hub devices or in Wi-Fi access points or in network

switches that aggressively monitor network traffic to detect abnormal network ac-

tivity. Unfortunately, today’s solutions face a number of challenges and have been

shown to be insufficient by themselves – we list a few of these challenges here. First

and foremost, it is not necessarily possible to install software agents or antivirus

software on each device, especially peripheral devices, rendering today’s solutions

inapplicable in our patient monitoring scenario (and scenarios like it). Second,

most antivirus solutions today are rule-based or signature-based,3 and therefore

can only detect known malware (i.e., malware with a known signature). Unsurpris-

ingly, malware developers have been quite successful in adding slight variations to

malware, which changes its signature and enables the slightly-modified malware

to evade detection. Third, antivirus software that scans file systems inherently

assumes that malware is at some point written to persistent memory such as the

hard drive. Recently, however, there have been discoveries of malware that resides

only in non-persistent memory, such as RAM or caches, and employs techniques to

avoid ever being written to persistent memory. Fourth, even if existing solutions

were to scan both persistent memory (e.g., hard drives) and non-persistent memory

(e.g, RAM, caches), it is possible that the contents of that memory are encrypted by

software or platform security, preventing antivirus software from performing its

3While there are other forms of solutions, such as anomaly-based detectors, they are less common.
In large networks – where these solutions are often deployed – it is important to avoid false-positives
so that short-staffed security teams can focus their attention on real threats. Thus, signature-based
systems seem to be the preferred approach, even today.
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Figure 1.4: An overview of the components within hub and peripheral devices that pose a
potential threat to the trustworthiness of Bob’s WPAN are colored red.

inspection. Last, not all malicious network traffic is IP-based network traffic. In fact,

many communications in the IoT are peer-to-peer, using Bluetooth/BLE, ZigBee,

Z-Wave, or others.

These observations amount to an unfortunate reality: there are currently

no mechanisms for Bob or his physician to actively detect (or protect against) a

compromise within Bob’s WPAN. In our scenario, this amounts to Bob and his

physician never knowing if there has been a breach within Bob’s personal devices.

Has Bob’s privacy been violated? Is the data obtained from the devices trustworthy?

Figure 1.4 provides an overview of the components within hub and peripheral

devices that pose a potential threat to the trustworthiness of Bob’s WPAN. Namely,

threats to Bob’s WPAN could come from the hub device (e.g., a malicious application

attempting to spread and compromise nearby devices), or from peripheral devices

(e.g., a device masquerading as another device in an attempt to obtain access to

Bob’s data). Today, there is no standard mechanism to detect this threat in WPANs.
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1.4 Our Vision: Making WPANs More Trustworthy

The trustworthy WPANs we envision are hardened against attacks that target

personal devices and sensitive user data. Furthermore, WPANs employ mechanisms

to continuously (re-)verify that past trust decisions (e.g., Bob connects and pairs

two new devices, A and B) remain valid over time.

Problem #1 – malware and threats to sensitive I/O data – is addressed by

our work, BASTION-SGX [156, 184]. BASTION-SGX is a security architecture for

protecting applications on hub devices from attacks within the device, such as a

compromised operating system, drivers, or other variants of malicious software.

This work aims to make I/O more trustworthy between peripheral devices and

apps running on the hub. We present BASTION-SGX in Chapter 2.

Problem #2 – the vulnerability of peripheral devices – is addressed by our

work, Amulet [91, 139]. Amulet is a novel platform, which enables developers to

create secure and efficient mHealth applications on resource-constrained peripheral

devices, such as health and wellness wearables; our work on the Amulet Platform

focuses on how these devices and their software can be composed and verified in a

more trustworthy way, fortifying them from being compromised by errant appli-

cations that might attempt to interfere with other applications or the underlying

system itself. We present Amulet in Chapter 3.

Problem #3 – the absence of (re-)verification of trust relationships – is ad-

dressed by our most recent work, Verification of Interaction Authenticity (VIA).

VIA is an extension of techniques commonly used in anomaly-detection and

intrusion-detection systems, which enable authentic interactions between apps

and devices to be modeled. The models we produce can be used to verify that

future interactions remain consistent with the previously-learned models. Our

approach has yielded promising early results, suggesting that VIA can be used to
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Figure 1.5: Overview of the system model, network model, and contributions presented in this
dissertation.

mitigate threats where an adversary attempts to carry out an attack that deviates

from the authentic interactions that were previously observed (e.g., when a trust

relationship was first established). We present VIA in Chapter 4.

We see our solutions working together in complementary ways (illustrated

in Figure 1.5). Specifically, BASTION-SGX (Chapter 2) is a solution that offers

more trustworthy I/O between peripheral devices and apps on hubs. Amulet

(Chapter 3) is a solution that offers insights into how to design and deploy more

trustworthy peripheral devices. And VIA (Chapter 4) is a solution that offers

ongoing verification that interactions between apps and devices with a WPAN are

authentic, and therefore more trustworthy.

1.5 Contributions

This dissertation makes significant contributions towards the analysis of threats to

WPANs, as well as the design and development of tools and system enhancements

for protecting apps, securing data channels, and identifying suspicious behaviors

within these networks (Figure 1.5).
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In aggregate, we make the following contributions in this dissertation.

Establishing Trustworthy Channels for App-Device Communications

In our work on BASTION-SGX [156, 184], we introduce an architecture and method-

ology for achieving secure and trustworthy I/O on platforms with SGX-enabled

processors. We present BASTION-SGX in Chapter 2 and make the following contri-

butions:

1. We identify and solve several challenges in realizing Trusted I/O for Bluetooth

on SGX-enabled platforms.

2. We define and present a new Trusted I/O architecture.

3. We present an analytical evaluation of the performance impact of Trusted I/O.

4. We present a prototype and a case study that demonstrates how our solution

effectively protects sensitive Bluetooth I/O data from privileged malware.

Designing Trustworthy Peripheral Devices

In our work on Amulet [91, 139], we present a secure, low-power platform and

suite of tools for developing and deploying mobile health applications. We present

Amulet in Chapter 3 and make the following contributions:4

1. We define and present the design and implementation of Amulet’s software

stack and runtime system.

2. We define and present the design and implementation of Amulet’s firmware-

production toolchain that guarantees application isolation.

4The Amulet project was made possible through the efforts of many researchers at Dartmouth
College and Clemson University. Here I emphasize my specific contributions to the project.
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3. We define and present the design and implementation of resource models that

are deployed in a graphical developer tools that aid developers in developing

secure and efficient applications.

4. We present an experimental evaluation of Amulet.

Along with the broader amulet hardware and software, my contributions have

been publicly released and are freely available.5

Verifying Trustworthy Behavior

In our work on VIA, we introduce a novel approach for ongoing verification of

authentic interactions between apps and devices in WPANs. We present VIA in

Chapter 4 and make the following contributions:

• We assembled a testbed made up of two distinct device categories (smart

health and smart home devices) consisting of 9 different device type, and 20

devices in total. From this testbed, we produced a novel dataset of more than

300 Bluetooth HCI network traces. This new dataset will be made publicly

available when this dissertation is published.

• We contribute extensions to open-source Bluetooth-analysis software to en-

hance the available tools for practical exploration of the Bluetooth protocol

and Bluetooth-based apps.

• We present a novel modeling technique (hierarchical segmentation), coupled

with n-gram models to reliably characterize and verify app-device interac-

tions.

• We present an experimental evaluation of our work using the 20 off-the-shelf

devices from our testbed.
5https://github.com/AmuletGroup/amulet-project
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1.6 Bibliographic Attributions
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tecture (ISCA’18) – the premier forum for new ideas and research results
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work also appeared in the Proceedings of the Workshop on Mobile Medical
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presented a secure, low-power platform and suite of tools for developing and
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2
Establishing Trustworthy Channels for

App-Device Communications

In Chapter 1 we introduced the idea that there exist threats (e.g., malware) to

sensitive I/O data within hub devices. In this chapter, we present BASTION-SGX

(Figure 2.1), a novel security architecture for protecting applications on hub devices

from attacks within the device, such as those that may come from a compromised

operating system, drivers, or other variants of malicious software (henceforth

malware). While many of the ideas and solutions in this chapter are relevant to all

hub devices, the following chapter describes work that is grounded in Intel-based
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Figure 2.1: Overview of System Model and BASTION-SGX.

devices – specifically those that have CPUs with Intel’s Software Guard Extensions

(SGX) (see Section 2.2.2 for a brief overview). Moreover, this chapter discusses

I/O security with respect to Bluetooth I/O data. Again, many of the ideas and

solutions discussed herein are relevant to other I/O technologies; however, this text

is grounded in discussion of Bluetooth to demonstrate its value when applied in

practice.

This work draws on work that I did as a Security Research intern at Intel Labs

in 2015 and 2016. This chapter is a modified version of our paper, BASTION-SGX:

Bluetooth and Architectural Support for Trusted I/O on SGX [156], which was published

in June of 2018, and our patent System, apparatus and method for providing trusted

input/output communications [184], which was published in August of 2019.

2.1 Introduction

Recently, Trusted Execution Environments (TEEs) have generated considerable

interest as a means to protect application code and data from unauthorized access.

TEEs are especially promising in light of the ubiquity of malware that threatens to

compromise applications and steal or modify security- and privacy-sensitive data
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such as personally identifiable information (PII), passwords, credit card numbers,

and health data. For example, Intel’s Software Guard Extensions (SGX) [100] has

been shown to be effective in protecting password databases [43] and even arbitrary

containerized processes in Docker [22] from such malware attacks.

For many sensitive applications, input/output (I/O) data has the same level of

sensitivity as the data protected inside a TEE-protected application, creating a need

to protect I/O data against theft or tampering from a malicious actor. Therefore,

many applications that need to use a TEE also need a mechanism to protect user

I/O data; this is especially so where sensitive user data is frequently communicated

between hub devices and peripheral devices.

To address this need, past work has proposed to construct trusted paths: secure

channels between applications and a user’s I/O devices. A common approach to

construct such a path is to introduce a combination of trusted drivers, middleware,

operating systems (OSes), virtual machines (VMs), and hypervisors. As a result,

the application’s security and the security of its I/O is reduced to the security of

the drivers, middleware, OS, VM, and hypervisor, which currently have no way

to attest itself to the TEE/TEE-protected application. In contrast, in our work

we develop lightweight extensions to the platform itself and describe how those

extensions can be attested.

To better understand this issue and the improvement that our solution makes,

we must first formalize the trusted path problem and discuss the shortcomings of past

work.

2.1.1 The Trusted Path Problem

In the canonical trusted-path problem, an application within the hub device (for

example, App1 in Figure 2.2) wants to send/receive data securely to/from periph-

eral devices outside the hub device, such as Human Interface Devices (HID) and
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Figure 2.2: Today’s solution to the trusted-path problem is to assume that apps, drivers, mid-
dleware, OSes, VMs, hypervisors, and hardware are capable and trustworthy with respect to
handling sensitive I/O data.

sensors (see the User I/O Device in Figure 2.2). More precisely, there exists a col-

lection of applications (apps) that run on a hub device (hub). On the hub is one

or more apps that handle sensitive data (e.g., banking app, health app, messaging

app). These apps want to securely communicate with peripheral devices (e.g.,

keyboard, microphone, speakers) connected with the hub, even in light of software-

based adversaries (malware) that may have compromised drivers, OSes, VMs, or

hypervisors.

Today’s solution (Figure 2.2) assumes that any apps, drivers, middleware,

OSes, VMs, hypervisors, and hardware are capable and trustworthy with respect to

handling sensitive I/O data. Not all of these components of a system are equally

worthy of user trust, however.

Figure 2.3 illustrates the general idea behind early research towards addressing

the trusted-path problem (e.g., [189, 200]). Specifically, given a hub with TEE
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technology (e.g., SGX), TEEs are used as a mechanism to protect the execution of

an app (parts of its code and data) by partitioning it into trusted and untrusted

parts; this leads to the notion of a trusted app [96], which is distinct from other user

apps. A combination of new, trusted components – trusted drivers, middleware,

OSes, VMs, and hypervisors – are then used to construct trusted paths between the

trusted app (TApp in Figure 2.3) and user I/O device through untrusted software.

For instance, a hypervisor-based solution [200] will run a trusted VM with an

untrusted commodity OS (e.g., Windows, Linux). The hypervisor and VM are

relied upon to contain the untrusted OS, preventing it from accessing I/O devices

or memory regions (memory that belongs to a trusted app, for example) that are

meant to be protected. All I/O goes from the hypervisor to the trusted VM, where

it is encrypted and sent to the trusted app that runs within the untrusted OS.

This approach, however, is not effective for SGX-enabled apps since the software

outside of its TEE does not have a way to attest itself to the SGX app. Furthermore,

these approaches include complex and error-prone software within the Trusted

Computing Base (TCB). As a result, the security of the trusted app is reduced to the

security of the (many) trusted components that are relied upon in past solutions –

components that are regularly exploited.

This leads to Figure 2.4, which depicts our solution. Rather than introducing

non-standard drivers or hypervisors, as past work does, we introduce lightweight

extensions to the platform itself. Specifically, we developed new platform features

to equip SGX-enabled platforms with Trusted I/O capabilities for specific I/O

paths. These features are primarily concerned with ensuring I/O protection from

all software adversaries, including privileged software, such as the OS. By enabling

Trusted I/O in the platform – removing all system software from the TCB – we

significantly enhance I/O security.

20



Hub Device

VM

Privileged

Software

Hardware

CPU + I/O Controller FW/HW

Hypervisor

Unprivileged

Software

TApp App1 AppN…

Operating System
Drivers & Middleware

Drivers

Physical 

Connection

User I/O Device
Untrusted
Trusted

Insecure
Secure

E1

E2

Figure 2.3: Variations of proposed solutions to the trusted-path problem rely on a combina-
tion of trusted drivers, VMs, and hypervisors for I/O security. For example, past work [189]
describes how secure app-to-driver binding and driver-to-device binding can be achieved via
trusted VMs and hypervisors.
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Figure 2.4: Our solution to the trusted-path problem is to implement lightweight features in I/O
hardware, securing the path between the TEE and a specific I/O interface.
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2.1.2 Scope: Securing Bluetooth I/O on SGX Platforms

In our solution we consider the trusted-path problem for a specific wireless I/O tech-

nology – Bluetooth – using a specific TEE technology – SGX. Also, we specifically

consider the challenges around securing only the sensitive user data sent to/from

Bluetooth devices (e.g., keyboard key presses, health sensor data) on SGX-enabled

platforms. Thus, all references to I/O security throughout this chapter are specifi-

cally aimed at securing user data over Bluetooth. While we focus our attention on

Bluetooth and SGX, we postulate that similar notions apply to other wired (e.g.,

USB), wireless (e.g., ZigBee, NFC, Wi-Fi) and TEE (e.g., ARM TrustZone [19], AMD

Secure Technology [7]) technologies.

Furthermore, in our solution we consider adding security only where it is

needed, but does not yet exist. Namely, today, wireless I/O technologies – including

Bluetooth – already provide I/O protection at the hardware link level (i.e., between

the hub and peripheral device), but leave the hub-side security (i.e., within the

hub) up to the OS. All I/O between the hub and its connected devices is already

secured with existing security, such as Over-The-Air (OTA) encryption; all I/O

within the hub, however, is transferred in plaintext between apps and the hub’s I/O

hardware (e.g., Bluetooth Controller). Our work addresses this hub-side insecurity

by securing I/O data between the I/O hardware and trusted apps.

2.1.3 Challenges in Bluetooth Trusted I/O

Today, hub devices run a vast number of apps and connect with a multitude

of Bluetooth devices that enable human users to interact with these apps. It is

imperative that the hub be capable of reliably managing multiple connections with

other Bluetooth devices. Therefore, in light of the trusted-path problem, we need a

Trusted I/O mechanism that can selectively secure only user data, and only between
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trusted apps and designated devices, while allowing all other apps and devices to

communicate as usual; this ensures all other apps can continue to work without

modification. We discuss this fundamental challenge and how we overcome it in

greater detail in Section 2.4.

2.1.4 Contributions

The contributions of this work are:

1. We identify and solve several challenges in realizing Trusted I/O for Blue-

tooth. Namely, we describe an approach to connection monitoring that can

be applied within a hub’s Bluetooth Controller, allowing it to unobtrusively

collect Bluetooth device and channel metadata.

2. We present BASTION-SGX, an architecture for realizing Trusted I/O specifi-

cally for Bluetooth on SGX-enabled platforms. Our architecture is grounded in

lightweight extensions to existing Bluetooth I/O firmware to enable Bluetooth

Trusted I/O.

3. We present a prototype of our work in a case study that secures sensitive

Bluetooth I/O data between Human Interface Devices (keyboard/mouse)

and a trusted app. Specifically, our work shows how it is possible to extend

existing over-the-air Bluetooth security all the way to a trusted app with

our new security features that secure Bluetooth I/O between the Bluetooth

Controller and the trusted app.

We emphasize that all of our contributions significantly enhance I/O security

relative to today’s solution by protecting user I/O data from software-based ad-

versaries on the hub. Furthermore, our solution only requires modifications to the

firmware of the hub’s Bluetooth Controller and the trusted apps.
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2.2 Background

In this section we present background information on the prominent technologies

featured in this chapter: Bluetooth and Intel’s SGX.

2.2.1 Bluetooth

A detailed description of the Bluetooth architecture and its protocols are beyond the

scope this work. For this, we refer the reader to the Bluetooth Core Specification [35]

(more than 2,500 pages!). A basic understanding, however, is required to appreciate

the challenges and solutions we discuss. Note that this chapter describes specific in-

sights into our work with Bluetooth Classic. The main ideas carry over to Bluetooth

Low Energy (BLE) as well since the the hierarchy of links and channels (defined

below) are arranged similarly in both Bluetooth Classic and BLE. Therefore, we

make references throughout this text to Bluetooth, with the understanding that it

applies to both Bluetooth Classic and BLE.

A typical deployment of Bluetooth (within a hub) consists of a Host and one

or more Controllers. The Host Controller Interface (HCI) is a command interface

between the Host and Controllers. A Bluetooth host is a logical entity made up

of all the layers between Bluetooth’s core profiles (i.e., Bluetooth applications and

services) and the HCI. A Bluetooth controller is a logical entity made up of all of the

layers below the HCI, and enables the client to communicate with other Bluetooth

devices. In most hub devices, the Host is implemented in software (within an

OS such as Linux, for example), whereas the Controller is implemented with a

combination of firmware and hardware. The Bluetooth specification identifies

several of possible configurations of Hosts and Controllers, but an understanding

of this representative deployment is sufficient for the reader. A simplified view of

this deployment is shown in Figure 2.5.
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Figure 2.5: A simplified view of the Bluetooth stack.

During normal operation of Bluetooth, a physical radio channel is shared

by two or more devices. A collection of devices sharing a single radio channel

(synchronized to a master device) is referred to as a piconet. Without loss of

generality, the following text describes relevant internals of a physical channel

shared by only two devices.

Within the context of a shared, physical radio channel, there is a complex

layering of links and channels and associated control protocols that enables coor-

dination amongst the devices as well as data to be transferred between devices.

A detailed description of each of these channels and links is beyond the scope of

this dissertation (see the Bluetooth Specification [35], Volume 1, Part A). Worthy of

note in our work is, however, the Logical Link Control and Adaptation Protocol

(L2CAP) channel. L2CAP channels provide a channel abstraction to applications

and services. The L2CAP layer of the Bluetooth protocol carries out many functions,

including segmentation and reassembly of application data, and multiplexing and

de-multiplexing of multiple channels over a shared logical link. Application data

submitted to the L2CAP protocol may be carried on any logical link that supports

the L2CAP protocol.
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Summary

In our work we focus primarily on two aspects of the Bluetooth protocol: the HCI

and the L2CAP. The HCI is the interface between software (i.e., the Bluetooth Host

software) and Bluetooth I/O hardware (i.e., the Bluetooth controller firmware and

hardware); by extending this interface, we can enable trusted software to create

secure channels for Bluetooth data within the hub. The L2CAP protocol is the

primary protocol for enabling applications and services; by applying Trusted I/O

security at the L2CAP layer, we can offer fine-grained, channel-based protection for

user data.

2.2.2 Intel SGX

Intel Software Guard Extensions (SGX) [100] is a set of new instructions and mech-

anisms that can be used by app developers to protect selected code and data

from disclosure or modification by partitioning apps into CPU-enforced containers

known as enclaves (Figure 2.6). Enclaves offer protected areas of execution in

memory that increase security even on compromised platforms. Specifically, an

enclave provides confidentiality, integrity, and replay-protection guarantees, even

without relying on trusting drivers, middleware, OSes, VMs, hypervisors, firmware,

or the BIOS. SGX also provides remote and local attestation capabilities, allowing

enclaves to be measured and verified – or in other words, a means for an enclave to

provide proof of its authenticity.

More information on SGX is available through Intel’s official SGX documenta-

tion [100] as well as past academic research (e.g., [130, 189, 59]). Today, however,

Intel’s SGX does not support Trusted I/O features.
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Figure 2.6: Overview of SGX and anatomy of an SGX enclave.

2.3 System & Security Model

In this dissertation, we address the trusted-path problem for Bluetooth I/O, as

illustrated in Figure 2.4. We break the overall path between the trusted software

and the user (device) into two subpaths: (1) the path between trusted software

and the trusted Bluetooth Controller (Figure 2.4, E1-E2), and (2) the path between

the trusted Bluetooth Controller and a trusted Bluetooth device (Figure 2.4, E3-E4).

As in related work [189, 200], we assume that the latter path is secure today (e.g.,

through standard Bluetooth OTA security). Our work focuses on the former path

and how trusted software and the trusted Bluetooth Controller can secure I/O

channels through untrusted Host software within the hub. Towards this end, this

section describes our goals and security model.

2.3.1 Threats & Adversaries

While there are certainly many types of adversaries and threats that one can imagine,

in this dissertation we are primarily concerned with software-based adversaries,
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including privileged software. Specifically, we concentrate on preventing two types

of software attacks: (1) unauthorized access attacks, which aim to access sensitive

user data transported via Bluetooth, and (2) data-injection or replay attacks, which

aim to inject data that is not authentic, or replay authentic data for malicious

purposes.

To this end, we consider an adversary (malware) that has various capabilities

and employs various tactics to successfully perform such attacks. Specifically, adver-

saries can read or write the code and data of system software and untrusted apps on

the hub. Adversaries can create their own trusted/untrusted apps. Adversaries can

also interpose on communication (i.e., intercept, insert, alter, deny messages), either

between trusted software and Trusted I/O hardware within the hub or between

the hub and device (or both). Adversaries cannot physically access the hub device

or any of its connected Bluetooth devices. Adversaries cannot read or write the

data or code of trusted software that is protected within a TEE, nor the data or code

protected by the trusted hardware. Adversaries cannot break encryption primitives

or protocols known to be secure today. Denial-of-Service (DoS) and side-channel

attacks are out of scope for our work.

2.3.2 Assumptions & Trust Model

In our work we assume the human user is not an adversary. We assume that the

Bluetooth I/O device is implemented correctly and is trusted by the user to faithfully

handle I/O on their behalf; furthermore, we assume the device accurately identifies

itself to the hub. We assume the hub has SGX-enabled hardware. We assume that

system software (e.g., drivers, OS) and other apps are not trusted. We assume

all trusted software and trusted hardware (including firmware) is implemented

and authenticated/loaded/initialized/booted correctly. We assume trusted apps

trust that the I/O Controller will comply with security policies (Section 2.3.4), not
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disclose user I/O data to other devices or apps, and implement OTA protection

between the client and any Bluetooth devices. We assume the physical channel

between the hub and device (Figure 2.4, E3-E4) is protected with existing Bluetooth

OTA security.

2.3.3 Goals

In light of these threats and assumptions, we seek to achieve the following four

goals: (G1) We aim to design a hub-side architecture that is not dependent on trusted

hypervisors, trusted OSes, or trusted drivers for security. (G2) We aim to provide

confidentiality, integrity, and replay protection guarantees over select user I/O data

between trusted software and hardware. (G3) We aim to provide protection against

impersonation of trusted software or hardware. And last, (G4) we aim to achieve

these goals in a way that does not interfere with existing I/O protocols (namely,

Bluetooth) or break existing routing mechanisms.

2.3.4 Bluetooth Trusted I/O Security Policies

Bluetooth applications and services rely on L2CAP channels to transport user data.

Thus, we apply Bluetooth Trusted I/O security to L2CAP channels that carry user

data.

A Bluetooth Trusted I/O security policy specifies what Bluetooth I/O data

needs to be protected between a trusted app and the Bluetooth Controller, as well

as information used to secure the data. Specifically, a policy is made up of two

elements: (1) information to identify the specific channel(s) that should be secured

(e.g., user data from a Bluetooth keyboard), and (2) a symmetric key; the symmetric

key is used to apply cryptographic protection over the specified channel’s data.

Here, a secure channel is one with the properties noted in goals G2 and G3 described

above. We discuss what information is needed to identify specific channels that
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carry user I/O data in Section 2.4, and how security policies can be programmed into

the Controller in Section 2.5.1.

Because our architecture aims to provide confidentiality of user I/O data (G2),

a trusted app that configures a security policy has exclusive access to the channel(s)

defined in the policy. This step ensures that no other software can access the

Bluetooth I/O data that the trusted app aims to secure. The OS enforces exclusive

use of some devices today (e.g., keyboards, cameras) for security. For example, by

default, the OS ensures keyboard input is only sent to the app that has focus to

ensure that no other app can observe passwords or other sensitive data entered

by the user. Since the OS and other system software is not within the TCB of our

architecture, however, we aim to provide similar guarantees without relying on this

untrusted software.

2.4 Channel Selection & Security Policy Enforcement

Today, the hub’s Bluetooth Controller is the gateway for all packets transported

between the client’s Host software and all connected Bluetooth devices (Figure 2.7).

An implication of the Controller’s current design and role as gateway, however, is

that all ingress Bluetooth packets (device-to-hub), from all connected devices, are

multiplexed within the Bluetooth Controller into a single stream and delivered to

Host software via the HCI. Similarly, all egress packets (hub-to-device) must be

demultiplexed within the Controller and sent to the correct Bluetooth device.

In our work we seek to not interfere with the Bluetooth protocol or break

existing routing within the hub’s software (G4). Therefore, our Trusted I/O solution

aims to selectively secure only user data, and only between trusted apps and

designated devices, while allowing all other apps and devices not requiring secure

I/O to communicate as usual. Realizing Trusted I/O for Bluetooth has raised
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Figure 2.7: Illustrating Bluetooth’s packet routing. Packets sent from Bluetooth devices are
multiplexed into a single stream and interleaved as they are sent to Host software. Packets
sent to Bluetooth devices must be de-multiplexed and associated with their respective device
before transmission from the hub.

three main challenges: (C1) associating multiplexed and interleaved packets to

their respective devices and channels; (C2) isolating and protecting only user data

(without interfering with control channels or packet headers); and (C3) overcoming

tension between enforcing high-level security policies given only low-level context.

We discuss these issues next and refer to aspects of Figure 2.8 and Figure 2.9.

2.4.1 Packet Multiplexing & Interleaving

Today, a Bluetooth Controller must maintain basic metadata about connected de-

vices and their channels so that it can route packets to Host software. Conceivably,
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a Bluetooth Controller need only maintain a mapping between an HCI connection

handle and the corresponding device’s Bluetooth address, enabling the Controller

to know which packets belong to which devices. Knowing how to differentiate

packets by device, while necessary, is not sufficient for securing user I/O data. To

elaborate, actual user data is transported between Host software and Bluetooth

devices using L2CAP channels. All L2CAP packets (Figure 2.8) have a channel

identifier (CID), and according to the Bluetooth specification, the L2CAP CID of a

packet enables routing software to associate packets with specific L2CAP channels.

Unfortunately, the CID used in L2CAP packets is guaranteed to be unique only per

device. This can give rise to ambiguity. For example, Figure 2.9 illustrates a hub

connected with two Bluetooth devices, each with one channel used to exchange

user data with the hub. Per the Bluetooth specification, it is actually reasonable

for the channels to have the same CID. The disambiguating attribute in this case

is the identifier for the physical link (i.e., the HCI connection handle or Bluetooth

Device Address, which identifies a unique Bluetooth device), which is not part of

the L2CAP packet. While all of this information is not located in a single packet,

the combination of an HCI connection handle and an L2CAP CID can be used to

uniquely identify channels.

2.4.2 Isolating & Securing User Data Only

Distinguishing between channels within one device and between channels be-

longing to different devices is a necessary precursor for identifying and securing

channels that carry user data. The next issue, however, is that the L2CAP packets

mentioned above actually come in two different types: those that carry control

information and those that carry user data. To ensure all user I/O data is secure,

it may initially seem like a good idea to secure all packets – regardless of type –
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Figure 2.8: An example of the Bluetooth packet hierarchy. In our prototype work we show how
input data from HID devices can be secured. User data (e.g., key presses) is transported in
HID packets (top level). These packets are nested in multiple layers of the Bluetooth protocol
for transportation from a device to a client’s Host software.
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Figure 2.9: An example of two Bluetooth devices connected with a hub. Trusted I/O requires
fine-grained channel selection. For each device and channel, a Trusted I/O-enabled Bluetooth
Controller maintains information about: the physical connection (HCI Connection Handle),
logical channels (L2CAP CIDs) and their respective protocol/service multiplexor (PSM; control
vs. data), and Class of Device (COD; composed of Major and Minor numbers).
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belonging to communication with a specific device. This approach, however, can

have atrocious effects on existing Bluetooth functionality. For example, as depicted

in Figure 2.9, Device 1 has one channel (L2CAP CID = 63) dedicated to handling

signaling (e.g., enable device options, determine current device state) between the

hub and device; as a consequence of securing all packets, Trusted I/O security

would obfuscate (encrypt) this signaling channel and “break” application-level

functionality. For other, primary signaling channels, this can be even more destruc-

tive, breaking functionality that controls how packets are routed, and how logical

channels are created, maintained, and destroyed. In general, essential Bluetooth

functionality relies on access to HCI connection handles, L2CAP channel identifiers,

and in some cases, even information in the L2CAP packet payloads (e.g., control

parameters). Thus, in order to not break existing Bluetooth functionality, packets

that contain control information should not be secured, and packets containing data

should only be secured if a relevant security policy exists.

The underlying issue here is that L2CAP packets have no type descriptor in

the packet that can be used to disambiguate control packets from data packets.

Such a descriptor is, however, present at the time that new L2CAP channels are

created. During L2CAP channel creation, a Protocol and Service Multiplexor (PSM)

value is exchanged. PSM values are useful for securing channels as they provide

higher-level insight into the purpose of the channel and the type of information that

will be exchanged over the channel. Furthermore, some data and control channels

are defined in the specification and are allocated reserved channel identifiers that

indicate their purpose (data vs. control). Thus, while channel type information

is not contained within all packets, such information is either standardized (and

therefore need not be directly observed) or available during the creation of channels

(and is therefore observable within the Controller).
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2.4.3 Understanding Device Types

More information may yet be required to enforce meaningful security policies. Thus

far we have worked to disambiguate devices from one another, to disambiguate

channels from one another, and even to disambiguate types of packets from one

another. What we are lacking, however, is a higher-level understanding of con-

nected devices. Specifically, we seek a mechanism to map security policies that

are meaningful to humans and apps, to any connected devices. For instance, a

Trusted I/O security policy may require that all I/O from/to a particular device, or

particular class of device (such as all keyboard devices; see Device 2 in Figure 2.9),

should be secure. Fortunately, Bluetooth defines the notion of Class of Device

(COD), which provides higher-level information about the purpose and function

of a device. Each Bluetooth device belongs to some class, represented by major

and minor class information. Bluetooth currently defines 32 major classes (e.g.,

Computer, Phone, Peripheral, Health). There are many minor classes that describe

subclasses of a particular major class; for example, given a major class of Peripheral,

minor class information further describes if that Peripheral is a keyboard, mouse,

or something else. According to the Bluetooth specification, “The major device

class segment is the highest level of granularity for defining a Bluetooth device. A

device’s main function determines its Major Class assignment.” Using Bluetooth

Class of Device information to represent devices in security policies likely maps

well to the high-level understanding of devices that humans and apps have.

2.5 BASTION-SGX

In this section we present BASTION-SGX: our Trusted I/O architecture for Blue-

tooth on SGX (Figure 2.10). BASTION-SGX is comprised of the following com-

ponents: the hub’s trusted software, the hub’s Trusted I/O hardware, and some
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Figure 2.10: Overview of our Bluetooth Trusted I/O architecture. Our goal is to ensure data is
secured in its transportation between two endpoints: trusted software (E1) and a Bluetooth de-
vice (E4). We assume the path between the hub’s Bluetooth Controller and the device (E3-E4)
is secure via Bluetooth OTA security that exists today. Our work shows how I/O channels be-
tween trusted software and the trusted Bluetooth Controller (E1-E2) can be secured. Together,
these paths achieve our goal.

number of wirelessly connected devices. Specifically, the trusted software consists

of standard SGX software and a trusted app. The trusted hardware is an SGX-

enabled CPU and a Bluetooth Controller with our Trusted I/O extensions. Wireless

devices connect with the hub and communicate with apps.

2.5.1 Bluetooth Trusted I/O Controller

BASTION-SGX is centered around a Trusted I/O-enabled Bluetooth Controller,

which implements the following features: (1) monitor connection events and main-
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tain a Metadata Table to store information for connected Bluetooth devices and their

respective channels; (2) expose an API to support Trusted I/O-related interactions

with Host software; (3) filter packets in accordance with the Metadata Table; and

(4) apply cryptography to provide the desired security properties over a channel.

We discuss these components in greater detail next and in Figure 2.10.

Connection Event Monitoring & the Bluetooth Trusted I/O Metadata Table

The solutions we envision for the various challenges described in Section 2.4 rest in

our ability to obtain metadata about devices, and their respective HCI and L2CAP

channels. We assert that it is possible to obtain most of the necessary information

simply by extending the Bluetooth Controller’s firmware. (Our solution also relies

on information obtained from the trusted app via our new Trusted I/O-related APIs.

We discuss this information in the next section.) Specifically, BASTION-SGX realizes

new features to monitor HCI and L2CAP connection/disconnection events, and

maintain a Metadata Table that contains the information alluded to in Section 2.4.

Figure 2.11 provides a summary of the relevant HCI and L2CAP events, and the

metadata that the Controller captures.

When a Bluetooth device first connects with a hub device, the Controller

creates an HCI Connection Handle (CONN_HDL) that the client’s Host software can use

to communicate with that specific device. As an example, when a device connects,

the Bluetooth Controller generates an HCI Connection Request event to inform

Host software that a device wishes to connect. The device is described initially by its

Bluetooth Device Address (BD_ADDR) and Class of Device (COD). Upon completion

of the physical connection between the hub and device, the Controller generates an

HCI Connection Complete event that provides Host software with the CONN_HDL

that can be used for future communication with the device. At this point, the Host

and Controller have an active HCI connection that can be used for subsequent
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Figure 2.11: An example flow of a hub-device connection with a summary of the relevant HCI
and L2CAP connection-related events. These events are standard in Bluetooth’s HCI and
L2CAP protocols today. Our solution adds extensions to the Bluetooth Controller to monitor
and capture device- and channel-specific metadata during connection/disconnection events;
the result is a Trusted I/O-enabled Bluetooth Controller. The relevant metadata is shown in
parenthesis.

communications between the Host software and device.

Once connected, these entities can exchange L2CAP connection requests and

responses to create logical links for exchanging control and data packets. For

example, a device that sends a request to the Host to create a new L2CAP channel

sends two pieces of information: a REMOTE_CID and PSM. The Protocol/Service

Multiplexor (PSM) indicates the purpose of the channel; i.e., what protocol or service

will operate over the new L2CAP channel. The L2CAP channel has two endpoints:

one in the Host (LOCAL_CID) and one in the device (REMOTE_CID). While the Host

is free to assign any CID for its local endpoint, it does not control the CID that the

device uses for its endpoint. Thus, when new L2CAP channels are formed, the

Host software and device carry out an acknowledgement of the CID to be used for

their respective endpoints. Events related to HCI and L2CAP disconnections can be

similarly observed.
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…

CONN_HDL

0x0046

34:88:5D:29:A8:9B

34:88:5D:29:A8:9B

BD_ADDR

0x0046

0x0047

00:A6:83:B3:91:02

00:A6:83:B3:91:02

0x0047

…

LOCAL_CID

0x0042

0x0041

0x0041

0x0042

…

REMOTE_CID

0x0042

0x0041

0x0041

0x0042

…

COD (minor)

0x05

0x05

0x05

0x05

…

COD (major)

0x10

0x10

0x20

0x20

…

PSM

0x0013

0x0011

0x0011

0x0013

…

KEY

0xXXXXXXXX…

0xXXXXXXXX…

0xYYYYYYYY…

0xYYYYYYYY…

…

Figure 2.12: A simplified example of the Trusted I/O Metadata Table.

By monitoring these HCI and L2CAP events, the Controller can be made

to capture and maintain fine-grained information about each connected device

(CONN_HDL, BD_ADDR), its logical channels (LOCAL_CID, REMOTE_CID), its type

(COD), and the protocols or services (PSM) operating over each channel. This in-

formation can then be used in accordance with security policies (Section 2.5.1) to

filter (Section 2.5.1) and secure packets (Section 2.5.1). A simplified example of the

Trusted I/O Metadata Table is shown in Figure 2.12.

Bluetooth Trusted I/O API

Trusted I/O features are aimed at giving trusted software the ability to create secure

channels to protect specific I/O data channels. Thus, in BASTION-SGX, security

policies (Section 2.3.4) are driven by the requirements of trusted software. There are

two issues worth considering here: first, how trusted software can configure security

policies within the Controller, and second, how trusted software can describe

security policies, based on metadata the Controller independently maintains.

Configuring Security Policies. The HCI can be used to address the first issue.

The HCI is already used for communication between the Host and Controller.

Furthermore, the HCI protocol supports an extensible interface, often referred to

as the Vendor Specific Debug Command (VSDC) interface. This interface enables

vendors to add non-standardized features to Bluetooth Controllers and to enable

apps to use those features. Thus, we can use this interface to support new Bluetooth

Trusted I/O APIs – such as policy specification APIs for adding and removing security
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policies – in Trusted I/O-enabled Bluetooth Controllers.

Class-of-Device Policy Specification. One approach to specifying security policies

is to identify a class of devices that should be secured along with a key (COD, KEY),

and rely on the Controller to determine which channels carry sensitive data versus

those that do not. As noted in Section 2.5.1, upon connecting, COD information

is exchanged; therefore the Controller can know the COD of each of its connected

devices. Furthermore, because PSM information is exchanged during the creation of

any L2CAP channel, the Controller can know the purpose of each L2CAP channel,

enabling it to identify (and subsequently secure) channels that carry user data

(using the policy’s KEY). This approach for defining security policies is conservative

in that it allows trusted software to secure I/O between it and any device matching

the COD in its policy.

Bluetooth Trusted I/O Filtering

The Bluetooth Trusted I/O Filter is responsible for (1) identifying packets containing

sensitive user data based on known devices (Section 2.5.1) and security policies

(Section 2.5.1), and (2) securing these packets (Section 2.5.1) using the policy’s KEY.

Thus, as L2CAP packets are transported between the Host and Bluetooth devices,

the filter examines each packet to determine if some security policy applies to that

packet. Essentially, given an L2CAP packet, PACKET, an HCI connection handle,

CONN_HDL, and information about the direction of the packet (host-to-device or

device-to-host), DIR, the filter must decide to either apply Trusted I/O security to

PACKET or allow it to pass through unaffected.

Each L2CAP PACKET (recall Figure 2.8) contains a CID and packet length

(LEN). Also, the Controller knows the CONN_HDL to which the PACKET belongs,

and which direction the packet is being transported. Therefore, the filter can check

the Metadata Table to see if the PACKET belongs to a secure channel and apply the
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appropriate security operations (encrypt, decrypt, etc.) over the PACKET’s payload

based on DIR. Note that the boundary of the PACKET’s payload can be determined

from the LEN field in the header of PACKET; all Trusted I/O security is applied to

the payload. We discuss this step next.

Bluetooth Trusted I/O Security

The details of the security applied to user data (e.g., encryption and decryption

algorithms, key sizes, MACs) are implementation and security-model specific. As

noted in Section 2.3, BASTION-SGX aims to provide confidentiality, integrity, replay

protection, and mutual authentication guarantees (G2 and G3). In BASTION-SGX,

any authenticated encryption algorithm can be used to secure the channel. Such

an encryption algorithm is applied to user I/O data within trusted software and

the trusted Controller so that the data can be routed in the normal way (G4) via

untrusted software; by securing the I/O data before moving it out of the trusted

software or Controller, we ensure the data is opaque to untrusted software (G1).

Furthermore, in doing so, we protect user I/O data against the malware attacks

defined in Section 2.3 – which raises the bar significantly from today’s solution.

Thus, assuming trusted software has a secure mechanism to share keys with the

Controller, BASTION-SGX can achieve its security goals. We note that this key-

sharing step is critical to Trusted I/O security, yet distinct from the contributions we

describe in this dissertation. In fact, there is nothing especially novel behind how

this key sharing can be done, and as such, is not an emphasis of this dissertation. To

convince the reader that this step is not an issue, we briefly describe two approaches

next.

Dynamic Key Provisioning. This approach requires further extensions to the Blue-

tooth Controller that enable it to attest itself to an enclave, enabling a Controller

to prove to an enclave that it is authentic Bluetooth hardware, executing authentic
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Bluetooth firmware; the attestation we envision is similar to what is proposed in

the USB Type-C Authentication Specification [70] and the PCIe Device Security

Enhancements Specification [58].1 These specifications define nearly identical au-

thentication architectures that allow USB and PCIe devices, respectively, to have

their identity and capability cryptographically verified. These architectures provide

a specific example where cryptographic verification can be used to subsequently

exchange secrets to set up a secure channel between software and a device; such

a channel, in our work, would be used by trusted software to configure security

policies (Section 2.3.4) within the Controller.

At a high level, these authentication architectures adapt common industry

paradigms (i.e., PKI) for identity and capability verification. Specifically, a trusted

root certificate authority (CA) generates a root certificate; the root certificate is used

by an authentication initiator (verifier) to verify the validity of signatures generated

by a device (prover) during authentication. The root certificate is also used to

endorse vendor certificates, which are then used to endorse some combination of

intermediate certificates and model certificates; these certificates are ultimately used

to endorse per-device certificates.

Authentication happens in two steps: (1) Authentication Provisioning, and

(2) Runtime Authentication. In the authentication provisioning step, the root certifi-

cate is provisioned to the authentication verifier (in our case, trusted software) to

enable the verifier to verify the validity of signatures generated by a device (in our

case, a Bluetooth Controller) during the runtime authentication step. Furthermore, a

public/private key pair is generated for each device; the private key is provisioned

into the device at the time of manufacturing along with a certificate that contains its

corresponding public key, along with a signature that can be verified using the root

1At the hardware level (i.e., within the hub), components connected with the CPU via PCIe,
USB, UART, etc., are commonly referred to as “parts” or “devices.” Thus, references to “devices” in
this context are distinct from how we use the word “device” throughout the rest of this dissertation,
which is to refer to Bluetooth devices.
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CA’s public key in the root certificate. In the runtime authentication step, the verifier

queries the device to obtain its certificate, and sends a unique challenge (nonce) to

the device; the device can authenticate its identity and capability by signing the

challenge along with other authentication data (e.g., a measurement of its firmware)

with its private key. The verifier can verify the device’s response/signature using

the device’s public key and the root CA’s public key (as well as any intermediate

public key), and use the result of its verification to make a trust decision.

Assuming the device (again, in our case this is the Controller) successfully

attests to its authenticity, standard protocols such as DAA-SIGMA [186] can be

used to share a secret and establish a secure channel between an enclave and the

Controller; the enclave can then use the secure channel to share Trusted I/O keys

with the Controller.

New Platform Capability. An alternative approach envisions a new platform

capability, similar to previously-envisioned capabilities. For example, the authors

of the Secure Input/Output Device Management patent [129] describe a scenario

similar to ours: a processor has secure execution environment support (e.g., SGX)

and wishes to establish a secure connection to an I/O controller. The I/O controller

includes an integrated Trusted I/O component that can receive (unencrypted)

requests to configure the Trusted I/O component. In the patent, the authors provide

details for how a USB controller can be equipped with trusted I/O capabilities

and how encryption keys can be established between an enclave and the USB

controller. Our work can use similar features for a Trusted I/O-enabled Bluetooth

Controller. This new capability would make secure key sharing a feature of the

platform (via ISA extensions), and allow enclaves to send Trusted I/O keys securely

to an authentic Bluetooth Controller.
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2.5.2 Trusted I/O Host Software

In BASTION-SGX, trusted apps are implemented as SGX enclaves. Trusted apps are

therefore subject to the same security model as SGX, and benefit from existing work

towards resources for enclave software development [96, 130]. Trusted software

uses enclaves to protect select code and data within the enclave, and uses our

Trusted I/O features to secure I/O data between itself and the Bluetooth Controller.

In theory, a trusted app can be quite simple. To create secure Bluetooth I/O

channels, a trusted app needs to configure security policies within the Controller

using the Bluetooth Trusted I/O API (Section 2.5.1). For each new secure I/O

channel, a trusted app should use a new symmetric key, which can be generated

using third-party libraries such as mbedTLS [20], for example. The trusted app can

then use one of the mechanisms described in Section 2.5.1 to securely configure

security policies (which include the key) into the Controller. A trusted app also

needs to perform cryptographic operations on incoming/outgoing data; the SGX

SDK [100] offers various functions to help developers with these sorts of operations,

though again, third-party libraries (e.g., [20]) can also be used.

In some cases there may be a need for additional trusted software (e.g., Trusted

Bluetooth Profiles) to support trusted apps that use Trusted I/O features. (See

Section 2.7 for an example.) In today’s solution, the OS and various drivers are

trusted, so it is not a problem to have them process and interpret the contents of

I/O packets to make them useful for apps. Our security model rules the OS and

these subsystems out of the TCB; our work is therefore unable to rely on them

for these services. Alternatively, a trusted app can opt to implement any data

processing/interpretation that is needed (as we do in our work). Both of these

options are viable.

We envision extending the existing SGX SDK [100] in future work to include
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our Bluetooth Trusted I/O extensions for SGX. Specifically, these further extensions

would implement common Bluetooth Trusted I/O operations such as key generation

and encryption/decryption for securing I/O data, a security policy API, and so

forth, alleviating the need for developers to implement these features in their apps.

2.6 Analytical Evaluation

In this section we present a analytical evaluation of BASTION-SGX. We are most

interested in two evaluating two aspects of our solution: the memory overhead

of managing additional metadata for Trusted I/O, and impact on network perfor-

mance (latency and throughput).

Trusted I/O Memory Overhead

Recall the metadata table from Figure 2.12. Each row in the table consumes at

most 32 bytes (BD_ADDR = 6 bytes, CONN_HDL = 2 bytes, LOCAL_CID = 2 bytes,

REMOTE_CID = 2 bytes, COD = 2 bytes, PSM = 2 bytes, KEY = 16 bytes). In practice,

Bluetooth controllers support connections from three to eight devices, though some

Bluetooth hardware is known to support as many as twenty devices.

Figure 2.13 illustrates that the memory overhead for our Trusted I/O solution

scales linearly with the number of channels requiring security. In a scenario common

to today, where no more than eight devices are connected with a hub, and each

device has only one channel that requires Trusted I/O security, the metadata table

that is maintained for our solution would consume a modest 8× 23 = 184 bytes of

memory. In fact, even if we envisioned a more capable Bluetooth controller that

supported up to 100 devices, the metadata table would consume just over 2K bytes

of memory. Ultimately, the cost of our solution in terms of additional memory

consumption is dependent on the hardware’s resources – specifically, the number
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Figure 2.13: Trusted I/O memory overhead. Memory consumed by the Metadata Table is ulti-
mately limited by the number of connected devices that the hardware supports. The memory
consumed scales linearly with the number of logical channels utilizing Trusted I/O security.

of connected devices that the hardware supports.

Trusted I/O Latency & Throughput

To obtain insights into the impact of BASTION-SGX on network performance, we

draw from measurements performed in related work [128, 76, 152]. In particular, we

utilize timing measurements for BLE data transfer, as well as encryption, decryption,

and MAC operations, which are used to protect data channels. For the purpose

of this analysis, let us suppose that two devices are already connected and we are

interested in computing the additional per-packet performance impact of Trusted

I/O.

To reason about the impact of Trusted I/O, observe that, for packet ingress, a

Trusted I/O-protected channel incurs the additional cost of a table look-up (negli-

gible), one packet (re-)encryption within the Bluetooth controller, and one packet

decryption in the receiving app. For packet egress, a Trusted I/O-protected chan-

nel incurs the additional cost of an encryption in the app and a decryption in the

Bluetooth controller. Thus, regardless of the destination of the packet, each data
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Figure 2.14: Trusted I/O Operation Overhead.

packet protected by Trusted I/O is encrypted and decrypted one additional time.

For clarity, this observation is illustrated in Figure 2.14.

Common approaches to measure throughput are to use Round-Trip Time

(RTT) or One-Way-Trip (OWT) Time. The RTT simply measures the elapsed time

between when a packet is sent from A to B and back. Assuming the delays in both

directions are approximately the same, the OWT is half of the RTT. Using RTT to

provide analytical insight into achievable throughput with Trusted I/O, one can (in

theory) send as much data as possible, apply the expected (average) latency, and

evaluate how much data gets through. This raises two questions: How much data

can be sent per second?, and What is the latency?

To proceed, we can use the following equation to calculate throughput:

Throughput = Packets Per Second ∗Data Per Packet

=
NconnInterval ∗ d
connInterval

(2.1)

where NconnInterval is the number of packets exchanged per connection interval,
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d is the amount of data per packet, and connInterval is how often two devices

communicate (in milliseconds; a minimum of 7.5 milliseconds and increases in

steps of 1.25 milliseconds).

The maximum application layer throughput for a connection between two

devices has be obtained in prior work through both simulation and mathematical

analysis [76]. To summarize: the theoretical data rate of Bluetooth varies depending

on the version. For instance, in Bluetooth v4.2, the maximum BLE data rate is

1Mbps. In practice, however, the data rate at the application layer is substantially

lower – the maximum theoretical application layer throughput is 236.7Kbps, but

real-world experiments suggest that the application layer throughput is more like

58.48Kbps [76]. This disparity is due to a variety of factors (e.g., protocol overhead,

connection interval (CI), Inter Frame Space (IFS), the number of devices in the

piconet, implementation limitations) that are beyond the scope of this analysis.

In a BLE connection, each device communicates with the other at least once

during a period known as the CI. By default, even when neither device has data to

send, each device will transmit an empty Link Layer packet. The minimum CI per

the Bluetooth specification is 7.5ms. Within the CI, devices are allowed to transmit as

many packets as desired, restricted only by the IFS (required time between packets),

and the fact that each packet sent fromA to B results in a response (ACK) from B to

A. While it is theoretically possibly to transmit more packets per CI, most devices

transmit at most four data packets per CI. Even in ideal scenarios (e.g., extremely

low Bit Error Rate (BER), using the smallest possible CI), past work evaluating

BLE observed that the average one-way trip latency is 1ms [76]. For reference, we

recreate figures (Figure 2.15) from PunchThrough’s article on BLE throughput [162],

which illustrates the maximum throughput, minimum connection interval, and

maximum number of packets per connection interval for various iOS and Android

devices.
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Figure 2.15: Examples of commodity devices and their maximum throughput, minimum con-
nection interval, and maximum number of packets per connection interval. We recreate these
figures using data obtained from PunchThrough’s article on BLE throughput [162].

BASTION-SGX is technically agnostic to the security parameters and oper-

ations for Trusted I/O. For illustration, however, let us assume a deployment of

BASTION-SGX uses strong, standard techniques to protect the channel, such as

AES-CTR, AES-CCM, or AES-EAX.2 Let us consider the use of AES-EAX. In recent

work evaluating the performance of cryptographic algorithms across various IoT

platforms and operating systems [152], it was observed that one encryption oper-

ation for AES-EAX consumes < 100µs of time on average for a message sizes of

less than 100 bytes. (The associated decryption displayed similar performance.)

Since each packet in Trusted I/O, regardless of ingress or egress, incurs the cost of

one additional encryption and decryption, which adds 200µs on top of the average

latency of a BLE packet.

Combining all of this information suggests that Trusted I/O adds approxi-

mately 20% overhead to the transfer of a single packet. Notice, however, that if

the average latency for BLE is 1ms, and Trusted I/O adds 200µs to protect a single

packet, and four packets are sent per CI,3 the total latency is still less than the CI.

2AES-CCM and AES-EAX are schemes for achieving Authenticated Encryption with Associated
Data (authenticated encryption with associated data (AEAD). Counter Mode (CTR) is a mode of
operation that turns a block cipher into a stream cipher by including successive values of a counter
value.

3Past work has observed that the maximum number of packets per connection interval is
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Thus, the impact to latency is quite small, and since the number of data packets per

CI remains the same, there is no impact to the overall throughput.

2.7 Case Study: Securing Bluetooth I/O on Intel’s SGX

Here, we validate the Trusted I/O Controller and its role in our architecture (Sec-

tion 2.5.1). Specifically, we seek to validate: (1) that our metadata table can be built

and enables unique channel selection for Trusted I/O security; (2) that security

policies can be added/removed to/from the Controller by creating new Vendor Spe-

cific Debug Commands (VSDC); (3) that packet filtering can isolate data-carrying

packets and encrypt only packet data; and (4) that only the trusted app can recover

(decrypt) I/O data over the secure channel it establishes with the Controller.

To this end, we built a prototype of our architecture and an example trusted

app on an SGX-enabled platform running the Linux OS (Figure 2.16). The official

Bluetooth Host Software used by Linux is BlueZ [36]. In our current prototype, we

modified Bluetooth firmware that runs within an Intel Bluetooth Controller, adding

the features we describe in Section 2.5.1. We describe our prototype in more detail

next.

2.7.1 Implementation of the Trusted I/O Controller

On initialization of the Controller, we allocate space for the metadata table. We

added hooks into the existing firmware to monitor HCI and L2CAP connection/dis-

connection events, and update the metadata table accordingly. We also extended

the Controller to support two new VSDCs for adding/removing security polici-

ces: TIO_SET_KEY and TIO_CLEAR_KEY. As packets arrive in the Controller, the

dependent on the BLE stack and chipset, and is limited to four packets per interval on iOS and six
packets per interval on Android. Thus, even if it is theoretically possible to transfer more packets
during the interval, the BLE stack or chipset enforces a limit [162].
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Figure 2.16: Adaptation of our Trusted I/O architecture to illustrate our prototype work.
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Controller looks up information about the packet (i.e., to which channel it belongs)

to determine whether further action is necessary (Section 2.5.1). We use the KEY

programmed via TIO_SET_KEY to secure the relevant channel between trusted

software and the Controller. Because the metadata table maintains information

about each connected device and all of their logical channels, our current imple-

mentation uses the presence of a KEY for a particular channel as a flag to indicate

whether that channel is currently a secure channel. Together, these steps enabled us

to validate the above-mentioned objectives.

2.7.2 Validating Trusted I/O

We also implemented a trusted app (TA). We specifically considered a TA that

prompts the user for a password and wants to ensure that password entry is secure.

We installed a privileged keylogger on the hub to verify that the channel is in fact

secure during password entry; the keylogger monitored all transactions over the

HCI and logged all HID data.

At the time a user enters the password field context, the TA generates a

symmetric key and uses the Bluetooth Trusted I/O API (Section 2.5.1) to send it to

the Controller, indicating that it wants to secure input from the connected keyboard

device. As a user types her password, the Bluetooth device generates packets

containing the key presses. Because the device and hub were previously paired,

they share a symmetric key and use it to protect user data in the OTA segment of

the I/O path.4 As L2CAP packets arrive in the Controller, the Controller uses the

OTA key to decrypt them. Without Trusted I/O, the Controller need only map the

link identifier to the HCI connection handle, and transport packets to the Bluetooth

Host software, which in turn routes the packets to the appropriate apps. With

4The OTA symmetric key is negotiated between the hub’s Controller and device’s Controller.
Host software (trusted or untrusted) does not have access to the OTA key.
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Trusted I/O, however, the Controller’s filter first checks to see whether the packet

belongs to a Trusted I/O channel (Section 2.5.1). If the packet belongs to a Trusted

I/O channel, channel security is applied (Section 2.5.1) using the KEY programmed

by the TA previously. If the packet does not belong to a Trusted I/O channel, no

channel security is applied. In either case, the packet is encapsulated within an HCI

packet and sent to Host software (and ultimately routed to the appropriate app)

via the normal transport (e.g., UART). When a TA receives packets, it decrypts and

verifies the contents.

One technical challenge that arises in our prototype work is the handling

of Human Interface Device (HID) input. Because HID devices are an important

part of modern computers, there are drivers and other middleware that help to

process and interpret HID data. For example, keyboard input is sent through a HID

subsystem that translates scan codes into text characters. In reality, this translation

is fairly simple, and the TA can implement it in its own code – indeed, the TA in

our prototype handles the translation itself. Alternatively, one can envision trusted

middleware that handles these sorts of standard operations. In light of this, we

need to prevent Host software from trying to interpret certain (HID) packets that

have been secured as part of a Trusted I/O channel.

In Bluetooth, HID packets are encapsulated within Bluetooth HID packets,

which are then encapsulated within L2CAP packets (recall Figure 2.8). The Blue-

tooth HID layer serves as a lightweight wrapper of the HID protocol defined for

USB; this enables the re-use of Host software that already exists to support USB-

based HID. By default, when a Bluetooth HID device connects, Host software

routes its HID packets through the relevant HID subsystems, processes the packet

contents, and then makes the data available to apps. To prevent the Host soft-

ware from routing Trusted I/O HID packets through these HID subsystems – and

erroneously interpreting packet contents – we installed a new Bluetooth profile:
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the Trusted I/O HID Profile. This profile is functional software that exists solely to

prevent premature interpretation of data, and instead, passes data to the intended

trusted software for handling. We emphasize that this “glue” software is not part

of our TCB: it is untrusted functional software that is needed only to prevent Host

software from incorrectly handling certain packets.

2.8 Related Work

Addressing the trusted path problem for Bluetooth I/O raises a number of chal-

lenges that we confront in this work. Our approach bears some resemblance to

the trusted path work by Zhou et al. [200]. They propose to build a trusted path

between a program endpoint (trusted app) and a device endpoint (I/O hardware);

they rely on a non-standard hypervisor to offer trusted-path isolation from un-

trusted software. In our work, we eliminate any need to rely on trusted drivers,

OSes, hypervisors, and so forth, for security; all data is secured within the Bluetooth

Controller and the trusted app, and is therefore opaque while in transit through

untrusted software. In another related work, researchers present SGXIO [189]. In

SGXIO, the trusted path must be built from a user app (enclave) to a Trusted I/O

driver, and from the driver to the respective I/O device. Again, this work relies

on a hypervisor to realize a secure binding between the Trusted I/O driver and

the actual I/O hardware. In our architecture, a specific I/O Controller (Bluetooth)

is modified, enabling an SGX app to create a secure binding with the Controller

directly.

2.9 Summary

In this chapter, we provide an in-depth analysis of Bluetooth and various challenges

in realizing Trusted I/O for Bluetooth. In response to those challenges, we present
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BASTION-SGX: a Trusted I/O architecture for Bluetooth on SGX. We also discuss

our prototype implementation of BASTION-SGX, which adds new, lightweight

features to the Bluetooth Controller and demonstrates its utility in securing user

data input from keyboard devices.

Our prototype examines an implementation of BASTION-SGX in a real-world

case study that effectively mitigates a priveleged keylogger malware. We implement

our solution primarily in firmware; to reduce performance costs, we recommend

implementing some (or all) of these operations in hardware. We also present an ana-

lytical evaluation of BASTION-SGX’s impact on memory and network performance.

Because the the maximum application-layer throughput supported by Bluetooth is

no more than a few kilobits per second, we show the Trusted I/O-related crypto-

graphic operations will not introduce any perceptible latency and will certainly not

have any impact on the throughput.

Trusted I/O

KERNEL

CPU

Host App Host App Host App

MEMORY WIRELESS RADIO

O
PE

R
A

TI
N

G
 S

YS
TE

M
A

PP
S

H
W

 /
 F

W

Embedded OS

MIDDLEWARE

MCU

Embedded App(s)

MEMORYRADIO

MIDDLEWARE

Hub Peripheral

KERNEL

MIDDLEWARE

Host App Host App

Figure 2.17: An overview of our system model and the threats to sensitive I/O data hub de-
vices illustrated alongside our solution.
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3
Designing Trustworthy Peripheral

Devices

In Chapter 1 we introduced the idea that many peripheral devices are expected to be

useful personal devices, to be secure against threats (such as malicious applications),

and to do all of this “on a budget.” In this chapter, we present our work on Amulet:

a software and hardware platform that enables developers to create secure and

efficient mobile health (mHealth) applications on resource-constrained devices, such

as wearable devices and other peripheral devices; our work focuses on how these

devices and their software can be composed and verified in a more trustworthy
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Figure 3.1: Overview of System Model and Amulet.

way, fortifying them from being compromised by errant applications that might

attempt to interfere with other applications or the underlying system itself.

Although the Amulet Platform has potential to support a broad range of appli-

cations, on a broad range of devices, we focus our design on mHealth applications

that run on a smartwatch form factor because they are increasingly prevalent, and

their need for a robust, secure, long-lived platform poses important design chal-

lenges. While we focus our attention on mHealth applications on smartwatches, our

contributions (Figure 3.1) can be generalized to any embedded platform (including

many IoT devices) that needs (1) to support the secure operation of a device with

one or more third-party applications, and (2) do so with extremely low power

consumption.

This chapter is a modified version of two of our papers that were published in

2014 and 2016, respectively: Amulet: A secure architecture for mHealth applications for

low-power wearable devices [139], and Amulet: An Energy-Efficient, Multi-Application

Wearable Platform [91].
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3.1 Introduction

Wearable wristbands are increasingly popular devices for health and fitness sensing,

and the increasing variety of applications is driving the market from single-function

devices (like the Fitbit Flex) toward multi-application platforms (like the Apple

Watch or Pebble Time). These devices enable new sensing paradigms; they are worn

continuously, they can provide at-a-glance information to the wearer, and they can

interact through a body-area network with computers, smartphones, and other

wearables (such as an ECG chest strap) or even implantables (such as an implanted

insulin pump). Some existing devices are flexible and full-featured, with supportive

development environments, but have inadequate battery life (about a day). Most

others are single-purpose devices with better battery life that users cannot easily

reprogram or customize for different applications and conditions.

Although the line between “smartband” and “smartwatch” products is blur-

ring, we think of the former as having great battery life but limited flexibility, and

the latter as having programmability but limited battery life. Battery life is a critical

feature for mobile and wearable devices – by far the most-important feature as rated

by users of today’s smartphones and wearable gadgets [23, 182]. We aim to enable

devices that have the week-long or month-long battery lifetimes of a smartband

with the multi-application flexibility and full-featured development environment

of a smartwatch. To support multiple applications, especially in critical domains

like health, the platform must also provide strong security properties, including

isolation between apps. To realize these goals, wearables must effectively manage

energy, share resources, and isolate applications on low-power microcontrollers

that cannot support hardware memory management units (MMUs).

In this chapter, we present Amulet, an open source1 hardware and software

1You can find the open-source, open-hardware release of the Amulet Platform and its tools
at https://github.com/AmuletGroup/amulet-project.
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platform (Figure 3.2) for developing secure and efficient mHealth applications

on resource-constrained devices. (Detailed illustrations of the relevant software

architectures are shown in Figure 3.3 and Figure 3.5; an illustration of the hardware

architecture is shown in Figure 3.7; images of our hardware prototype are shown

in Figure 3.8.) This platform, which includes the Amulet Firmware Toolchain,

the Amulet-OS Runtime, the ARP-View graphical tool, and our custom hardware

design, efficiently protects applications from each other without MMU support,

allows developers to interactively explore how their implementation decisions

impact battery life without the need for hardware modeling and additional software

development, and represents a new approach to developing long-lived mHealth

applications.
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Figure 3.2: An overview of the Amulet Platform and vision. Figure adapted from its initial
publication [181].

Devices with the properties that the Amulet Platform offers are of great in-

terest to research communities in sensing, health, and other domains. In fact, we

note that the Amulet Project has stimulated follow-on work by others including

developing mHealth applications [37, 38, 39], new techniques and systems to secure

mHealth data [80, 88] (between clinician and patients, or coaches and athletes, for

example), user studies and human-computer interaction (HCI) studies [137], sensor

design [159], further enhancements to the underlying design and security of the

platform [106, 86], and patents [109].
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3.1.1 Contributions

The Amulet work that we present in this dissertation was done as part of the Amulet

Project: a multi-year, multi-disciplinary collaboration between researchers from

Dartmouth College and Clemson University.2 As such, and for the purpose of this

dissertation, we understand that it is necessary to distinguish my contributions

from the contributions of others on the Amulet Project. The contributions of the

platform as a whole have been discussed in our past work [139, 91]. For clarity, a

break-down of my contributions on this project are detailed next.

As a member of the Amulet Project (2014-2016), I made significant contribu-

tions to the design, implementation, and evaluation of the system and its security

properties. Specifically, this dissertation highlights the following contributions:

1. Collaborated with others to design the Amulet software stack (see Figure 3.3),

including the “Amulet APIs” used by applications, “Core Services” offered

by the platform, and the interface with the physical components (“Board

Support”). Based on the Amulet software stack, I collaborated with others to

implement the Amulet-OS Runtime, a multi-application runtime system for

resource-constrained wearables that is built on a low-power variant of the QP

runtime [114].

2. Collaborated with others to design and implement the Amulet Firmware

Toolchain (AFT), a firmware-production toolchain that guarantees application

isolation (Section 3.3.3 and Section 3.5). Though work on what is now the

AFT was started by Andrés Molina-Markham (Dartmouth), Bhargav Golla

(Clemson), and Jacob Sorber (Clemson), I re-wrote and significantly extended

their initial work. Specifically, I implemented the Resource Profiler (which

2Many people that I refer to in this section have moved on to other schools or companies. For
this reason, I note their original affiliation.
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profiles system and per-app memory and energy usage), the ARP-View (an

app development tool that visualizes the Resource Profiler’s findings for app

developers), the Authorization Module (which performs compile-time analy-

sis of apps according to Amulet security goals), and the compiler translations

(which inserts lightweight runtime checks for apps, among other things).

3. Collaborated with Josiah Hester (Clemson) and David Kotz (Dartmouth) to

design the resource models (Section 3.4). Based on these resource models, I

implemented the Resource Profiler to aggregate the data needed to compute

the models, and implemented the models in the ARP-View.

4. Collaborated with Josiah Hester (Clemson), Tianlong Yun (Dartmouth), and

Andrés Molina-Markham (Dartmouth) to evaluate a prototype Amulet. Wor-

thy of note is the evaluation of battery lifetime, the accuracy of the Resource

Profiler predictions, and the system overhead (Section 3.6). This work also

led to two user studies: one investigating the utility of our ARP-View tool to

developers while developing a continuous sensing app, and one investigating

the feasibility of using Amulet as a platform for continuous monitoring appli-

cations in human subject research. While I did not directly participate in the

running of either study, I designed and implemented the tool studied in the

former, and supported the app developer of the latter.

In all of this work, I would be remiss if I did not specifically acknowledge the

exemplary work of fellow doctoral-student researchers, Josiah Hester (Clemson)

and Tianlong Yun (Dartmouth), who also made significant contributions to the

overall design, implementation, evaluation – and ultimately – success of the Amulet

Platform. Furthermore, I acknowledge the efforts of George Boateng, Eric Chen,

Emily Greene, David Harmon, and Anna Knowles – Dartmouth undergraduates

with whom I worked – that helped to demonstrate the viability of the Amulet
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Platform through developing interesting apps and uses of Amulet. Last, but cer-

tainly not least, I acknowledge the direct leadership and technical support of David

Kotz (Dartmouth), Jacob Sorber (Clemson), Ryan Halter (Dartmouth), Ron Peterson

(Dartmouth), Andrés Molina-Markham (Dartmouth) – without whom this project

would not have achieved the success that it did.

3.2 Background & Motivation

In this section we provide relevant background on mHealth wearable devices and

mHealth applications.

The current generation of mHealth wearables, such as the Fitbit Flex and the

Withings Pulse, are single-application devices that focus on specific health goals

like physical activity or sleep quality. These devices run one application, created

by the device developers; they cannot run multiple applications nor be extended

with applications from third-party developers. As a result, an individual with

multiple health-monitoring goals may need to wear many such devices. Amulet

intends to encompass many of these single-application devices by combining input

from a variety of internal and external sensors such as heart rate, skin conductance,

physical activity, and air quality. Amulet would allow interested adults to customize

their wearable device with the applications that are relevant to their health needs

and lifestyle. Meanwhile, “smartwatches” like the Apple Watch and the Samsung

Gear are general-purpose wrist wearables that support multiple applications and

third-party developers. Neither class of devices address our goals, for several

reasons.

First, we are not convinced that all users want a general-purpose large-screen

smartwatch with a battery life measured in hours. Our architecture aims to enable

smaller wristbands (and other constrained wearables) with battery lifetimes mea-
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sured in weeks or months and support for critical and sensitive applications like

those related to chronic disease and behavioral health.

Second, developer tools for these wearables are in their infancy. Battery

lifetime (i.e., amount of time between battery charges) is a critical concern for any

wearable; although some developer frameworks provide general guidelines for

writing efficient applications, developers are unable to accurately predict how their

applications will perform when deployed. The Amulet Platform includes tools that

forecast battery lifetimes and an application’s resource usage. More importantly,

these tools help developers conceptualize how their design decisions impact energy

consumption and identify specific opportunities for improvement.

Third, current solutions do not provide open-source hardware and software;

the Amulet Platform is fully open-source and open-hardware, enabling new oppor-

tunities for innovation by health and technology researchers alike.

Finally, the Amulet platform is noteworthy for its focus on security. While a

device that can run third-party applications is inherently more difficult to secure

than unmodifiable single-application devices (i.e., many IoT devices today), most

current wearable devices that run third-party applications are not designed with

security in mind (for example, the Pebble Watch). Newer wearables, including most

smartwatches, provide limited support for third-party applications and run a heavy-

weight operating system (such as Android’s Wear OS or The Linux Foundation’s

Tizen, for example) at high energy cost and with little emphasis on security. Our

proposed software architecture, Amulet, can run multiple third-party mHealth

applications simultaneously and provides strong security properties.
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3.3 System Overview

In this section we discuss our goals for the Amulet Platform, and outline the two

major building blocks of the Platform: the Amulet-OS and the Amulet Firmware

Toolchain (AFT).

3.3.1 Amulet Goals

We designed Amulet to support a multi-developer, multi-application vision, aiming

at four goals not faced by single-purpose wearables, single-developer wearables, or

power-hungry platforms that need to be recharged daily.

Goal 1: Multiple Applications. Amulet platforms enable sensing applications written

by third-party developers, even on resource-constrained wearable devices. The Amulet

Platform masks the complexity of embedded-system development, and supports a

variety of internal and external sensors, actuators, and user-interface elements. Since

users are unlikely to wear multiple single-function devices, the Amulet Platform

aims to support multiple concurrent applications.

Goal 2: Application Isolation. Amulet platforms isolate applications from each other

and from the system. With multiple concurrent applications, sensitive user informa-

tion must be protected and applications must be prevented from interfering with

the system or other applications. Amulet uses creative compile-time and run-time

isolation mechanisms to achieve these properties on ultra-low-power microcon-

trollers that do not provide memory virtualization or memory protection. In this

dissertation we focus on memory isolation and resource management.

Goal 3: Long Battery Life. Amulet platforms enable wearable devices with battery life

measured in weeks. Today’s multi-application wearable devices have poor battery

life, including research devices like ZOE [113] and commercially significant de-

vices like the Apple Watch [13]. Even the longest-lived commercial devices, like
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the Pebble [150], have lifetimes measured in days. When wearables can run for

weeks or months, new applications are enabled and users are likely to benefit from

applications that support long-term 24/7 health monitoring and interventional

behavior change. The Amulet hardware supports ultra-low-power operation and

longer battery lifetimes, and the Amulet Platform helps developers see how their

application’s behavior influences battery lifetime.

Goal 4: Resource-usage Prediction. Amulet platforms include tools that provide in-

teractive analysis of resource usage, including energy impact and memory usage for

applications and the underlying system. Existing tools for third-party application

developers on wearable platforms are very limited, focused on documenting best

practices and measuring resource usage of running applications; they do not pro-

vide compile-time, app-developer tools for predicting the battery impact of an

application or combination of applications.

We next describe our initial implementation, focusing on the above goals in

two parts: the Amulet-OS and the Amulet Firmware Toolchain (AFT).

3.3.2 Amulet-OS

The Amulet-OS software architecture (Figure 3.3) achieves all the above goals

by providing a low-power, event-driven programming model, a rich API, and

efficient application isolation and optimization through compile-time and run-time

techniques.
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Figure 3.3: The Amulet-OS software stack; applications access core services through the
Amulet API layer.

Event-driven programming

Many sensing-based applications, including the health-oriented applications that

motivate our work, tend to remain idle waiting for user interaction or new sensor

data. Thus, Amulet uses an event-driven programming model to simplify developer

tasks and enable low-power operation. Each application is represented as a state

machine with memory; that is, each application consists of a set of states (the boxes

shown in Figure 3.4) and transitions between states (the arrows shown in Figure 3.4),

as well as a small set of persistent variables. Each transition is triggered by the arrival

of an event, which themselves result from expired timers, user interactions like a

button press, or data arriving from internal and external sensors. Applications can

specify optional event handlers for each state and each event type. Handlers are

non-blocking functions that may consume data arriving with the event, update

application variables, call Amulet APIs, or send events, in any combination.
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Figure 3.4: An example state machine for a simple event-driven application.

This state-machine approach makes application state explicit, easing analysis

and optimization. Application code, state, and variables are kept in persistent

storage. Handlers run to completion, so there are no threads with stack-based state

information to preserve between events, let alone across processor reboots. The

Amulet-OS leverages this simplicity for deep power savings; when there are no

events to handle, the processor can go into deep sleep or even shut off. The Amulet

Firmware Toolchain leverages this structure to enable the analysis and profiling

tools described in the next section. This approach is also a major advantage over

the alternative of running a larger operating system, such as embedded Linux or a

real-time OS, in which applications are represented as processes or threads with

complex state and limited opportunity for deep sleep. (For more information, see

Section 3.7.)

Amulet API

Amulet-OS provides an application programmer interface (API) that allows for

sensing, storage, signal processing, communication, timing, and user interaction.

As with any OS, this API provides abstraction (hiding low-level complexities like

interrupt vectors, analog-digital converters, and radio communication) and resource
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management (isolating apps from each other and allowing them to share data and

devices). Amulet-OS simplifies data gathering by providing applications the ability

to subscribe to internal and external sensors; multiple applications can share a single

data stream, each receiving an event when new data arrives. Amulet-OS also

includes a logging API so applications can log sensor information to files on an

internal microSD card, and a timer API so applications can arrange for an event

in the future. Finally, the API provides applications access to interface elements

(display, LEDs, buzzer, buttons, and capacitive touch, in our implementation) and

multiplexes access across apps. These APIs call into the Amulet-OS core services

shown in Figure 3.3. All such calls are non-blocking because event handlers must

run to completion; where needed, a response is delivered to the application later as

an event.

The Amulet-OS is more of a lightweight run-time system than an operating sys-

tem, but nonetheless supports multiple applications on a low-power microcontroller

without memory protection or management. Thus, Amulet uses compile-time anal-

ysis to support application isolation and access control, and to minimize its memory

footprint. These challenges are the focus of the Amulet Firmware Toolchain.

3.3.3 Amulet Firmware Toolchain (AFT)

The Amulet Firmware Toolchain (AFT), shown in Figure 3.5, manages the analysis,

translation, and compilation of firmware. By building a custom firmware image for

each user, the AFT can optimize the image for the user’s device and its applications.

Here, we focus on two critical AFT roles: application isolation and resource pro-

filing. First, the AFT ensures that applications can only access Amulet hardware

by sending a well-formed request to the Amulet-OS core via the Amulet API, and

prevents malicious or buggy applications from reading or modifying the memory of

either the OS or another app. Second, with the AFT’s profiling tools an application
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Figure 3.5: Architecture of the Amulet Firmware Toolchain, showing the steps in producing
the firmware image for a given Amulet device.

developer can predict her application’s resource usage. The following text refers to

the numbered steps illustrated in Figure 3.5.

Analysis and Translation

Our approach leverages compiler-based translation and static analysis: application

developers pass their code to the Amulet Firmware Toolchain, which translates

and analyzes the source code, rejecting any code that is either not well formed or
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violates the isolation principle (Goal 2). Application designers implement Amulet

state machines using a simple variant of the C programming language, “Amulet C,”

which offers programmers familiar programming constructs and facilitates efficient

code generation, while excluding many of C’s riskier features (Section 3.5.4). These

modifications, and the addition of loop invariants and automatic annotations by

the AFT, allow rigorous analysis of an application’s memory safety. The AFT uses

static-analysis tools to examine the code to identify memory-safety violations and

present the developer with compile-time errors. The AFT inserts run-time validation

code where static analysis is inconclusive; for example, the AFT inserts code for

array-bounds checking when the array index is not computable at compile time.

The Translator also implements authorization policies that define which ap-

plications can access which resources. For example, these policies may say that

a fall-detecting application may subscribe to data from the accelerometer, that an

emergency-response application may write a file to the SD card, or that the EMA

application may use the buttons and the display. By addressing these policies at

the time of application translation and analysis, the AFT can flag illegal access at

compile time, and insert run-time checks only when needed. The resulting code is

smaller, faster, and safer. Along with the applications, a list of application services

are supplied in a configuration file. The AFT uses this list to determine if applica-

tions call functions that are not permitted, and to determine which set of drivers

need to be included for this set of apps, to reduce code size.

Amulet Resource Profiler (ARP)

Although our experiments in Section 3.6 characterize the performance of the Amulet

hardware and software under a representative application workload, and those

results show it is possible to develop efficient applications for the Amulet hardware,

new application developers may not have access to the inner Amulet hardware or
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to our measurement infrastructure. With effective compile-time tools that predict an

application’s resource usage, developers can effectively manage critical resources

and protect the user’s experience even when combining applications from many

developers.

The Amulet Resource Profiler (ARP) tool leverages the other modules in

the Amulet Firmware Toolchain to predict an application’s resource usage; here,

we focus on memory and energy. Profiling these resources gives insight into the

application’s impact on battery lifetime, and the application’s impact on constrained,

shared, device computing resources. Lifetime is the most important consideration

for a wearable device; thus, giving developers insight on how their design decisions

affect lifetime is of great value to the developer and the user. The ARP captures

information about each application’s code space and memory requirements, using a

combination of compiler tools and static analysis. To profile energy, the ARP builds

a parameterized model of the application’s energy consumption, as described in

the next section. The results are then exported for use by the ARP-View.

ARP-View

This interactive tool presents developers a graphical view of the resource profile and

sliders that allow them to immediately see the battery-life impact when they adjust

application parameters. The tool guides developers towards a better understanding

of their application and enables them to explore trade-offs of different design

decisions. See Figure 3.6 for a snapshot of the ARP-View in action.

In ARP-View, developers are presented with an annotated visualization of

their application that resembles their original finite-state machine. Annotations on

edges (representing state transitions) provide immediate feedback about the rate

in which that event handler executes and the energy usage of that particular event

handler. In addition, ARP-View includes a set of ‘sliders’ that can be individually
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scaled to simulate a particular handler running more/less frequently (Rt); this

allows developers to evaluate the impact of specific application activities on the

overall battery lifetime.

For perspective, ARP-View imports the device profile for information about

the device (such as battery and memory capacity) obtained earlier by the Profiler;

see the next section for more details.

Merge, Compile, Link

The next step in producing a final firmware image, referring back to Figure 3.5, is

for the AFT to merge the desired set of applications, then compile and link them

with the Amulet-OS code. For Amulet we leverage an event-driven programming

framework (QP) [114] that automatically generates the C code for state transitions

from each application’s state diagram. The AFT Merger combines this C code

with the translated application code (now in C), and the underlying event-driven

application framework, into a single C file. This file is compiled and linked with

the Amulet-OS code, incorporating only the system components needed for this

particular set of applications. (We anticipate users will select applications for their

personal Amulet device from a store hosting applications from many developers –

an “App Store” – and which compiles a custom firmware image comprising their

selected applications.)

The result of the AFT pipeline is a single firmware image for upload or distri-

bution. The AFT is currently agnostic about methods for delivery of the firmware;

we acknowledge that the delivery method (perhaps through the above-mentioned

App Store or some other cloud service) involves complex security and privacy

concerns.
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Table 3.1: Model notation.

Device profile
Md storage capacity of data memory
Mc storage capacity of code memory
EB energy capacity of full battery
E` average energy consumed by a line `
E f average energy consumed by one call to API function f
P0 baseline power draw
Ps average power draw for subscription to sensor s
S the set of all sensors on this device
F the set of all API functions available in Amulet-OS

Application parameters
A the set of all applications on this device
a an application in the set of all applications; a ∈ A
f a function in the set of all Amulet API functions; f ∈ F
Fa the set of all API functions used by application a; Fa ⊆ F
s a sensor in the set of all sensors; s ∈ S
Sa the set of sensors used by application a; Sa ⊆ S
t transition t in the set of all application transitions, T
Ta the set of all transitions in application a; Ta ⊆ T
L the set of all lines of code outside Amulet-OS
` line of code in the set of all lines of code; ` ∈ L
N`,t number of times line ` is executed by transition t
N f ,t number of times function f is called in transition t
Rt rate transition t executes (transitions per second)

Energy estimates
Et estimated energy of each occurrence of transition t
Ea estimated energy consumed by application a
EA estimated energy consumed by set of applications A

3.4 Resource Model

As noted above, the Amulet Resource Profiler (ARP) constructs a predictive energy

and memory model for each application. For clarity, we first discuss the modeling

and prediction for a single application (Section 3.4.2), and then conclude this section

with an extension of the model to accommodate multiple applications (Section 3.4.3).

Before delving into this discussion, we detail the assumptions we make in our
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resource model. The notation for our model is summarized in Table 3.1.

3.4.1 Model Assumptions

To predict resource usage we make the following assumptions in our resource

model:

1. The baseline power P0 captures the baseline power draw of our custom board,

the display, the buttons, the scroll wheel, the haptic buzzer (off), and the LEDs

(off).

2. The radio chip consumes its baseline power when it is inactive; all additional

costs of its activity related to external sensors, and its internal accelerometer,

are captured by the relevant sensor-subscription power draw Ps. The radio

chip incurs no other energy.

3. The application chip consumes its baseline power when it is inactive, and

we assume it is sleeping whenever no application code is running. All other

app-board energy is captured by API calls E f , lines of code E`, or sensor

subscriptions Ps.

4. All powers P are an average power draw over time.

5. Power drawn by input devices (buttons, scroll wheel) are included in the

baseline power.

6. Energy consumed by active output devices (LED, buzzer) costs are captured

by the E f where f is an API function using those devices.

7. Display (static) cost is buried in the baseline P0.

8. Display (change) cost is captured by the display-affecting API calls.
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9. We currently ignore data-dependent conditional statements and loop condi-

tions.

10. N`,t includes lines of code in the exit block of the source state, the main block

of the transition, and the entry block of the destination state; all three blocks

execute (in sequence) when the transition occurs.

3.4.2 Single Application Model

The ARP proceeds in four phases, which we describe next.

Phase I: Import Device Profile

The ARP imports a device profile, specific to the target Amulet model but indepen-

dent of any particular application. The device profile lists the amount of energy

consumed for each API call and for other fundamental operations, based on em-

pirical measurements collected earlier on a given hardware and system software

configuration. Each Amulet component (sensor, user-interface element, storage,

and processor) must be represented in the model as an instantaneous energy cost.

Each component has different states, each drawing different amounts of power, that

must also be captured. The energy cost of each API call must be captured in the

form of average power.

Altogether, the device profile includes information about the device capacity

(memory, battery), empirically derived measures of average energy consumed E f

for each Amulet API function f , the average energy consumed E` for executing

a specific line of C code `; and the average power draw Ps for a subscription to

sensor s (see Table 3.1). Energy is measured in joules (J); power draw is measured

in watts (J/s).

A device profile would be prepared and provided by the Amulet manufacturer

with each new hardware and Amulet-OS release. The AFT (Section 3.3.3) can assist
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by automatically producing the code to create this profile by generating a specially

instrumented Amulet Device Profiler app that exhaustively tests each of the Amulet

API functions that draw significant amounts of energy, for example, sampling the

Gyro, writing to the SD card, or turning on the radio. Using simple monitoring

hardware, Amulet manufacturers can gather these statistics once and distribute the

profile to application developers for their own testing, similar to current Android

manufacturer practice [9].

Phase II: Analyze Code

The ARP examines the application’s state diagram – a graph in which nodes repre-

sent states and directed edges represent transitions from one state to another. The

result is a set of transitions Ta for application a. For each transition t ∈ Ta the ARP

identifies all non-system code executed when transition t occurs (using static analy-

sis to count the number of executions N`,t of each line of code `, summing across

loop iterations and recursively examining code in helper and library functions).

That is, N`,t counts the number of times line ` will be executed during the handling

of transition t, accounting for loops and function calls.3 Similarly, for each transition

t the ARP determines the number of times the code for transition t will invoke

each Amulet API function f , which we denote N f ,t. Finally, the ARP examines

the sensor-related API calls to identify the set of sensors Sa to which application

a subscribes. The constraints of Amulet C (no recursion, no pointers, no dynamic

memory allocation) make this static analysis feasible.

3We count lines of code as a proxy for code complexity; to improve accuracy we could use the
code generator to count instructions of assembly. Since instruction execution has a relatively small
impact on power consumption, our implementation assumes E` to be the same for all lines of code;
we focus on modeling the API calls and sensor usage.
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Phase III: Construct Model

The ARP constructs a parameterized model of the total energy cost for the app. For

each transition t, it estimates the average energy consumed Et for an occurrence of

that state transition, incorporating the cost of executing the code and API calls in

that transition:

Et = ∑
`∈L

N`,tE` + ∑
f∈F

N f ,tE f (3.1)

If the app subscribes to any sensors to feed it sensor data, we must also account for

their average power draw:

∑
s∈Sa

Ps. (3.2)

Finally, the Amulet hardware incurs a baseline power draw when it is inactive;

we use P0 to represent the average power draw of the baseline system (the microcon-

trollers, the display, and the input devices). Because Amulet-OS has no background

activity, this baseline power draw represents all of the Amulet-OS power draw not

captured in the above equations.

To estimate the total energy consumption for application a, the ARP needs

to know how often each transition t will occur. While some of these rates may be

discerned from static analysis on the code, for others the ARP needs advice from the

developer – which the developer provides through annotations on the app’s state

machine. These rates Rt are the ‘knobs’ for the energy model – knobs the developer

can tweak to explore the power draw for various design options (for example, the

period of a timer that duty-cycles a key part of the application behavior). The total

energy consumed for application a, over a time period τ, is thus predicted from the

baseline power and the above equations, factoring in the rate of every transition t:

Ea(τ) = τP0 + ∑
s∈Sa

τPs + ∑
t∈Ta

τRtEt (3.3)
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Over a week, then, application a consumes a fraction of the total battery capacity,

Ea(ω)/EB, where ω = 1 week; we leverage this calculation in our evaluation below.

Phase IV: Count Memory Usage

Every application requires memory for storage of its code and its data; like any

embedded system, low-power wearable platforms have severely limited memory

space. After parsing the application’s code and generating its firmware image, the

ARP reports the amount of memory to store the application’s code and determines

an upper bound on the amount of data memory consumed by the application.

These numbers are presented as fractions of Mc and Md. An application’s data

memory comprises global variables and local variables (on the stack). Amulet C

does not allow dynamic memory allocation, so the ARP easily counts the size of all

global variables; Amulet C does not allow recursion, so the ARP can compute the

maximum stack depth (including local variables).

3.4.3 Extending the Model to Multiple Applications

The ARP is also capable of estimating the energy consumption for some mix of

applications A. (Figure 3.6 shows one app’s state diagram along with total energy

consumption for all apps.) To estimate the total energy consumed by A, we cannot

simply sum the energy consumed by all of the individual applications. That is, the

total is not simply ∑a Ea, because we need to avoid double-counting the baseline

power draw as well as the sensor subscriptions (which are shared across all apps).

Instead, we need to account for the union of all sensors used by the mix of apps:

SA =
⋃

a∈A Sa. The total energy consumed for the application mix A is therefore

estimated by a variant of Equation 3.3:

EA(τ) = τP0 + ∑
s∈SA

τPs + ∑
a∈A

∑
t∈Ta

τRtEt (3.4)
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3.5 Implementation

We developed an Amulet reference device and implemented the Amulet-OS and

Amulet Firmware Toolchain software described above. In this section we describe

the details of each, as well as nine applications we wrote to demonstrate and

evaluate the Amulet Platform.

3.5.1 Amulet Device Prototype & Ultra Low Power Operation

A detailed description of the hardware prototype and the low-power capabilities of

the Amulet was discussed in detail in our SenSys’16 paper [91]; we refer the inter-

ested reader to Section 5 of our paper. Suffice it to say that the hardware prototype

includes a variety of interesting sensors (e.g., microphone, light sensor, temperature

sensor, gyroscope, accelerometer), storage options (e.g., SRAM, FRAM4, microSD),

and I/O components (e.g., buttons, capacitive touch sensors, LEDs, a haptic buzzer,

a small display), and we use a variety of techniques to operate an MSP430FR5989

microcontroller (the main computational device where applications run) and a

Nordic nRF51822 (where radio-based communications, such as BLE, are managed)

in a way that enables us to achieve low-power operation. (The hardware architec-

ture of the prototype is shown in Figure 3.7, and images of the perspective and

interior views of our prototype are shown in Figure 3.8.) We exclude these details

here as they are not necessary to understand the more security-focused work that

we highlight in this dissertation.

4FRAM (Ferroelectric RAM) is an increasingly common non-volatile memory technology that
offers persistent storage without power, and is 100 times faster than flash memory; during use,
FRAM uses 250 times less power than flash (about one microamp at 12kB/s).
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Figure 3.7: The hardware architecture of our two-processor Amulet prototype: the MSP430
runs applications, and the nRF51822 manages communication.

Figure 3.8: Perspective and interior views of our open-hardware wearable device (circa 2016),
part of the open-source Amulet Platform. The platform supports development of energy-
efficient, body-area-network sensing applications on multi-application wearable devices.
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3.5.2 Amulet-OS

We implemented the Amulet-OS run-time system on top of the QP event-driven

framework [114]. As shown in Figure 3.3, the Amulet architecture (and our im-

plementation) has three major layers: (1) a board-support layer, running directly

on the hardware and abstracting some of the hardware-dependent nuances; (2) a

set of core services that provide core functionality like networking, time, logging,

and power management; and (3) a set of application services accessible through

a thin set of functions in the Amulet API. The AFT static-analysis tools recognize

Amulet API functions and verify an application’s authorization to use specific ap-

plication services (much as Android uses the Manifest file to determine application

permissions).

The Amulet-OS is fully event-driven: there are no processes or threads, so all

application code runs to completion without context-switching overhead. Indeed,

an application’s code is comprised only of event handlers, and all such handlers ex-

ecute quickly (enforced by static analysis and OS-imposed time limits, and enabled

by non-blocking Amulet API functions). Quick interrupt and event handlers allow

the system to stay in low-power sleep mode most of the time. For the purposes of

our experiments below, and to support the Amulet Device Profiler app, Amulet-OS

can toggle GPIO pins when executing application event handlers, Amulet API

functions, or interrupt handlers; our external measurement chassis (Section 3.6)

monitors these pins to derive detailed energy and temporal measurements about

application and system modules.

3.5.3 Amulet Apps

We implemented nine applications to demonstrate and evaluate the Amulet Plat-

form. Amulet application developers construct their applications using the QP
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Figure 3.9: Screenshots of six of the nine applications we implemented.

event-based programming framework. Following QP, each application is defined

as a finite-state machine; for each possible state, the application can respond to a set

of events by providing a handler function for each type of event. We used vanilla

QP with the non-preemptive kernel (version 5.3), and required applications to use

the Amulet API to request services from Amulet-OS. Screenshots of six applications

(apps) are shown in Figure 3.9.

The QP framework exports the application in the XML-based QM format,

which embeds all of the programmer-supplied C code along with information about

the application’s finite state machine.

3.5.4 Amulet C

As mentioned earlier, application isolation is an important goal of the Amulet Plat-

form. To achieve application isolation without the support of memory-management

hardware, and without incurring excessive run-time overhead, the AFT conducts

most application isolation at compile time. Applications (that is, their handler
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functions) are written in a custom variant of C that removes many of C’s riskier

features: access to arbitrary memory locations (pointers), arbitrary control flows

(goto statements), recursive function calls, and in-line assembly. Since array access

in C is implemented using equivalent pointer operations, we modified the array

syntax so that arrays can be passed to functions explicitly ‘by reference’ (not as

pointers). In Amulet C, arrays also have an associated length that allows for run-

time bounds checking whenever access behaviors cannot be adequately checked

statically. Although this approach imposes some effort on the developer (to adapt

their code for Amulet C) it allows us to estimate the runtime of code executed in the

state machine, giving tighter bounds on energy predictions made by the Amulet

Resource Profiler.

3.5.5 Amulet Firmware Toolchain

We implemented the AFT as a series of programs that translate, analyze, validate,

and profile apps. Each application includes (1) a state machine, (2) event handlers

(written in Amulet C), and (3) attributes specifying the application’s global variables.

The QP framework combines application information into XML-formatted QM

files. AFT tools are written in Java and use its built-in XML libraries to parse the

submitted apps. Our tools translate the Amulet C code to safe C code using a

modified C grammar and the ANTLR parser generator [12]; they then use the

Frama-C static analysis framework [30] to ensure that array and other memory

accesses are valid, that problematic integer operations do not occur (e.g., division

by zero), and that programming techniques such as recursion, goto statements, and

pointers (including unary address operators) are not employed. Also noteworthy

is the fact that the AFT tools verify an application’s permissions based on an XML

file that lists application services that the application is permitted to use. Violations

against Amulet C coding rules and non-authorized requests to the core API trigger
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AFT compile-time errors.

After all these steps, applications are merged together into a single QM file,

which is then converted to C using QP. Immediately before the merge, all applica-

tion resources (e.g., variables, handlers, helper functions) are isolated by mapping

them to a unique namespace based on the application’s name (no two applications

installed on the system can have the same name). This code is then compiled and

linked using Texas Instrument’s open-source GCC for MSP430. This firmware im-

age can then be installed onto the application chip (MSP430) of our Amulet device

prototype.

3.5.6 Resource Profiler

We implemented the Amulet Resource Profiler (ARP) in Java and integrated it

with the other tools of the Amulet Firmware Toolchain (AFT). After validation and

translation, the ARP uses an ANTLR-generated parser to extract model parameters

from the application’s code and QM file. Specifically, from the application code it

extracts estimates of lines executed per transition (N`,t), sensor subscriptions (Sa),

and Amulet API calls (Fa and N f ,t). From the QM file it extracts the state machine

and its transitions (Ta), and the developer’s annotations about transition rates (Rt).

From the firmware’s symbol table it extracts the code size for both the application

and the core, and the amount of FRAM memory used by the application and the

core.

Separately, the ARP uses the Amulet Device Profiler app, and the measurement

chassis described in the next section, to extract the parameters for the device profile

(Table 3.1). The Device Profiler application also informs the ARP about the scaling

factors for certain operations, allowing for fine-grained estimates of function cost

(for example, assigning lower energy costs to drawing a 2x2 rectangle as opposed to

drawing a 128x128 rectangle). The Resource Profiler combines these measurements
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to build a parameterized model of the energy cost for each application, following

Equation 3.3. Our prototype hardware has two kinds of internal memory: SRAM

used for the execution stack and local data, and FRAM used for code and global

data; thus our ARP implementation reports on SRAM and FRAM usage (rather

than code and data usage as in Section 3.4).

3.5.7 The Amulet Resource Profiler Developer View

Our developer-facing tool, ARP-View, leverages the ARP’s fine-grained data about

the structure and behavior of applications to (1) give developers insight into how

certain user actions, sampling rates, and blocks of code consume energy, enabling

developers to make concrete the links between certain parts of code and energy

draw; and (2) provide meaningful battery-lifetime estimates for an application or

suite of applications. The ARP-View currently presents a wealth of information

including system and OS level details (e.g., FRAM available and its usage), sliders

to adjust event frequency and view results in real-time, and the battery impact

(percentage of battery consumed per week) and lifetime in days for a selected

application as well as an entire suite of applications. Our implementation provides

real-time feedback to the developer regarding application impact on the battery

by running a daemon process that monitors application files and re-profiles ap-

plications upon detecting changes to those files; note that application translation,

analysis, validation, and profiling all happens prior to actually compiling the source

code and, thus, runs fast even on common laptop and desktop machines. Providing

memory stats to the developer via the ARP-View requires compiling all of the ap-

plication/system code and parsing the resulting binary, which incurs a noticeable –

but small – amount of time (approximately 1-2 seconds) on common laptop and

desktop machines; thus, we consider memory-usage feedback to the developer to

be “near real-time.”
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3.6 Evaluation

In this section we evaluate the performance of Amulet-OS and the Amulet Firmware

Toolchain against the goals from Section 3.3.1. Goal 1 (Multiple applications) and

Goal 2 (Application isolation) are met by design of Amulet-OS and the Amulet

Firmware Toolchain. We thus focus on an experimental evaluation of Goal 3 (Long

battery life) and Goal 4 (Resource-usage prediction). We examine (1) the battery life

of a typical Amulet device, (2) the accuracy of the Resource Profiler’s predictions,

and (3) the various sources of overhead.

3.6.1 Experimental Setup

A detailed description of the experimental infrastructure that allowed us to collect

precise controlled measurements of the Amulet system (and its applications), with-

out incurring measurement artifacts or overhead on the Amulet itself, is discussed

in detail in our SenSys’16 paper [91]; we refer the interested reader to the first part

of Section 6 of our paper. Suffice it to say that we developed nine applications

(apps) for use in the evaluation of Amulet (Table 3.2), selected to represent a range

of compelling applications and exercise many of the features available in the current

prototype. Furthermore, we built a programmable chassis (and made minor modifi-

cations to system code) that allowed us to stimulate the user interface and trigger

state changes in the applications under test. Thus, we could automatically and

repeatably test the Amulet prototype under controlled and consistent conditions.

3.6.2 Battery Lifetime Under Various Application Workloads

In this section we quantify the average power draw of our Amulet prototype for

multiple loads. We represent this power draw in terms of battery lifetime using
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Table 3.2: Amulet applications used for evaluation.

Application Name Description BLE? Sensors Log? UI elements

Clock Display time of day and temperature No Temp. No Display, Buttons
Fall Detection Detect falls using the accelerometer No Acc. No Display, Buttons
Pedometer Record number of steps walked No Acc. No Display
Sunlight Exposure Monitor exposure to light over time No Light No Display
Temperature Monitor ambient temperature over time No Temp. No Display
Battery Logger Monitor, display, and log battery statistics No ADC Yes Display, Buttons
Heart Rate Monitor and display heart rate from BLE sensor Yes HR (external) No Display, Buttons
Heart Rate Logger Monitor, display, and log HR statistics Yes HR (external) Yes Display, Buttons
EMA Deliver surveys to users No No Yes Display, Buttons, Touch

the 110 mA h battery currently encased in the prototype. (Larger batteries up to

570 mA h are used in current smartwatch products [177].) We acknowledge that

the accuracy of battery lifetime estimates depends heavily on battery wear, quality,

leakage, and other factors. These estimates serve to place the actual measured

power draw in an understandable form.

For our first experiment, we installed a firmware image containing a single

application and measured the average power draw using the measurement chassis.

We used the programmable chassis to emulate user sessions, where a ‘session’ lasted

as long as it took to exercise states in the critical path of an application. We repeated

this experiment for each of the nine applications, for a single session, determining

average power by summing the energy of the session and dividing by the time. The

results of this experiment are shown in Figure 3.10. This figure shows the power

draw of an application was highly dependent on the hardware components used,

and the frequency of their use, further motivating the use of ARP-View. Lifetimes

for all of the apps exceeded two weeks.

On our current prototype, an application load comprising Clock, Fall Detec-

tion, Pedometer, Sun Exposure, and Temperature would allow an Amulet battery

to last more than four months. With constant BLE communication to the heart-rate

sensor (we used commercial Zephyr and Mio heart-rate sensors) our Amulet’s

power draw allows for nearly a two-month battery life. Two energy-hungry appli-

cations (Battery Log and HR Log) used significant amounts of energy logging data
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Figure 3.10: Average power draw for each app on the current prototype. The expected life-
time with the 110mAh battery is shown above each bar.

to the microSD card, drastically reducing battery life. The EMA application leaves

the capacitive touch sensor on continuously, further reducing lifetime. By duty

cycling the capacitive touch sensor and reducing logging operations or moving

those operations to Bluetooth, lifetimes could be increased.

To determine the effect multiple applications have on the device lifetime, we

assembled a firmware image that included three applications (Clock, Heart Rate,

and Fall Detection), and measured the steady-state power draw as above. With this

configuration, using the accelerometer, Bluetooth communication, and updating

the display, the expected lifetime was 39 days. In summary, an Amulet with

applications using on-board sensors will last for many months, an Amulet using

an external BLE sensor feeding regular heart rate data will last for 1-2 months, and

applications making heavy use of the logging operations or capacitive touch features

will last for a few weeks. This lifetime enables long-term usage for many application
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domains. This lifetime is equal or better than the manufacturer-listed lifetimes of

popular consumer platforms, such as the Pebble, FitBit, Apple Watch, and many

others. (Direct comparisons are difficult, of course, because these products have

different battery sizes and different purposes.) In any case, the Amulet Platform

seeks to enable energy-focused development regardless of device. Our current

prototype device sits comfortably in the high end of the lifetime wearable spectrum,

enabling us to develop interesting apps with long lifetimes.

3.6.3 Accuracy of Amulet Resource Profiler Predictions

Recall that the Amulet Resource Profiler (ARP) tool predicts the effect of an appli-

cation on the battery lifetime of an Amulet device. Specifically, ARP predicts the

app’s total energy cost per week, which can be used to determine the impact an

application has on the battery lifetime. To evaluate the accuracy of these predictions,

we compared the ARP battery-impact prediction, for each app, with the actual

battery impact computed from the measured average power draw presented in

Figure 3.10.

Each app’s event frequencies were set to match the event frequencies used

by our programmable chassis in collecting the measurements that resulted in in

Figure 3.10. For some apps, specifically Clock, Temperature, and Sun Exposure,

these event frequencies were gathered from the developer’s code. These apps sense

intermittently, on a timer whose value is set by the developer inside the code for a

transition. These apps only respond to the timer, not to user or environmental input,

so their energy impact depends completely on the timer value. Event frequencies

were set carefully for Apps like Pedometer and Fall Detection, but their energy

impact was dominated by the Amulet’s baseline energy, paired with the number

of times they compute over a series of acceleration values. Table 3.3 presents the

predicted (and observed) percent impact on battery life, for each application, along
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Table 3.3: ARP battery-%impact predictor.

Application Name Obs. Pred. Error Error
( µW) ( µW) ( µW) (%)

Clock 72.73 77.45 4.72 6.1
Fall Detect 81.20 89.21 8.01 9.0
Pedometer 120.47 129.98 9.51 6.3
Sun Exposure 79.19 85.13 5.94 7.0
Temperature 88.37 92.89 4.52 4.9
Heart Rate 316.16 320.34 4.18 1.3
Battery Log 984.10 1089.63 105.53 9.7
Heart Rate Logger 1223.11 1318.68 95.57 7.2
EMA 253.07 265.05 11.98 4.5
Multi 430.01 438.86 8.85 2.0

with the percent error in the ARP prediction. (We quantify the error as the difference

between expected average power draw and observed average power draw.) The

results indicate that our Resource Profiler was reasonably accurate at estimating the

battery life for these applications.

Applications can have different battery lifetimes depending on the amount

of user interaction, the data rates or sensing schedules, the environment, and

of course, the choices the developer makes in implementation. We capture four

types of events in the ARP: (1) User interaction, (2) Data delivery, (3) Timers, and

(4) Programmer-defined. While data delivery events are static (sensor subscription

schedules are determined beforehand in our current system), each of the other three

can be modified by the developer to explore the effect on battery lifetime. The ARP

predictions are heavily dependent on the accuracy of the underlying device profile.

Small measurement errors in generating the device profile can compound as event

frequency increases. The ARP has trouble quantifying certain types of operations.

For instance, the energy required for microSD card writes is heavily dependent on

the size of the write. The ARP does not currently account for parameter length in

SD writes, contributing to the higher error for applications that use SD functions

92



(Battery Log, HR Log). Nonetheless, in our experiments, the highest error rate was

only 9.7%, and we expect it will improve.

However, most developers will not care if their application is predicted to last

90 days and instead lasts 80 or 100 days; they care about how the code they write,

and the frequency of events, proportionally affect the lifetime. Of course, further

tests ‘in the wild’, with a wider variety of apps, will be necessary to generalize this

conclusion.

3.6.4 Amulet Overhead

We also conduct experiments to understand the overhead of the system.

Runtime

Energy consumption is significantly impacted by the fraction of time the application

microcontroller (MSP430) is active; the rest of the time it can be in a low-power

deep sleep mode. The MSP430 is active whenever it is running application code

(handler) or system code (Amulet-OS and QP system code). (In modern operating

systems, this is termed system time, whereas time spent running application code is

termed user time.) The former time (system time) is overhead, from the application’s

point of view. To measure this overhead, we instrumented the Amulet-OS to trigger

I/O pins whenever it (1) puts the system to sleep, (2) was active and executing

Amulet-OS code, and (3) was active and executing application code. We then used

our measurement chassis to obtain precise measurements of the time spent in each

mode, for each of our applications, as shown in Table 3.4. For each application

listed, we ran three short sessions while the application was conducting its normal

duty cycle, but not being triggered by user-interface events. For all apps this meant

polling sensors, and waking up for timer events. The low temporal overhead of
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Table 3.4: Temporal overhead.

Application Name %Sleep %OS %App

Clock 98.1 0.9 1.0
EMA 98.2 1.0 0.8
Heart Rate 91.1 0.9 8.0
Pedometer 93.8 2.2 4.0
Pedometer+HR 87.5 1.9 10.6
Pedometer+HR+Clock 85.4 2.8 11.8

0.9-2.8% confirms the efficiency of our approach.

Memory

Amulet-OS uses a portion of the limited memory space available to applications,

limiting the quantity and size of apps that can be installed in a single firmware

image. In our prototype, applications and the OS must share the limited FRAM

memory space (128 KB). For a firmware image comprising five applications that

used most of the functionality available, Amulet-OS consumed 55.91 KB of the

128 KB available FRAM code space, while applications consumed 14.48 KB; the OS

consumes nearly half of the current FRAM. Meanwhile, Amulet-OS claims 1.078 KB

of SRAM, leaving 0.922 KB of SRAM for applications; recall that apps use SRAM

only for their execution stack, and only when actively executing an event handler;

only one application is active at a time. Moreover, FRAM and SRAM are continuous

on the MSP430; we anticipate making larger blocks of FRAM available (to be treated

as RAM) to the app.

The memory and runtime overhead of our Amulet implementation – while

sufficient to develop multiple interesting apps on constrained hardware – could be

improved. Memory limitations could be sidestepped by adding 256KB of external

FRAM on a secondary storage board to “swap” applications. We expect runtime

overhead to further improve as we tune the display driver, which dominates the

system overhead.
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3.6.5 User Studies

Our SenSys’16 paper [91] also featured insights into two user studies: one in-

vestigating the utility of our ARP-View tool to developers while developing a

continuous-sensing app, and one investigating the feasibility of using Amulet as a

platform for continuous-monitoring applications in human-subject research. While

I did not directly participate in the running of either study, I designed and imple-

mented the tool studied in the former, and supported the app developer of the latter.

Both studies were approved by our Institutional Review Board (IRB).

The takeaways from these studies are encouraging. Namely, the first user

study involved recruiting ten students with at least some experience with low-

power embedded systems. Participants were taken through an exercise of mapping

out an embedded system application that required some sensing task. Subsequently,

each participant was provided with our ARP-View tool and asked to repeat the

exercise. Through a structured interview at the end of the study, the investigators

found that our tool was helpful to developers, obtaining feedback that our tools

provide rich insight into their decisions and how these map to energy cost within

their application.

A second user study involved recruiting six medical-school students to par-

ticipate in a study that was investigating the feasibility of using Amulet as a tool

for conducting Ecological Momentary Assessment (EMA) studies – often used in

behavioral-medicine research. This preliminary study was intended to evaluate user

acceptance of the Amulet wearable, and technical feasibility of multi-source data

collection (i.e., EMA, HR data, and battery stats) with an mHealth EMA application.

While there were some issues with the prototype (specifically the device’s case),

this early study demonstrated the feasibility of the Amulet prototype for EMA, and

for continuous-monitoring applications on human subjects.
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Overall, these studies serve to highlight that our work on the Amulet Platform

is a promising approach for designing platforms and devices that make it easy for

application developers to develop applications, that are useful in healthcare and

health research, and that all of this can be done on a platform designed with security

in mind. For more information on these user studies, we refer the reader to our

paper for more details [91].

3.7 Related Work

The collection of software and hardware techniques in Amulet draw extensively

from the wireless sensor-network literature. In this section we address related work

in open wearable platforms; software architectures for sensor-focused devices and

other constrained devices; approaches for isolating the execution of application

code; and techniques for modeling an application’s energy and resource usage.

3.7.1 Open Wearable Platforms

Current commercial platforms such as Pebble, Android Wear, and Apple watchOS

only document best practices and measure resource usage of running applica-

tions [149, 8, 14], and are closed source, closed hardware, or both. Other open

platforms were being developed concurrently with Amulet as the wearable hard-

ware ecosystem evolved; some of these projects have been discontinued, such as

Sony’s Open SmartWatch Project [179] and the Angel Sensor [10]. Others projects

and platforms are still being developed, such as BLOCKS [183] and ZWear [201],

but they are not entirely open to users or developers, or do not address one or more

of the Amulet goals.

Little information about their developer tools are available; none of them

appear to provide compile-time, app-developer tools for predicting battery life for a
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given app or combination of apps, and none are engineered to give battery lifetime

measured in months. Hexiwear [94] is completely open source and open hardware,

and built for the mbed platform. However, it lacks comprehensive developer tools

that allow application isolation and evaluation of energy costs. Hexiwear was

not built specifically for low-power operation like Amulet. The choice of high-

powered components like a color OLED screen and ARM Cortex-M4 make lifetimes

significantly less than the Amulet.

Wearable platform such as ZOE [113], Mercury [122], and Opo [97] have been

designed by the research community to address specific sensing problems, or to

explore specific research areas (like BodyScan [68]).

In contrast, Amulet provides open-source hardware and software in a general

platform allowing wearable system designers to innovate at both the operating

system and application level – importantly, Amulet provides a tool that gives appli-

cation developers insight into the tradeoffs between energy and utility. The Amulet

Firmware Toolchain and Resource Profiler provide novel capabilities essential to

app development for long-running multi-application multi-developer wearables.

3.7.2 Software Architectures

Software architectures and operating systems exist for sensor networks and the

Internet of Things, including TinyOS [116], Contiki [65], RIOT OS [26], and mbed

OS [18]. TinyOS programs are written in a dialect of C (nesC), Contiki programs

are written in a subset of C, and mbed OS programs are written in C++. Amulet

programs are currently written in a subset of C but the techniques could be extended

to support a subset of C++. SafeTinyOS [56] allows for the static analysis of code

to improve reliability and programmer confidence in a solution for single TinyOS

applications. Amulet uses similar static analysis techniques to provide application

isolation and energy prediction for multiple applications. All but RIOT OS are
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event-driven (like Amulet), and only one (mbed OS) provides application isolation

and access control.

The mbed OS provides app isolation using the target processor’s Memory

Protection Unit (MPU). (Hardin et al. recently demonstrated [86] that a similar ap-

proach is viable on the MSP430, which is the primary app processor for the Amulet.)

The mbed OS uses a single-threaded execution model for objects written in C and

C++, which is similar to Amulet’s state-machine approach (although mbed plans to

add multi-threading in the future). Security is managed using the mbed OS uVisor

which allows setting and altering fine-grain permissions and memory access for

system modules and objects, offering object isolation. However, the mbed OS only

offers this isolation on ARM Cortex-M3, M4 and M7 microcontrollers with a Mem-

ory Protection Unit (MPU), all of which are larger, higher-power microcontrollers

than the target processors for Amulet. It may be possible to use our Amulet-OS

techniques to extend mbed OS security for smaller microcontrollers.

Amulet’s architecture combines high- and low-power components to achieve

our lifetime, performance, and availability goals. This design is similar to other hier-

archical power-management systems [180, 28, 1] that seek to provide resource-rich

computing platforms with wide dynamic power ranges, by combining a hierarchy

of functional “tiers” into a single integrated platform. By using the right tier for

the right task, and aggressively powering off high-powered tiers when not needed,

these platforms are able to combine high performance and network availability

with low average power consumption and long battery life.

None of the other IoT frameworks in development appear to offer the multi-

application and app-isolation features of Amulet.
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3.7.3 Application Isolation

Traditionally, hardware memory management units (MMUs) prevent applica-

tions from interfering with each other and with core system functions. Software

fault-isolation techniques extend the MMU by isolating malicious code and have

been implemented for x86 and ARM architectures [169, 198, 199] or require hard-

ware (MMU) support. All of these approaches require hardware (MMU) support

not available on low-power processors, and incur significant runtime overhead.

They are not tenable on the constrained hardware platforms that enable long-lived

wearable deployment.

Language-based techniques provide a more efficient alternative, by changing

the programming model [102, 71] to make dangerous actions impossible or easy

to detect, and using a combination of compile-time static analysis and inserted

run-time checks to detect the dangerous actions that remain [51, 56]. The Amulet

architecture (at the time of our work) builds on these techniques, with a new focus

on safely combining multiple applications without hardware memory-protection

support and providing insight into each apps’ share of system resources.

We note that, recently, Hardin et al. [86] presented a memory-isolation tech-

nique that improves upon our security isolation for Amulet. Specifically, in their

work they leverage both compiler-inserted code and MPU-hardware support to

realize efficient isolation without resorting to language limitations.

3.7.4 Energy and Resource Modeling

Previous research on energy modeling for constrained devices has focused on tech-

niques for smartphones and wireless sensors. Tools like Sandra [135], eDoctor [123],

Eprof [147], Carat [146] and PowerForecaster [134] help users make decisions about

energy efficiency at install time, observe the effect of use from day to day, or di-
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agnose abnormal battery drain. Other research has tried to identify how users

and batteries interact – investigating the battery mental model of users [69]. These

works focus on meeting user needs while ARP-View is focused on enabling the

developer. Further, these systems are all in-situ; gathering information about usage

and then presenting information to the user. However, integrating these tools with

ARP-view could provide interesting avenues for future work.

Developer-focused tools have also emerged for smartphones. Tools have

focused on identifying energy bugs at compile time [192], in-situ energy metering

using kernel additions for energy model building [196], and then using those models

to predict smartphone lifetime [105]. These tools, if carefully applied to constrained

wearable platforms, could complement the developer insights gleaned from the

Amulet Resource Profiler and ARP-view.

Other tools profile changes in the frequency and amount of system calls as

a proxy for hardware profiling, to estimate changes in application energy effi-

ciency [2]. Some tools estimate energy cost per line of source code [119]. These

tools provide insight for the developer into energy usage and efficiency, but are not

tuned to the specific needs of wearable development. Wearable applications are

more energy constrained than cell phones, and rely on periodic sensing activities

for their function. The developer must be able to easily identify energy expensive

code segments that are periodically executed. This is why ARP-view exposes timers

to the developer, allowing them to manipulate the frequency of sensing actions in a

GUI, without additional profiling or emulation steps.

Simulation and emulation techniques have attempted to provide forecasts

of energy usage, starting with tools from the wireless sensor network literature

like Power TOSSIM [174]. WattsOn [138] extends the idea of emulation to provide

insights and what-if analysis for Android applications, after running the application

in an emulator. WattsOn specifically focuses on empowering developers to under-

100



stand energy efficiency, and is most closely aligned with the goals of ARP-view.

However, WattsOn is phone-focused, and does not account for periodic sensing

tasks that are crucial to wearable operation. Nor does it provide real-time feedback

on code and duty cycling changes. Wearables require special attention to be paid to

periodic sensing tasks, timing and duty cycling, and costs of each API function. The

Amulet Resource Profiler seeks to empower wearable developers without requir-

ing specialized hardware knowledge, or costly profiling and emulation, all while

accounting for sensing and user-interaction costs.

3.8 Summary

In this chapter we present our work on the Amulet Platform, which comprises

a toolchain (the Amulet Firmware Toolchain) and runtime (the Amulet-OS) for

development of secure and resource-efficient applications on low-power multi-

application devices, such as wearable devices. In our past work [139, 91] we

demonstrated that our platform offers developers security (e.g., application iso-

lation) and feedback to empower them to develop resource-efficient applications.

In this chapter we specifically emphasize security-related aspects of the Amulet

platform and – to some extent – its usability.

In our work, we designed, implemented, and evaluated a system (and tech-

niques) that provide application security guarantees in a way that is cognizant

of its impact on energy and memory consumption. Our specific contributions

presented in this chapter include substantial contributions to (1) the design and

implementation of Amulet’s software stack and runtime system, (2) the design

and implementation of Amulet’s firmware-production toolchain that guarantees

application isolation, (3) the design and implementation of resource models that are

deployed in Amulet’s developer tools; these models aid developers in developing

secure and efficient applications, and (4) an experimental evaluation of Amulet.

101



App App App

Trustworthy Embedded Apps + Developer Tools

KERNEL

CPU

Host App Host App Host App

MEMORY WIRELESS RADIO

O
PE

RA
TI

N
G

 S
YS

TE
M

A
PP

S
H

W
 /

 F
W

Embedded OS

MIDDLEWARE

MCU

Embedded App(s)

MEMORYRADIO

MIDDLEWARE

Hub Peripheral

Embedded App(s)

Figure 3.11: An overview of our system model and the threats to apps and data on peripheral
devices illustrated alongside our solution.
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4
Verifying Trustworthy Behavior

4.1 Introduction

In the preceding work, we have primarily focused on prevention – how devices

and networks can be composed to provide trustworthy foundations for Wireless

Personal Area Networks (WPANs). While these efforts are necessary, they are

not enough by themselves. If history is our guide, at some point the adversary

will be successful in compromising the system or network. The question then

becomes: now what? We argue that prevention (through hardening devices and

networks, for example) is not enough, and that there must exist some mechanism
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to detect inauthentic interactions between applications and nearby devices. Such

a mechanism could, for instance, alert users to potential risks and take actions to

mitigate those risks. We address this challenge in this chapter.

At its core, we envision a system that wants to determine whether all of the

devices in question are still authentic. Or in other words, are they still in desirable

state, running code they are intended to be running, and operating (behaving) in the

normal, expected way? Unfortunately, verifying this property is not as straightfor-

ward as one would hope. In Section 4.2 we present background information and

related work towards this direction. This brief survey also helps to motivate our

approach (Section 4.4) to verifying device authenticity and – ultimately – securing

WPANs.

4.1.1 Overview of our Approach

To verify trustworthy behavior between apps and devices as they interact, we

present our approach: Verification of Interaction Authenticity (VIA). VIA introduces

models that characterize typical, authentic interactions (network communication)

between apps and devices. The modeling techniques used in VIA are inspired by

past work in anomaly detection and Intrusion Detection Systems (IDSs) [104, 124,

188, 112, 82, 32, 48, 46, 121, 95, 140, 141]. Our implementation of VIA resides within

a trusted region of a Bluetooth host (e.g., within a trusted OS; within the Secure

World on a TrustZone-enabled platform; within an Enclave on an SGX-enabled

platform) and requires privileged access to all network traffic to and from the

Bluetooth host. Access to all ingress and egress network traffic enables VIA to

construct hierarchically-segmented models based on n-grams and other features

extracted from packet headers and payloads.

VIA is distinct from past work in multiple ways. For instance, past work has

primarily focused on IP-based communications [82, 133], Wi-Fi [176], ZigBee [197],
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and Z-Wave [197]; focused solely on a particular platform, such as Samsung Smart-

Things [197]; or requires invasive modifications to each Internet of Things (IoT)

device [75, 141, 42], which is rarely (if ever) practical. (Indeed, not a single device

in our testbed of more than 20 smart health and smart home devices is “open” to

modifications.)

In its current form, VIA is completely agnostic to higher-level protocol seman-

tics and internal device state. VIA’s models are only concerned with constructing

models for typical communications, which can be used as a reference to verify

consistency with these models in future interactions.

Furthermore, unlike other approaches to capturing Bluetooth network traffic,

VIA does not require additional hardware or depend on unreliable techniques to

sniff Bluetooth connections over-the-air [5, 84, 31]. To the best of our knowledge,

this is the first academic work that makes use of raw Bluetooth HCI traces collected

on a smartphone – which only requires access to the easy-to-enable HCI logging

feature under the Android “Developer Options.” (This access does not even require

the phone to be rooted.) In our current implementation, all HCI logs are written

to the SD card and are easily accessible via the Android Debugger Bridge (ADB)

utility.

VIA is also the first in-depth work to focus on characterizing Bluetooth devices

based solely on Bluetooth network communications. Given the market dominance

of Bluetooth and its increasing popularity for IoT use cases, we believe this work

has broad applicability to areas of active research, such as mobile security and

trustworthy computing.

4.1.2 Assumptions

We reiterate that that VIA resides on the Bluetooth host, within a trusted region

of a Host, and requires privileged access to all network traffic (over Bluetooth)
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to and from the Bluetooth host. Indeed, our larger vision is that VIA would be

deployed within a Trusted Execution Environment (TEE), such as an Software

Guard Extensions (SGX) Enclave on IA platforms [100], or within the “Secure

World” on Arm platforms [19], or integrated directly into firmware within an I/O

controller, alongside our work described in Chapter 2.

For simplicity, VIA can be viewed as a trusted third party that resides within

the Host, and sits between apps running on the Host and the devices that connect

with these apps. Thus, for illustrative purposes, we visualize VIA as sitting among

the lowest layers of a Bluetooth host system (Figure 4.1). (This topic is discussed in

more detail in Section 4.3).

4.1.3 Contributions

VIA is a novel approach to verifying and enforcing trustworthy behavior within

WPANs. We make the following contributions:

• We collected and present a new, first-of-its-kind dataset, which captures

Bluetooth HCI traces for app-device interactions between more than 20 smart-

health and smart-home devices. (According to a recent survey [3] and much
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effort to find any sort of dataset on Bluetooth network traffic, there appear to

be no such Bluetooth datasets; we believe this dataset is extremely valuable in

its own right). To equip future researchers with better data for investigation,

our new dataset will be made publicly available after this dissertation is

published.1

• We contribute extensions to open-source Bluetooth analysis software to en-

hance the available tools for practical exploration of the Bluetooth protocol

and Bluetooth-based apps. To equip future researchers with better tools for

investigation, the Vagrantfile and Dockerfile for the respective VirtualBox

VM and Docker Container will be published along with our dataset. Further-

more, most of the code we wrote is already publicly available: btsnoop2 and

bluepy.3

• We present a novel modeling technique (hierarchical segmentation) for charac-

terizing and verifying authentic BLE app-device interactions.

• We present an experimental evaluation of our new modeling technique, which

presents strong evidence that our technique can realize effective characteri-

zation of, and distinction between, smart devices within WPANs for smart

homes and smart healthcare.

4.2 Background & Related Work

The peripheral devices that we consider are essentially nothing more than embed-

ded systems (which have been around for decades) coupled with some networking

technology. These are generally not open systems, meaning they run one application

1https://crawdad.org/dartmouth/bluetooth-hci
2https://github.com/traviswpeters/btsnoop
3https://github.com/traviswpeters/bluepy
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(or a few) created by the device developers; they generally cannot be extended

with applications from third-party developers. Thus, typical solutions for pro-

tecting systems, such as installing third-party security software (e.g., antivirus

software, security agent software), are not applicable; in fact, in some cases – such

as in FDA-approved medical devices – altering the software might invalidate the

certification!

This limitation – not being able to modify the peripheral devices – has gener-

ated a lot of interest and work in non-invasive approaches to measuring the state

of devices, and using the measurement results to determine whether devices are

authentic. The detection of non-authentic devices (through measurements that

indicate non-authentic device behavior) may be an indication of the presence of

threats to other personal devices or networks; by detecting such threats, there is an

opportunity to take some action to secure personal devices and networks. In the

remainder of this section, we discuss some of these non-invasive approaches and

relate them to our approach.

4.2.1 Authentication

The overarching objective of our work (the verification of authentic interactions

within WPANs) is largely motivated by past work in authentication [108, 57, 144,

74, 24, 126, 125, 133, 33, 99, 141, 127]. Authentication is a process to verify (i.e.,

establish the truth of) an attribute value claimed by or for a system entity [173]. In

computer systems and networks, authentication is used to verify that a person (or

another system) is in fact who or what it claims to be. This relates to our work in

that VIA attempts to verify that apps and devices interact in a way that is consistent

with what they claim to be. Generally speaking, authentication can be achieved in

one of two ways: identification or verification.
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Identification

A system that performs identification attempts to recognize a specific entity and

distinguish it from other entities in a known population. In this way, the task of

identification is a one-to-many matching problem; i.e., the output of an identification

system is a single identity or class contained within the population.

To perform identification: First, the system collects (or otherwise obtains)

many samples from the population (e.g., models for app-device communications

within a population of apps and devices). Later, when an unknown entity presents

itself to the system, it is the system’s responsibility to determine which member of

the population matches that entity.

Verification

A system that performs verification either accepts or rejects an entity after examin-

ing some input information about the entity’s claimed identity. In this way, the task

of verification is a one-to-one matching problem; i.e., the output of verification is

binary: accept or reject.

To perform verification: First, the system collects (or otherwise obtains) an

identity and model for a particular entity, and stores it. Later, when an entity

presents itself to the system and asserts its identity, it is the system’s responsibility

to verify that the presentation matches the model for that identity.

4.2.2 Traffic Analysis & Intrusion Detection Systems (IDS)

Wireless traffic analysis systems and Intrusion Detection Systems have a long and

rich history [104, 124, 188, 112, 81, 32, 11, 17, 46, 131, 33, 95, 75, 197, 4, 166]. Gen-

erally speaking, wireless traffic analysis systems and Intrusion Detection Systems

(IDS) continually monitor computers or networks, collecting data (e.g., system
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calls, network communication), extracting quantifiable features from this data, and

applying a variety of techniques to analyze the data in search of signs of anomalies

or compromise.

With respect to IDSs, there are traditionally two broad categories of IDS with

respect to where they are located: Host-based IDS (HIDS) and Network-based IDS

(NIDS) [75]. HIDS are generally software located on the system being monitored,

and typically monitor only that system. NIDS are often physically separate devices

located somewhere “upstream” in the network of the system(s) being monitored;

NIDS generally monitor many separate systems on a common network.

NIDS are advantageous in the context of our work because their presence

is generally transparent to the systems being monitored, which means we could

deploy a NIDS to monitor peripheral devices, for example, without needing to

modify them in any way. (This assumes that peripheral network traffic is routed

through a network device – such as a smartphone or other hub device – where

a NIDS is deployed, or that the NIDS has access to all network traffic, e.g., by

sniffing an area of interest.) Because of this advantage, we focus our attention on

Network-based Intrusion Detection Systems.

There is an extensive collection of work on both categories of IDS. (In fact,

there are even additional categories such as hybrid and distributed IDS that exist as

well, which combine both host-based and network-based IDS data – from multiple

sources – into one system.) A more thorough discussion of IDS, however, is beyond

the scope of this dissertation; we refer the interested reader to two recent surveys

on this topic [95, 75]. We can also recommend a slightly dated, but nonetheless

insightful, brief history and overview of intrusion detection [104].

There are also two broad categories of IDS with respect to how intrusions are

detected [178]: “systems relying on misuse-detection monitor activity with precise

descriptions of known malicious behavior, while anomaly-detection systems have a
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notion of normal activity and flag deviations from that profile.” Both approaches

have their strengths and weaknesses.

Misuse detection defines patterns (“signatures”) for malicious behavior, and

scans a data stream for matches, looking for evidence of known attacks [104]. Misuse

detectors generate few false positives4 (i.e., a flag is only raised if the exact signature

is matched), which is desirable, but they are only capable of detecting known

attacks that have a well-defined signature; worse, introducing slight variations into

known malware can often cause signature-based detection mechanisms to miss

even “known” attacks (i.e., unknown devices or networks would lead to higher

rates of false negatives).

Anomaly detection uses models of expected behavior (generally obtained after

some training phase), and interprets deviations from this “normal” behavior as a

problem [104]. It is worth noting that an inherent assumption of anomaly detection

is that attack behavior differs from normal behavior. One advantage of anomaly

detectors is that they are capable of detecting unknown attacks. Also, it may be

possible to represent the models in an efficient way, making real-time anomaly

detection possible. Unfortunately, anomaly detectors are also known for having

high false-positive rates (i.e., not all anomalies are an attack).

Both misuse detection and anomaly detection have their own strengths and

weaknesses. In this dissertation we opt to explore techniques commonly used

to realize anomaly-based detectors for one key reason: Authentic interactions

may take varied forms. Rather than attempt to craft precise signatures for every

possible interaction – as misuse detectors attempt to do – we prefer techniques

4According to some experts, this is a common statement in the literature, but it is not generally
true. In practice, signature-based detection works well within the context of the specific networks
and devices used to collect data and develop these signatures. When new devices (devices not
observed during the creation of signatures) are introduced into the mix, the false-positive rates of
misuse detectors may increase. Similarly, signatures generated based on data from one network may
give rise to increased false-positive rates when applied to a different network. This only serves to
strengthen our interest in anomaly detectors over misuse detectors.
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that are capable of modeling normal behaviors, and deviations from those normal

behaviors.

Due to the simplicity of peripheral devices, which generally serve a well-

defined purpose and perform well-defined and often repetitive tasks (i.e., low

variability), we believe applying anomaly-based monitoring to networks of these

devices (such as Bluetooth devices and networks) may work well. Furthermore,

given the scale of personal networks (dozens of devices, as opposed to hundreds or

thousands of devices), it may be possible to at least help a user identify a specific

problematic device that has raised a flag in the anomaly detection system, enabling

them to respond in some way (e.g., search online for known problems, report the

device to the manufacturer, stop using the device, or perhaps even throw the device

away).

4.2.3 Side-Channel Measurement & Analysis to Detect Malware

Side-channel analysis has also been widely explored [107, 44, 27, 25, 55, 175, 194, 72,

187]. In particular, we have obtained invaluable insights from work that has used

side-channel analysis as an approach to detect malware. Indeed, recent work that

inspired some of our thinking proposed measuring unintentional side-channels of

medical devices, such as power consumption, to infer the state of the device [55].

Their theory is that the power consumption of computing devices scales closely

with system workload. By measuring power consumption at a (specialized) power

outlet, they can use these measurements as a proxy for computing activity (often

referred to as behavior) and detect problems, including malware. As in our situation,

this approach works well when devices perform well-defined, repetitive tasks that

should exhibit little variation from one run to another. Furthermore, this approach

is non-invasive: it can work without modifying the target device since the side-

channel measurement and analysis can be done at the power outlet. However,
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this solution requires the devices to be continuously powered via their specialized

power outlet to detect malware. In our context, peripheral devices are not always

(or ever) line-powered. If these devices are line-powered, it would be quite easy for

malware to monitor the power state of the device, conceal itself while line-powered,

and continue operation when disconnected from line power.

In light of this work, we believe that it may be possible to accurately model

the well-defined (and often repetitive) network communications that occur in

WPANs, such as Bluetooth networks. In fact, given devices that perform well-

defined and often repetitive tasks, we believe that a device’s communications may

serve as a proxy for its computing activity. Under this assumption, it may be

possible for a classifier to accurately detect a divergence from models for authentic

communication, which may be indicative of a device whose firmware has changed,

or of the presence of an inauthentic device masquerading as a legitimate device.

A core assumption of this approach is that such “problems” lead to network

traffic that does not fit the normal profile. Given an understanding of common

malware (such as those enumerated in Figure 4.2), our intuition leads us to believe

that an infected peripheral device will produce abnormal network activity (down-

loading files, creating new channels, opening ports, probing the mobile device, etc.)

that can be detected at the hub device (to which it connects).

4.3 System, Network, and Security Model

In this dissertation we consider WPANs that consist of multiple peripheral devices

that connect with a central hub device (recall Figure 1.1). As discussed in Chapter 1,

we focus on personal hub devices and peripheral devices (IoT devices)5 in this work,

5Technically both peripheral devices and hub devices are IoT devices, but “IoT device” is most
often used to refer to devices that fall under the umbrella of peripheral devices; the new, smart,
network-capable “things” that connect with applications or services over the Internet via a hub

113



A Malware Samples Used to Test WattsUpDoc

Malware Activity Devices
almanahe Download and execute files Compounder
autorun Open port and IE instances Compounder
bamital Disable system programs Substation
bredolab Download other malware, crash system, unhook API Compounder

delf Allow remote access Compounder
dorkbot Download other malware, Initiate DOS attacks, Steal personal info Compounder
fakeav Download other malware, Ransomware Compounder
kolab Spam IRC channels Both

mabezat Infect host files Substation
ramnit Run malicious routines Substation
sality Infect and delete host files Both

sillyfdc Disable services Both
virut Infect host files, create backdoor Both
zbot Steal personal info, create bot Both

cryptic Download other malware Compounder

Table 4: Windows malware representing unusual device behavior.
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Figure 4.2: Examples of malware samples representing unusual device behavior [55].

but note that these concepts extend to other devices under a similar network model.

(We elaborate on our system and network model, and discuss how these concepts

generalize, below.) This approach – having all IoT devices connect with a personal

hub – has many advantages with respect to security and privacy; for instance,

data stored on such a hub (e.g., within the Databox [67]) can be tightly controlled,

enabling people to determine with whom (or what) their personal data is shared.

Hub devices in WPANs are often mobile devices (e.g., smartphones) but

need not be mobile; rather, the role of this device is a system that runs end-user

applications and serves as a gateway for IoT devices to access the Internet. In

fact, this central gateway device might be a popular home “hub” device6, such as

Amazon Echo [6], Apple HomePod [15], or Google Home [79]; or a dedicated health

hub device, such as the HealthGo Mini [66]. A more traditional home gateway

device, such as a home Wi-Fi access point (AP), could also be a hub. Few Wi-Fi APs

today, however, run end-user applications or include WPAN technologies such as

device. For this reason, when we refer to IoT devices in the text, we specifically refer to peripheral
devices that are distinct from hub devices such as smartphones.

6Indeed, these popular consumer devices are the canonical “IoT gateway” devices of today.
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Bluetooth, which makes APs somewhat different as compared to the hubs that we

generally consider throughout this dissertation.

IoT devices may interact with more than one hub device. For example, a

home’s IoT devices may be controllable by all of the members of the family that

occupy the home; each member may have their own personal hub device. For the

sake of simplicity in the following text, we restrict our discussion to the scenario

where multiple IoT devices connect with a single hub device.

IoT devices rely on the hub device as means to access the Internet (to upload

data to services, or to interact with other IoT devices, for example) and to interact

with the user (by presenting data to the owner/operator of the hub device). The

hub devices rely on IoT devices as a means to collect data (health data from a worn

device, for example) and to act on the environment (administer medication via an

implanted insulin pump, for example).

In light of this context, our work explores the viability of deploying anomaly-

detection and intrusion-detection techniques within a hub device at the center of a

WPAN. We develop VIA models, which are deployed within the hub device, that

use access to network traffic to and from its connected IoT devices to verify the

authenticity of interactions within the WPAN. VIA uses network-traffic analysis

and anomaly-detection techniques (such as those in Section 4.4) to infer deviations

from normal interactions between (apps running on) hub devices and nearby IoT

devices.

In the remainder of this section we describe our security model, which consists

of our assumptions and trust model, the anticipated threats and adversaries, and

the goals of our solution.
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4.3.1 Assumptions & Trust Model

We assume that any personal hub and IoT devices – when initially deployed – are

deployed in a secure environment without any malware. This provides a window

of time in which to train VIA models.

Many IoT devices are deployed in, and generally exist in, a secure environment

(such as a home), which offers reasonable protection from physical threats; network-

based threats may still be an issue, however. Furthermore, depending on the

mobility of these devices, they may not always reside in the secure environment.

For example, wearable devices such as a fitness band or heart-rate monitor may

be worn out of the home. Likewise, hub devices such as smartphones, which are

frequently carried by people wherever they go, often leave the confines of the home

for extended periods of time. These realities may create an opportunity for an

adversary to compromise a hub or peripheral device.

We assume that IoT devices do not support the addition of third-party security

mechanisms, such as antivirus, anti-malware, or any other security-related software

agents. Furthermore, IoT devices have limited resources (per our definitions of

peripheral devices stated in Section 1.1), such as energy, processing power, and

memory. Hub devices are generally less constrained in terms of these resources, but

any software deployed on a hub device should still be conscious of its impact on

energy consumption, memory footprint, network usage, and so forth.

We assume VIA will be deployed within a Trusted Execution Environment

(TEE). Some hub platforms come equipped with a TEE, such as SGX [100] or

TrustZone [19] (recall Chapter 2). On such a platform, VIA may be safely deployed

within a TEE (e.g., [111]), ensuring that VIA can reliably operate even if other system

components (e.g., the OS) are compromised. For clarity, we depict potentially

untrusted components (red) within the hub and peripheral devices in Figure 1.4.
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Figure 4.3: Illustration of the VIA threat model and our solution.

Last, we assume that an adversary knows how VIA works (i.e., they may

understand the models used to distinguish anomalous behavior from normal be-

havior). Even with this knowledge, however, our theory is that malicious activity

on the part of the adversary will result in abnormal activity – and network traffic –

that can be observed by VIA. (See Section 4.3.2 for more discussion on this topic).

4.3.2 Threats & Adversary Model

The ultimate goal of the adversary is to compromise IoT and hub devices to steal

sensitive data (e.g., personally identifiable information (PII), medical information,

financial credentials), commandeer resources (e.g., device’s computing resources),

tamper with data (e.g., inject false data into applications or services), and to prop-

agate itself (i.e., to leverage the compromised devices to carry out attacks against

other devices). To clarify our threat model further, we describe two types of threats

that our work specifically aims to address: inbound threats (peripheral-to-hub) and

outbound threats (hub-to-peripheral). We then clarify the scope of our work and the

types of adversaries we hope to address with this work.
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Inbound Threats

Consider a malicious device that comes into close proximity (i.e., within Bluetooth’s

wireless radio range) of a target hub device. Here, a malicious device may be a

cloned device, which is an attacker-controlled device that has cloned the identifiers

of another device (MAC address, UUID(s), device name) with the objective of

establishing a connection with the target hub device in an attempt to attack it. Or

it may be a compromised device, which is a legitimate user-owned device that has

been compromised by the attacker, and is now under the attacker’s control. Again,

the objective of the attacker here may be to use this device to attack the target hub

device; or more specifically, applications that run on the hub device.

Outbound Threats

Consider a malicious application present on the victim’s hub device, which has the

ability to access the Bluetooth interface. For example, on Android, this is as simple

as an application having the Bluetooth and Bluetooth_ADMIN permission —

two permissions that are claimed by almost all Bluetooth-capable applications [144].

Such a malicious application may, for example, use its access to the Bluetooth

interface to attack nearby IoT devices.

Scope & Limitations

As has been ceded in past work [55], our work does not aim to address targeted

threats launched by determined, well-funded adversaries. We acknowledge that

an adversary with detailed knowledge of any defense mechanisms could in theory

design an attack to specifically thwart or evade that defense mechanism. Fortunately,

targeted threats appear to be rare [55]. Thus, as others have done (e.g., [55]), we

focus our attention on garden-variety threats (e.g., generic malware that targets a

vulnerability present in a large class of devices), which are a clear and present
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danger to hub and IoT devices.

Furthermore, it is important to note that VIA seeks to identify abnormal be-

havior by monitoring network communications (interactions). Because our work

concentrates on behavioral features, our system will likely have a hard time de-

tecting any difference between two devices that behave in similar ways, but run

on physically different devices/hardware. For example, consider a model which

accurately characterizes a heart-rate monitor used in remote patient care. Now

consider an imposter heart-rate monitor device under the control of an attacker

that “behaves correctly” (e.g., reports heart-rate values in a reasonable range) but

is intentionally sending high heart-rate values (perhaps to convey a high resting

heart rate to a medical record system, which may result in higher insurance costs

due to high-risk health indicators). This imposter is in scope for our work, but we

admit that we would not easily (or at all) be able to detect this sort of “attack” since

the device is behaving within its normal profile. Thus, regardless of the underlying

device/hardware – which may need to be verified by other means, such as plat-

form attestation (e.g., [24]) – we only propose to identify authentic behavior vs.

non-authentic behavior based on features related to communication between the

devices.

Since our understanding of most of the previously-seen malware is that it

does not operate in such a subtle manner (e.g., [55]), we suspect that attacks like

the one described above are rare (or even nonexistent). The attacks that we are

familiar with – and the attacks that we anticipate are common – are less subtle

(recall Figure 4.2), and our models should be successful in detecting attacks that

exhibit similar characteristics. Indeed, these are the attacks that lead to more

compromised devices, or that enable theft of data; these are the attacks that pose

significant risk to the security and privacy of end-users and their data.
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4.3.3 Goals

The overall goal of this work is to investigate the viability of applying anomaly-

based intrusion-detection techniques to WPANs, such as Bluetooth networks. More

specifically, our goals are to:

• Increase user-awareness of threats in WPANs by providing a means for hub

devices to detect abnormal interactions between devices in the network, and

report this to the user.

• Increase hub device security by protecting apps on the hub device from

malicious IoT devices.

• Increase IoT device security by protecting IoT devices from malicious apps

on a hub device.

4.4 Verification of Interaction Authenticity

In this section we present Verification of Interaction Authenticity (VIA), our approach

to verifying trustworthy interactions (network communications) between devices

within WPANs (Figure 4.4). Here, we focus on the task of verification to introduce

a new mechanism for ensuring that apps and devices continue to interact in a

way that is consistent with prior observations (and is, with reasonable confidence,

authentic and therefore trustworthy). Deviation from authentic interactions will

result in failed verification, enabling devices to take action and mitigate potential

network threats.

At a high level, our larger vision for VIA is that it will be deployed within a hub

and work by monitoring all network traffic to and from connected devices. When a

hub device and a peripheral device connect, identifying information is exchanged,
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such as unique Bluetooth device addresses (BD_ADDR) and secret information

that can be used later for authentication (LTK). Based on this information, an

appropriate normality model can be loaded to perform verification. (Verification

models can be learned as-needed or fetched from a trusted source, such as a device

manufacturer; see Section 4.6.2 for more discussion on bootstrapping initial VIA

models.) Going forward, VIA can monitor all app-device communication (i.e.,

parse and segment packets, compute n-grams, perform verification), and determine

whether the interactions are trustworthy. If the interactions are successfully verified

as being authentic, interactions will be permitted to continue, and verification will

be repeated again at some point in the near future; otherwise, VIA will take action,

such as alert the user or terminate the connection between the offending app and

device. (See Section 4.6.2 for more discussion of response strategies.)

Toward this vision, in this work we study the use of n-grams (Section 4.4.1) and

our new methodology for model separation, hierarchical segmentation (Section 4.4.2),

to build and validate VIA models. In future work we will use the building blocks

we present below to fulfill our larger vision. In Section 4.6.2 we discuss some of the
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challenges and opportunities surrounding a real-world deployment of VIA in the

future.

4.4.1 Using N-grams for Network Traffic Modeling & Analysis

Our approach to model network traffic is to create models based on the contents of

packets (headers and/or payloads).7 Attacks commonly try to exploit vulnerabilities

in services or applications by delivering maliciously crafted payloads; or, in the

case of packet headers, attacks may try to exploit vulnerabilities in how the headers

are parsed and interpreted. By modeling aspects of normal packets, it is possible to

detect deviations in packet content that may indicate an attack.

To model a normal packet, some past systems (e.g., PAYL [188], PCkAD [11]),

have used n-grams. To describe data in terms of n-grams, we adopt the definition

presented by Wressnegger et al. [191] and summarize it below. Each data object

x first needs to be represented as a string of symbols from an alphabet, A, where

A is often defined as bytes or tokens. For example, in modeling network packets,

we simply consider a packet (or part of a packet, such as the packet headers or the

packet payload) as a string of bytes. By moving a window of n symbols over the

string of bytes in each packet x, we can then extract all substrings of length n. These

substrings (n-grams) give rise to a map to a high-dimensional vector space, where

each dimension is associated with the occurrences of one n-gram. Formally, this

map φ can be constructed using the set S of all possible n-grams as,

φ : x→ (φs(x))s∈S with φs(x) = occ(s, x)

where the function occ(s, x) simply returns the frequencies, the probability, or a

binary flag for the occurrences of the n-gram s in the data object x.

7This approach assumes that relevant packet contents are accessible to VIA – i.e., non-encrypted.
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Past work has shown that even for small n (e.g., n = 1), n-grams can be

an extremely effective in modeling traffic patterns in a manner that is efficient,

accurate, and resilient to mimicry attacks [188]. (In a mimicry attack, the attacker

(1) takes control of a network device, and (2) successfully executes a payload

while mimicking normal behavior. Thus, if an exploit sequence is contained in the

normal profile, the attack will go undetected.) Attempts to improve upon simple

1-gram models have shown only slight improvements. For instance, past work has

shown that slightly higher detection rates, and slightly lower false-positive rates

can be achieved [11], but these improvements come at the expense of increased

computational complexity, or the use of additional preprocessing that imposes

domain knowledge. Furthermore, Angiulli et al. suggest that there is an inherent

trade-off in building n-gram models where n > 1: greater values of n lead to

higher false-positive rates, whereas 1-gram models have been shown to have lower

detection rates (but not by much).

Ultimately, 1-gram models are simple, effective, and have low false-positive

rates, which is a good starting point for investigating the viability of applying

anomaly-detection techniques for verification of authentic traffic within Bluetooth

networks. Thus, in this work, we use 1-grams to build models based on byte-

frequency distributions observed over a sequence of one or more Bluetooth packets.

The resulting models can then be used to verify future network communications.

4.4.2 Hierarchical Segmentation

A single model trying to characterize all packets has been shown to lead to an

ineffective, monolithic model. Therefore, it is necessary to learn a variety of models

that separate traffic into different groups, where similar types of traffic can be

associated and compared. Past work analyzing IP traffic (e.g., [188]) learns separate

models using a combination of destination port, packet payload length, and packet
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direction (inbound or outbound).8 Thus, if there were 5 ports and 10 different

payload lengths for each port, their approach would learn 50 separate models for

inbound traffic and 50 separate models for outbound traffic.

This approach is problematic for Bluetooth-based WPANs. For instance, some

of the conventional notions (e.g., ports) are not directly applicable. We observe,

however, that model separation based on ports is effectively meant to separate

models based on the underlying protocol and semantics of interactions within the

context of a specific protocol. Therefore, to capture specific semantics of underlying

protocols in Bluetooth, we introduce our approach to model separation based on

hierarchical segmentation of the various Bluetooth protocol layers (Figure 4.5).

L2CAP

EVT

CMD

SCO

HCI

LEN

OGF

LEN

SCH

ACL LEN

DIR

ATT

LEN

DIR

SMP

LEN

DIR

Figure 4.5: Hierarchical segmentation of the Bluetooth protocol stack for VIA models.

As we traverse the hierarchy illustrated in Figure 4.5 from left to right, we

move “up the stack” in Bluetooth. The root of the hierarchy corresponds to the

Host Controller Interface (HCI) layer – the lowest layer of the Bluetooth protocol in

8PAYL and related systems also describe solutions to common edge cases that can be problematic.
For example, they describe approaches to merge models in the event of sparse training data.
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which we can reliably capture Bluetooth network traffic.

The HCI protocol is made up of four different types of packets: command

packets (CMD), which contain directives or requests from Host software; event

packets (EVT), which contain responses to CMD requests or notifications of network

events (e.g., connection requests); asynchronous data packets (ACL), which are

used for higher layers in the Bluetooth protocol to exchange data; and synchronous

data packets (SCO), which are primarily used for streaming data, such as audio. In

our testbed of more than 20 smart-health and smart-home devices, not one of those

devices ever exchanged SCO packets. Thus, VIA models only make use of CMD,

EVT, and ACL packets.9

Packets in the HCI protocol can flow in one of two directions. Packets that flow

along the entry path into the hub are referred to as ingress packets, and packets that

flow along the exit path from the hub are referred to as egress packets. Because the

direction of a packet is an important characteristic of the packet, shorthand notation

is commonly used. Specifically, an ingress packet’s direction is also referred to as

d2h (device-to-host), since the direction of the packet is oriented from a device

towards [to] the host. An egress packet’s direction is also referred to as h2d (host-

to-device), since the direction of the packet is oriented from the host toward [to] a

connected device.

Each of the CMD, EVT, and ACL packets have substantially different char-

acteristics in terms of directionality and packet length, examples of which can be

seen in Figure 4.6 and Figure 4.7. CMD packets are unidirectional and flow ex-

clusively from the Host to the Controller (h2d); the lengths of these packets are

generally quite small, likely because the HCI protocol defines a a limited set of

valid commands, most with few parameters. EVT packets flow exclusively from the

9Our approach to modeling should be applicable to SCO packets as well, but we have not had
an opportunity to study SCO traffic to date. It is likely that devices with microphones or speakers
will make use of SCO traffic, but none of the devices in our testbed had either.
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Controller to the Host (d2h); the lengths of these packets are highly variable. ACL

packets are bi-directional and can flow in either direction between the Host and

Controller (h2d or d2h); these packets primarily transport application-layer data

communicated between devices. We note that there tends to be more variability

in ingress ACL packets. We see these differences between CMD, EVT, and ACL

packets as meaningful features for creating separation between VIA models.

To illustrate the characteristics described above as seen in our dataset, we

compiled all of the packets from all of the parsed trace files for a particular device

(in this case, the Omron upper-arm blood-pressure monitor) and plot (Figure 4.6,

Figure 4.7) the distribution of observed packet types, lengths, and directions. Note

that while these plots are for a specific device, other devices show similar trends:

most or all packets are 50 bytes or less; there are a few packet lengths that are

frequently observed; the lengths of HCI EVT packets are highly variable while the

lengths of HCI CMD packets are relatively small; and, there is more variability in

the lengths of HCI ACL packets sent from a peripheral device to an app on the hub

device as compared to the lengths of packets sent from the app to the peripheral

device.
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Figure 4.6: Distribution of HCI packet lengths by packet type and direction. HCI command
packets (CMD) are generally small, and only egress from the perspective of our network
traces. HCI event packets (EVT) are highly-variable in length, and only ingress from the per-
spective of our network traces. HCI data packets (ACL) are bi-directional and exhibit more
variance on the ingress path.
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Figure 4.7: Distribution of HCI packet lengths and their observed frequencies. The sizes
of packets observed in our dataset are small for the most part, and many packets are rep-
resented by a small number of packet lengths. This supports our approach of hierarchical
segmentation that takes packet length into account as well.

Additional differences can be seen within each of the HCI packet types, es-

pecially ACL packets. Notably, ACL packets transport Logical Link Control and

Adaptation Protocol (L2CAP) packets, which is a layer that provides features such

as packet segmentation and retransmission. The primary function of the L2CAP

protocol is to provide a reliable transport for Bluetooth applications. Above the

L2CAP layer, we identify three critical protocols that can be used for further model

separation: the Attribute Protocol (ATT), the Signaling Protocol (SCH), and the

Security Management Protocol (SMP). It is through these protocols that devices can

perform authentication, establish connections and logical channels, and exchange

user data.

Commands (CMD) and events (EVT) are specified by an opcode and event
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code, respectively. While there are nearly 300 HCI commands and events, they are

grouped into several categories based on their function (e.g., configuring the Con-

troller, requesting information about the Controller or nearby devices, discovering

devices, establishing connections). Different groups of opcodes (OGF in Figure 4.5)

lead to one form of separation for models composed of CMD packets. Event packets

are not so easily separated; in our current work, packet length appears to be the

best attribute for separation among event packets.

To summarize, VIA uses several features to learn models: a combination of

n-grams, packet type, packet length, and packet directionality. These features enable

VIA to create models that are highly effective in recognizing network traffic that

is consistent with previously-learned authentic communications for interactions

between a particular app/device pair, and to distinguish among the interactions for

different app/device pairs. To give the reader some intuition for the features used

in VIA, Figure 4.8 illustrates an overlay of the n-grams generated from more than

30 different traces10 over time between a Kinsa thermometer and its companion

application. Figure 4.8 provides compelling evidence for the viability of VIA as

a solution for verifying trustworthy behavior within WPANs. We provide more

quantitative evidence in Section 4.5.

10A trace is a packet capture consisting of all packets that are observed between the time that
a hub and peripheral device establish and terminate a connection. For more information on the
collection of traces, see Section 4.5.1.
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Figure 4.8: Example of normalized byte frequencies for HCI traces.

4.4.3 Model Selection & Verification

After models have been created, VIA can perform verification. To perform verifica-

tion, VIA scans each packet according to the hierarchical segmentation described

above, and selects a representative model for verification. Next, VIA computes the

byte-value distribution of the relevant segment of the new packet and compares

the result against the chosen verification model. If a new packet (or sequence of

packets) is consistent with the verification model, VIA deems the interaction to be

authentic. In Section 4.5, we discuss the use of off-the-shelf classifiers that can be

used to determine whether a new packet is consistent with the verification model.

The description above is a slight simplification of how verification is per-

formed. In reality, packets exchanged in Bluetooth communications are usually

quite small. For example, in Bluetooth version 4.0 and 4.1, the maximum Attribute

Protocol (ATT) payload is 20 bytes.

From preliminary experiments, we found that learning and verification works
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best using a sequence of packets. For example, Figure 4.9 illustrates n-grams

produced from examining the first b bytes of a concatenated sequence, where b

equals 10, 50, 100, and nearly 300, respectively. In this example, the HCI trace

captures all of the packets that were exchanged between the companion app and

device (thermometer) connected and exchanged data about a measurement taken

from the device. Clearly, using more packets will provide more information for

model learning and verification. In our work we chose to use all of the available

bytes in a network trace11 to learn and evaluate our models, which equates to a few

minutes of network activity per trace.

11The decision to use all of the bytes in a network trace is appropriate here because of how we
constructed the traces, which we describe in detail in Section 4.5.1. In short, each trace contains
bytes from only a short period of time (3-10 minutes) in which an app-device pair connect, exchange
data, and disconnect. In future work, we will perform a more in-depth examination of the data to
determine an optimal duration that should be used for building a model.

131



Figure 4.9: Example of the information gained from aggregating varying amounts of bytes
from a trace before learning models or performing verification. Specifically, these subplots
illustrate the n-grams that are produced from examining the first b bytes of a concatenated
sequence, where b equals 10, 50, 100, and nearly 300, respectively. (In the last subplot, only
297 bytes are shown because only that many bytes were exchanged at the ACL/L2CAP layer
during this particular network trace.)
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4.5 Evaluation

In this section we study the use of n-grams and our new methodology for model

separation in Bluetooth (hierarchical segmentation) as a promising approach for ver-

ifying app-device interactions over time. To evaluate the viability of our approach,

we assembled a testbed (Figure 4.10) of two distinct device categories (smart-health

and smart-home devices) consisting of 9 different device types, and 20 devices in

total (Table 4.1). From this testbed, we produced a novel dataset of more than 300

Bluetooth network traces (Section 4.5.1), which will be made public following the

publication of this dissertation.12

The remainder of this section describes our experiments that use the traces

collected from our smart-device testbed. The primary thrust of our experiments is

to show that our approach can produce models capable of differentiating between

sufficiently dissimilar devices. (We examine various interpretations of dissimilar,

such as devices that differ by type, manufacturer, and instance.) Separation between

devices is one way of verifying app-device interactions; in other words, interactions

for similar devices are classified to a specific class, whereas different interactions

are classified into a different class (or classes).

Throughout our experiments, we use multi-class classifiers (e.g., Random

Forest) to classify a sequence of packets into an appropriate class, and evaluate the

performance of the classifiers by conducting a stratified 10-fold cross validation.

4.5.1 Experimental Setup

In this section we discuss the details of our testbed and dataset, how we triggered

and captured authentic interactions between apps and devices, and details about

our data pre-processing and analysis.

12https://crawdad.org/dartmouth/bluetooth-hci
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A New Smart-Health and Smart-Home Testbed & Dataset

To evaluate our approach it was first necessary to assemble a testbed of devices.

We focus on two broad categories of smart devices that are common for WPAN

scenarios: smart-health devices and smart-home devices. We carefully selected

devices to ensure that our testbed was composed of diverse devices, in terms of their

functions; yet, we also wanted to study similar devices to evaluate the limitations of

our approach to modeling, and the abilities of our models to differentiate between

similar devices. In the text below, we describe devices by their type (which refers to

a device’s functionality and purpose), make (which refers to the manufacturer of the

device), and model (which refers to an identifier, such as a name or number, that is

used to distinguish among devices made by the same manufacturer).

At the time this work was conducted, our testbed consisted of 20 Bluetooth-

enabled, smart-health and smart-home devices: two weight and body composition

scales, each from different manufacturers; five blood-pressure monitors, from three

different manufacturers;13 three heart-rate monitors (two of which have identical

make and model), from two different manufacturers; one pulse oximeter; one

TENS unit (a unit is technically made up of two distinct Bluetooth devices); two

glucose monitors, from two different manufacturers; two thermometers (same

make, different models); two smart locks, each from different manufacturers; and

two identical smart environment sensors (same make and model). A summary

of the smart devices in our testbed is presented in Table 4.1; a photo of some of

these devices is shown in Figure 4.10. Also, a summary of the mobile apps used to

interact with the smart devices in our testbed is shown in Table 4.2.

13The blood-pressure monitors present any interesting case study. Not only does our dataset have
three devices of the same type from three different manufacturers, but also, the monitors measure
blood pressure at two different locations on the body: upper arm and wrist.
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Figure 4.10: A photo of our smart-health and smart-home devices.

Data Collection: Capturing HCI Traces

Using our testbed, we collected a large number of network traces (more than 300

in total) that captured interactions between 20 distinct devices with 13 different

smartphone apps. Here, a trace refers to a packet capture consisting of all packets

that are observed between the time that a hub and peripheral device establish and

terminate a connection; an interaction refers to a semantically meaningful exchange

of packets between a hub and peripheral. As a result of these definitions, an

interaction, in general, can be thought of as a subsequence of a trace. Based on how

we constructed our traces (recall Section 4.4.3), however, a trace and an interaction

are effectively equivalent in our experiments.

The above-mentioned smartphone apps were installed on a Nexus 5 smart-

phone running Android 6.0.1 (“Marshmallow”), API level 23, kernel version 3.4.0.

Along with executing the apps, the smartphone also served as our primary device

for data collection. To capture HCI traces, we enabled the Bluetooth HCI snoop

log developer option. (This feature is a common developer option introduced in
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Table 4.1: List of Bluetooth-enabled smart devices that make up our testbed.

Identifier Device Model

Smart Health
Scale-RENPHO RENPHO Smart Bluetooth Body Fat Scale
Scale-Gurus Bluetooth Smart Body Fat Scale by Weight Gurus
BPCuff-WR-iHealth iHealth View Bluetooth Wrist Blood Pressure Monitor
BPCuff-UA-iHealth iHealth Feel Bluetooth Upper Arm Blood Pressure Monitor
BPCuff-UA-OMRON OMRON Evolv Wireless Upper Arm Blood Pressure Monitor
BPCuff-WR-OMRON OMRON 10 Series Wireless Wrist Blood Pressure Monitor
BPCuff-UA-Choice Choice Wireless Blood Pressure Monitor, Upper Arm
HRMonitor-CH-Polar-1 Polar H7 Wearable Heart Rate Monitor (Chest)
HRMonitor-CH-Polar-2 Polar H7 Wearable Heart Rate Monitor (Chest)
HRMonitor-CH-Zephyr Zephyr Wearable Heart Rate Monitor (Chest)
PulseOx-iHealth iHealth Air Wireless Fingertip Pulse Oximeter
TENS-OMRON OMRON Avail Dual Channel TENS unit
Gluco-iHealth iHealth Wireless Smart Blood Sugar Test Kit
Gluco-Choice Choice Wireless Blood Glucose Monitor
Therm-Oral-KINSA KINSA QuickCare (oral smart thermometer)
Therm-Ear-KINSA KINSA Smart Ear (in-ear smart thermometer)

Smart Home
SmartLock-August August Smart Lock Pro + Connect (3rd Gen.)
SmartLock-Schlage Schlage Sense Smart Deadbolt
EnvSensor-Inkbird-1 Inkbird combo mini Bluetooth (temp/hum) sensor
EnvSensor-Inkbird-2 Inkbird combo mini Bluetooth (temp/hum) sensor

NOTE: Numbers are used in the identifier to distinguish between multiple instances of devices. Two
letters are used in the identifier (between the device type and manufacturer) to denote the placement of a
device where there are multiple options: WR = Wrist, UA = Upper Arm, CH = Chest.

Android 4.4. It is interesting to note that using this feature does not even require

rooting the phone.) The HCI snoop log captures all Bluetooth HCI packets to a

binary-encoded file, which it writes to an SD card; the log format resembles the

Snoop Version 2 Packet Capture File Format described in RFC 1761 [45].

Each trace captured interactions between one app-device pair. Specifically,

each trace captured all communications observed at the HCI layer (and therefore all

protocol layers above the HCI layer). For each app-device pair we collected at least

10 traces, each of which included 3-10 minutes of network activity.

We observed that our traces also contain ambient network activity, such as

advertisements from nearby devices not in our testbed. We filtered out this ambient

activity by simply “ignoring” certain HCI EVT packets; as a result, ambient network

activity does not interfere with our ability to learn verification models.
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Table 4.2: List of smart device apps.

App Corresponding Device(s)

Smart Health
RENPHO RENPHO scale
Weight Gurus Weight Gurus scale
iHealth MyVitals iHealth blood-pressure monitors, pulse oximeter
OMRON Connect OMRON blood-pressure monitors
Choice Blood Pressure Choice blood-pressure monitor
Polar Beat Polar and Zephyr heart-rate monitors
OMRON TENS OMRON TENS unit
iHealth Gluco-Smart iHealth blood-glucose meter
AgaMatrix Diabetes Manager Choice blood-glucose meter
Kinsa Kinsa oral and ear thermometers

Smart Home
Schlage Home Schlage smart deadbolt
August Home August smart lock
Engbird Environment sensors

Bluetooth Dev/Test Apps
nRF Connect General BLE exploration
Light Blue Explorer Schlage smart deadbolt
BLE Peripheral Simulator August smart lock

Emulating Normal App-Device Interactions

We gathered HCI traces by manually using the apps and devices in our testbed to

emulate a wide variety of normal app-device interactions. The actions we performed

consisted of: navigating the “official” smartphone app14 and exercising features

that trigger network communication with a corresponding device, as well as acting

upon the devices in such a way that triggers communication with its corresponding

smartphone app.

It was not our intention to discover and exercise every functional feature (and

thus every BLE service or characteristic) of a particular app/device. Rather, it

was our intention to observe typical features and interactions between devices and

their official app, which could be used to construct normality models suitable for

performing verification in future app-device interactions.

Our current stance is that any network activity (authentic or inauthentic,

14With the exception of the heart-rate monitors, each device had a single “official” smartphone
app to which it would connect.
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benign or harmful) that deviates significantly from our normality models should

fail verification, which provides an opportunity for further investigation or some

other response to mitigate potential harm. In future work we will explore differences

between benign and authentic anomalies (e.g., genuine app-device communication

that occurs in response to a rare event, such as a heart attack), and anomalies that

are potentially harmful or inauthentic.

Data Pre-processing

Prior to analysis we applied pre-processing to each raw trace file. At the time of our

experiments, the pre-processing code was executed on a VM running Kali Linux,

kernel version 4.14.

Data pre-processing is necessary to generate an intermediate file with per-

packet features and labels. More specifically, after collecting each HCI trace (an

HCI snoop file), we moved the raw file from the smartphone to a local VM using

the Android Debugger command line tool (adb). We reset the HCI snoop file on

the smartphone between each trace so that each HCI snoop file contained only

packets belonging to interactions between a particular app-device combination

(recall Section 4.5.1); we refer to this as an app-device session.

To parse HCI traces, we extended two open-source projects: btsnoop 15

and bluepy. 16 Our extensions extend the parsing of the HCI protocol and other

protocols that the HCI protocol encapsulates; namely, we extract features for each

packet within the HCI traces, such as packet types, lengths, endpoint identifiers,

protocol semantics, and segmented headers and payloads belonging to higher-level

Bluetooth protocols (e.g., the Attribute Protocol (ATT), the Security Management

Protocol (SMP), the Signaling Protocol); and, because each trace captured a single

app-device session, we labeled each packet according to the device it was sent

15https://github.com/traviswpeters/btsnoop
16https://github.com/traviswpeters/bluepy
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to/from. Finally, these features and labels were written to CSV-formatted files for

subsequent (offline) analysis.

Data Analysis & Model Validation

We conducted our analysis using a collection of custom-written Jupyter Note-

books [103]. To enable others to easily reproduce our findings, we wrote a custom

Dockerfile that automates the process of building a consistent Docker [63] container

environment that is suitable for loading our dataset and running our Notebooks. At

the time of this work, our Jupyter Notebooks were executed on a Docker container

running atop Linux, kernel version 4.9.125.

In our analysis, we loaded the pre-processed files into m× n matrices, where

the rows are the observations (packets) in the trace, and the columns are the features

(e.g., packet types, lengths, raw packet bytes) parsed from the raw trace files.

Upon loading a processed trace file, we segmented each packet according to the

hierarchical segmentation methodology described in Section 4.4.2 (specifically, recall

Figure 4.5), and computed n-grams over the packet bytes in the respective segments.

To be clear, for each leaf of hierarchical segmentation, our approach produces a

256-dimensional vector.

To learn models, we experimented with various multi-class classifiers (e.g.,

Random Forest), and different “branches” within hierarchical segmentation, to

classify a sequence of packets into one of multiple classes. (In our experiments

we examined various definitions for classes, such as separate classes for each

device type, type and make, and instance.) In the subsections below, we present

experimental results for the multi-class Random Forest classifiers, which were

trained and validated with n-grams computed from the HCI→ACL→L2CAP→ ·· ·

branch of hierarchical segmentation.

To evaluate the models produced by the Random Forest classifier examined in
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this work, we conducted a stratified 10-fold cross validation that repeatedly split our

dataset into training and testing subsets, and measured the classifier’s performance.

The classifier was trained with n-grams and class labels from a training set. After

training, we used the trained models to predict a class label for each sample in a

corresponding test set (i.e., the n-grams computed from a new trace) and compared

the predicted label to the actual label.

Due to limitations of our dataset, such as imbalances in the class sizes, we

employed model validation techniques (n-fold cross validation and stratification)

to ensure that our analysis was accurate and reliable. N-fold cross validation

averages the performance of a classifier over multiple partitions (folds) of the data,

which mitigates the effects of an (un)favorable partition (and potentially unreliable

conclusions about the performance of the classifier). Stratification ensures that the

various folds maintain a balanced distribution of the represented classes when

partitioning the data.

In our evaluation, we used off-the-shelf classifiers (e.g., Random Forest) built

into scikit-learn [151], a popular python package for machine learning. In our

evaluation, we use classifiers that can be applied both as binary classifiers (two

classes) and multi-class classifiers (more than two classes). While we evaluated

VIA using a few such classifiers, we focused our attention on the Random Forest

classifier because they are generally easier to interpret and explain, they are non-

parametric (so there is no need to worry about outliers or whether the data is

linearly separable), and they are fast and scalable (so there is generally less concern

with parameter tuning). Because this work is more concerned with validating the

approach, and not so much fine-tuning the underlying machine learning classifiers,

these attributes make the Random Forest classifier a reasonable starting point.

In the binary classification experiments, classifiers labeled samples as the
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target class (“positive” class) or the other class (“negative” class).17 In the multi-class

classification experiments, classifiers labeled samples according to a target class that

the sample most closely resembled.

To report our results, we use the following performance measures, which are

useful for evaluating our classifiers in performing both binary classification and

multi-class classification tasks:

• Precision is the ratio of correctly predicted positive observations to the total

predicted positive observations. A perfect classifier performs at 100%.

Precision =
tp

tp + fp

• Recall is the ratio of correctly predicted positive observations to the total

number of observations that are actually in the positive class. A perfect

classifier performs at 100%.

Recall =
tp

tp + fn

• F1-score is the weighted average of precision and recall. A perfect classifier

performs at 100%.

F1-score =
2 ∗ (precision ∗ recall)

precision + recall

In the above definitions, tp refers to true positives, tn refers to true negatives,

fp refers to false positives, and fn refers to false negatives. The precision and recall

provide insights into the types of errors that the classifiers make, which is preferable

over simply reporting the number of misclassified samples. Accuracy is another

17We use “positive” here because this intuitively maps to a successful identification/verification,
whereas “negative” (or “other”) intuitively maps to an unsuccessful identification/verification.
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common performance measure, but accuracy alone can yield misleading results

(e.g., when classes are imbalanced). The F1-score generally provides a more robust

measure of the performance of a classifier; for this reason, we opt to report the

F1-score and not the accuracy.

Reproducibility

To promote open access research and reproducibility of this scientific work, and to

equip future researchers with better tools for investigation into Bluetooth, we will

release the Vagrantfile and Dockerfile for the respective VirtualBox VM and Docker

container, as well as our dataset, after this dissertation is released. Our extensions

to the two open-source projects mentioned above are already publicly available (see

links in footnotes 15 and 16).
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4.5.2 Overview of Experiments & Results

We evaluated VIA in terms of two fundamental approaches to authentication (re-

call Section 4.2.1); specifically, we evaluated VIA’s ability to perform identification

(one-to-many matching) and verification (one-to-one matching) tasks. Moreover,

we evaluated VIA’s ability to perform these tasks at different granularities. In

our evaluation we considered three granularities of separation between devices:

by device type, by device type and make, and by specific device instance.18 The

specific classification granularities and the corresponding labels are summarized

in Table 4.3.

Table 4.3: A list of class labels by classification granularity.

Granularity (# of Labels) Labels
Device Type (9) Scale, BP-Monitor, HR-Monitor, Pulse-Ox, TENS,

Glucose-Meter, Thermometer, Smart-Lock, ENV-Sensor

Device Type+Make (15) Scale-RENPHO, Scale-Gurus, BP-Monitor-iHealth, BP-
Monitor-OMRON, BP-Monitor-Choice, HR-Monitor-
Polar, HR-Monitor-Zephyr, Pulse-Ox-iHealth, TENS-
OMRON, Glucose-Meter-iHealth, Glucose-Meter-Choice,
Thermometer-KINSA, Smart-Lock-August, Smart-Lock-
Schlage, ENV-Sensor-Inkbird

Device Instance (20) Scale-RENPHO, Scale-Gurus, BP-Monitor-iHealth-1,
BP-Monitor-iHealth-2, BP-Monitor-OMRON-1, BP-
Monitor-OMRON-2, BP-Monitor-Choice, HR-Monitor-
Polar-1, HR-Monitor-Polar-2, HR-Monitor-Zephyr,
Pulse-Ox-iHealth, TENS-OMRON, Glucose-Meter-
iHealth, Glucose-Meter-Choice, Thermometer-KINSA-1,
Thermometer-KINSA-2, Smart-Lock-August, Smart-Lock-
Schlage, ENV-Sensor-Inkbird-1, ENV-Sensor-Inkbird-2

NOTE: Numbers are used in the identifier to distinguish between multiple instances of devices.

18We do not evaluate the granularity of device type, make, and model (device-type-make-model)
here. While it may seem a natural next step, our testbed did not contain enough examples to provide
a meaningful evaluation at this class granularity. We refer the reader to Section 4.5.5, where we
evaluate VIA using subsets of devices from our testbed that do have variance in device model.
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Our results can be summarized as follows:

• Identification Tasks: VIA successfully identified devices by device-type with

an F1-score of 94% or higher in all cases. VIA successfully identified devices by

device-type-make with an F1-score of 94% or higher in all cases. VIA successfully

identified devices by device-instance with an F1-score of 91% or higher in most

cases.

• Verification Tasks: VIA successfully verified that specific network communi-

cations belong to a target device-type class with F1-score higher than 91% in all

cases. VIA successfully verified that specific network communications belong

to a target device-type-make class with F1-score higher than 91% in all cases.

VIA successfully verified that specific network communications belong to a

target device-instance class with F1-score higher than 93% in all but one case.

We also conducted experiments to examine the cases where the F1-score is

lower (e.g., environment sensors), and concluded that these cases arise because

VIA, in some instances, confused distinct instances of otherwise identical devices

(i.e., same device type, make, and model) or devices that are nearly identical (i.e.,

same device type and make). We discuss our findings in more detail below.
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4.5.3 Identification Experiments & Results

In this section we present our evaluation of VIA in terms of its ability to perform

identification tasks. Specifically, we considered three different granularities of

separation between devices (noted above), and evaluated VIA’s ability to correctly

identify devices at each of the three granularities.

Identification is a multi-class classification task (recall Section 4.2.1): a device’s

identity is initially unknown, and (depending on the experiment) VIA seeks to de-

termine the device-type, device-type-make, or device-instance of a device by examining

the app-device network communications. First, VIA obtains many samples from

a population of devices. Each device has an identity in the form of a BD_ADDR

(though other forms of identity are possible, such as LTK), as well as a set of typical

network interactions. While other strategies are possible, and other features may

provide useful information, in our work network interactions are currently repre-

sented with n-grams. Without loss of generality, we refer to some representation of

typical network interactions as a device profile.

When VIA observes a new network interaction between an app and device

with an unknown identity, VIA can use its device profiles to identify the device

from the original population. Simply put, VIA monitors network communications

to formulate a profile for the observed traffic, and then examines its collection

of device profiles to determine the device profile that best matches the unknown

device’s profile. The unknown device is assigned the identity that corresponds to

the device profile it most closely resembles.19

In identification tasks, successful identification is defined as a classification
19To date, we have not yet evaluated how VIA performs when presented with an unknown device

(i.e., a device not seen in training). In VIA’s current design, any observation from an unknown
device will be classified to the most similar device class from the training set, which is not ideal.
One solution to this issue is to implement a confidence threshold. If the threshold is not exceeded,
VIA would classify the observation as “unknown," meaning that the observation does not look
sufficiently similar to any device in its known population of devices. We plan to add and evaluate
this enhancement to VIA’s identification capabilities in future work.
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into the correct (positive) target class; classification into any other class is recorded

as an unsuccessful identification (negative). The results for VIA and the multi-class

classification tasks are summarized in Table 4.4, Table 4.5, and Table 4.6.

Identification Task #1: Classification by Device Type

In this experiment we investigated whether VIA can identify the specific device

type (device-type) to which a new sample belongs. To accomplish this goal, we

assigned each trace a label according to the type of device (recall Table 4.3). Our

testbed consisted of 9 unique classes for device type (i.e., we created distinct classes

where devices are separated by type; devices of the same type shared a label). We

then conducted a stratified 10-fold cross-validation using models learned from data

labeled by device type. The cross-validation results for each of the 9 device-type

classes are summarized in Table 4.4 and visualized in Figure 4.11. In the device-type

identification tasks, VIA achieved an F1-score of 94% or better in all device-type

classes.
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Device Type Precision Recall F1-score

BP Monitor 1.00 1.00 1.00
Environment Sensor 0.89 1.00 0.94
Glucose Monitor 1.00 0.96 0.98
HR Monitor 1.00 1.00 1.00
Pulse Oximeter 1.00 1.00 1.00
Smart Lock 1.00 1.00 1.00
Smart Scale 1.00 1.00 1.00
TENS Unit 1.00 1.00 1.00
Thermometer 1.00 0.97 0.98

Table 4.4: The precision, recall, and F1-score for each device type (device-type) class. The
corresponding confusion matrix is shown in Figure 4.11.
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Figure 4.11: Confusion matrix for classification of devices by type (device-type). While our
smart-device testbed contained 20 devices in total, some devices are functionally similar
(same type). In this experiment, our testbed was separated into 9 different classes based on
device type. This confusion matrix shows the success of classification when devices were
combined into a class if they were of the same type.
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Identification Task #2: Classification by Device Type+Make

In this experiment we investigated whether VIA can identify the specific device

type and make (device-type-make) to which a new sample belongs. To accomplish

this goal, we assigned each trace a label according to the specific device type and

make to which it belongs (recall Table 4.3). Our testbed consisted of 15 unique

classes for device type and make (i.e., we created distinct classes where devices

were separated by type and make; devices of the same type and make shared a

label). We then conducted a stratified 10-fold cross-validation using models learned

from data labeled by their device type and make. The cross-validation results for

each of the 15 device-type-make classes are summarized in Table 4.5 and visualized

in Figure 4.12. In the device-type-make identification tasks, VIA achieved an F1-score

of 94% or better in all device-type-make classes.
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Device Type & Make Precision Recall F1-score

BP Monitor - Choice 1.00 1.00 1.00
BP Monitor - Omron 1.00 1.00 1.00
BP Monitor - iHealth 1.00 1.00 1.00
Environment Sensor - Inkbird 0.89 1.00 0.94
Glucose Monitor - Choice 1.00 1.00 1.00
Glucose Monitor - iHealth 1.00 0.91 0.95
HR Monitor - Polar 1.00 1.00 1.00
HR Monitor - Zephyr 1.00 1.00 1.00
Pulse Oximeter - iHealth 1.00 1.00 1.00
Smart Lock - August 0.95 1.00 0.98
Smart Lock - Schlage 1.00 0.95 0.98
Smart Scale - Gurus 1.00 1.00 1.00
Smart Scale - Renpho 1.00 1.00 1.00
TENS Unit - Omron 1.00 1.00 1.00
Thermometer - Kinsa 1.00 0.97 0.98

Table 4.5: The precision, recall, and F1-score for each device type and make (device-type-make)
class. The corresponding confusion matrix is shown in Figure 4.12.
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Figure 4.12: Confusion matrix for classification of devices by type and make (device-type-
make). While our smart-device testbed contained 20 devices in total, some devices were func-
tionally similar (same type) but may or may not have been made by the same manufacturer. In
this experiment, our testbed was separated into 15 different classes based on type and make.
This confusion matrix shows the success of classification when devices were combined into a
class if they were of the same type and make.
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Identification Task #3: Classification by Device Instance

In this experiment we investigated whether VIA can identify the specific device

(device-instance) to which a new sample belongs. To accomplish this goal, we

assigned each trace a label according to the specific device to which it belongs

(recall Table 4.3). Our testbed consisted of 20 unique classes based on the number

of distinct device instances (i.e., we created a distinct class for each distinct device

instance, even if the devices were the same type, make, and model). We then

conducted a stratified 10-fold cross-validation using models learned from data

labeled by their device instances. The cross-validation results for each of the 20

device-instance classes are summarized in Table 4.6 and visualized in Figure 4.13. In

the device-instance identification tasks, VIA achieved an F1-score of 91% or better in

nearly all device-instance classes. Indeed, the only cases where VIA performed worse

were tasks where VIA had to distinguish between nearly identical devices (same

type, make, and model). We discuss this observation further in the Discussion

section below.
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Device Instance Precision Recall F1-score

BP Monitor - Choice (Upper Arm) 1.00 1.00 1.00
BP Monitor - Omron (Upper Arm) 1.00 1.00 1.00
BP Monitor - Omron (Wrist) 1.00 1.00 1.00
BP Monitor - iHealth (Upper Arm) 1.00 0.92 0.96
BP Monitor - iHealth (Wrist) 0.94 1.00 0.97
Environment Sensor - Inkbird (1) 0.33 0.14 0.20
Environment Sensor - Inkbird (2) 0.50 0.78 0.61
Glucose Monitor - Choice (1) 1.00 1.00 1.00
Glucose Monitor - iHealth (1) 0.91 0.91 0.91
HR Monitor - Polar (1) 0.92 1.00 0.96
HR Monitor - Polar (2) 1.00 1.00 1.00
HR Monitor - Zephyr (1) 1.00 0.92 0.96
Pulse Oximeter - iHealth (1) 1.00 1.00 1.00
Smart Lock - August (1) 0.91 1.00 0.95
Smart Lock - Schlage (1) 1.00 0.90 0.95
Smart Scale - Gurus (1) 1.00 1.00 1.00
Smart Scale - Renpho (1) 1.00 1.00 1.00
TENS Unit - Omron (1) 1.00 1.00 1.00
Thermometer - Kinsa (Ear) 1.00 1.00 1.00
Thermometer - Kinsa (Oral) 1.00 0.94 0.97

Table 4.6: The precision, recall, and F1-score for each device instance (device-instance) class.
The corresponding confusion matrix is shown in Figure 4.13.
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Figure 4.13: Confusion matrix for classification of devices by instance. Our smart-device
testbed contained 20 devices (distinct instances) in total. In this experiment, our testbed was
separated into 20 different classes based on the number of distinct device instances. This
confusion matrix shows the success of classification when each device constituted its own
class.
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Discussion

In our evaluation of VIA’s ability to perform identification tasks, it is important

to understand that the F1-score is lower in the device-instance evaluation because

similar devices are in both the positive and negative classes. For example, the

Environment Sensor devices present the one case where the F1-scores are well below

90%. We chose to include examples of identical devices (i.e., same device type,

make, and model) in this testbed to study this specific case: how well does VIA

perform correct identification when some devices are highly similar (or identical, as in this

case)? Unsurprisingly, these identical devices run the same software, on different

(but similar) hardware, which yields profiles for app-device communications that

are nearly identical. As a result, VIA confused these devices when performing

identification.

One could conclude that VIA’s ability to perform identification is best done

at the granularity of device-type or device-type-make; however, we urge the reader

to consider the consequences of this conclusion. For example, the consequence of

identification at this granularity is that VIA may not be able to distinguish between

different instances of devices with the same type, make and model. Furthermore,

we would be remiss to not point out that VIA’s perceived success in performing

identification – specifically in distinguishing between different instances of de-

vices – may be exaggerated by the fact that our testbed contained few devices that

shared the same type, make and model – the cases where VIA is most likely to be

confounded.

In light of these observations, we conclude that further analysis is needed to

better understand the strengths and limitations of VIA. To this end, we performed

additional experiments with subsets of the highly-similar devices that we did have

in our testbed. We present our findings in Section 4.5.5.
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4.5.4 Verification Experiments & Results

In this section we present our evaluation of VIA in terms of its ability to perform

verification tasks. As before, we considered three different granularities of separa-

tion between devices (noted above), and evaluated VIA’s ability to correctly verify

devices at each of the three granularities.

Verification is a binary (two-class) classification task (recall Section 4.2.1): a

device’s identity is known or observed a priori, which enables VIA to load a target

identity for comparison. After examining newly-observed app-device network

communications, VIA either accepts or rejects that the observations are sufficiently

similar to the target identity. As mentioned above, we considered three different

definitions (granularities) for identity: device-type, device-type-make, or device-instance.

To accomplish verification, VIA first obtains many samples from a population

of devices and learns a specific classifier for each device. Each device has an identity

in the form of a BD_ADDR (though other forms of identity are possible, such as LTK),

as well as a set of typical network interactions, which makes it possible to train a

classifier that recognizes that device. While other strategies are possible, and other

features may provide useful information, in our work network interactions are

currently represented with n-grams. Without loss of generality, we refer to some

representation of typical network interactions as a device profile.

When VIA observes a new network interaction between an app and device

with a known identity, VIA (1) uses the identity to load the appropriate classifier,

and (2) uses the classifier to determine whether or not the new communications

are sufficiently similar to the target identity. Simply put, VIA monitors network

communications, obtains a claimed-identity for app-device interactions, loads the

corresponding classifier (which was obtained from training using the device profile

for the target identity, henceforth referred to as the verification profile), formulates a
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profile for newly-observed traffic (the test profile), and uses the classifier to conduct a

verification procedure that determines whether the test profile is sufficiently similar

to the verification profile.20 In the end, VIA’s verification procedure relies on the

classifier to classify new observations into one of two classes: the target class or the

other class. If the interactions are actually from a device that matches the identity

of the target identity, the interactions should be classified to the target class, and

VIA accepts the observations as being authentic. If, however, the observations are

classified to the other class, VIA rejects the observations and and deems them to be

inauthentic.

In the experiments conducted in the following sections, we repeatedly fixed a

single class to be the target class and combine all other classes into a single other class;

this formulation creates the desired two-class classification problem.21 We then

evaluated the verification results produced by VIA using the following definitions.

A successful verification is defined as a classification of observations belonging to

the target class into the target class (true positive), or a classification of observations

belonging to the other class into the other class (true negative). An unsuccessful

verification is defined as a classification of observations belonging to the target class

into the other class (false negative), or a classification of observations belonging

to the other class into the target class (false positive). The results for VIA and the

binary-class classification tasks are summarized in Table 4.7, Table 4.8, and Table 4.9.

20Thus, VIA’s ability to determine whether observations are ‘sufficiently similar’ with past
observations is dependent on the underlying classifier that is used, and the classifier’s ability to
create a distinct decision boundary between the target class and the other class. (Recall Section 4.5.1.)

21To date, we have not yet evaluated how VIA performs when presented with an unknown device
(i.e., a device not seen in training). In VIA’s current design, any observation from an unknown
device will be classified to the class it most closely resembles; ideally this class would be the other
class, but since the unknown observation is represented in neither the target class nor the other class,
VIA’s behavior in this scenario is unknown. One solution to this issue is to implement a confidence
threshold before allowing an observation to be classified into the target class. If the new observation
does not exceed the confidence threshold, VIA would classify the observation into the other class,
meaning that the observation does not look sufficiently similar to the target class for verification. We
plan to add and evaluate this enhancement to VIA’s verification capabilities in future work.
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Verification Task #1: Classification by Device Type

In this experiment we investigated whether VIA can verify that a new sample

belongs to a specific device type (device-type). To evaluate verification by device

type, we re-labeled data (recall Table 4.3) according to a one-vs-all strategy: We fixed

one device type (e.g., BP Monitor) to be the target class for verification, and grouped

the remaining device types into an other class; traces associated with the fixed-type

were labeled as members of the target class, and all other traces (associated with all

of the other types) were labeled as members of the other class. After re-labeling the

data using the one-vs-all strategy, we conducted a stratified 10-fold cross-validation

using models learned from the re-labeled data. We repeated this process 9 times

to produce results where each device type was fixed as the target class. The cross-

validation results for each of the 9 device-type classes are summarized in Table 4.7

and visualized in Figure 4.14. In the device-type verification tasks, VIA achieved an

F1-score of 91% or better in all device-type classes.
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Device Type Precision Recall F1-score

BP Monitor 1.00 0.96 0.98
Environment Sensor 1.00 0.94 0.97
Glucose Monitor 1.00 0.96 0.98
HR Monitor 1.00 0.91 0.95
Pulse Oximeter 1.00 1.00 1.00
Smart Scale 1.00 0.90 0.95
Smart Lock 1.00 1.00 1.00
TENS Unit 1.00 0.83 0.91
Thermometer 1.00 0.97 0.98

Table 4.7: The precision, recall, and F1-score for one-vs-all verification by device type
(device-type). The corresponding confusion matrices are shown in Figure 4.14.
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Figure 4.14: Confusion matrices for one-vs-all verification by device type (device-type). While
our smart-device testbed contained 20 devices in total, some devices were functionally similar
(same type). In this experiment, our testbed was separated into 9 different classes based on
device type. The confusion matrices show the success of verification when one type was fixed
and all other types are combined into a single class.
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Verification Task #2: Classification by Device Type+Make

In this experiment we investigated whether VIA can verify that a new sample be-

longs to a specific device type and make (device-type-make). To evaluate verification

by device type and make, we re-labeled data (recall Table 4.3) according to a one-vs-

all strategy: We fixed one device type and make (e.g., BP Monitor - iHealth) to be

the target class for verification, and grouped the remaining device types and makes

into an other class; traces associated with the fixed type and make were labeled as

members of the target class, and all other traces (associated with all of the other

types and makes) were labeled as members of the other class. After re-labeling the

data using the one-vs-all strategy, we conducted a stratified 10-fold cross-validation

using models learned from the re-labeled data. We repeated this process 15 times to

produce results where each device type and make was fixed as the target class. The

cross-validation results for each of the 15 device-type-make classes are summarized

in Table 4.8 and visualized in Figure 4.15. In the device-type-make verification tasks,

VIA achieved an F1-score of 91% or better in nearly all device-type-make classes.

Indeed, the only cases where VIA performed worse were tasks where VIA had to

perform verification when similar devices (e.g., blood-pressure monitors) were in

both the target class and the other class. We discuss this observation further in the

Discussion section below.

161



Device Type & Make Precision Recall F1-score

BP Monitor - Choice 1.00 1.00 1.00
BP Monitor - iHealth 0.75 0.93 0.83
BP Monitor - Omron 1.00 1.00 1.00
Environment Sensor - Inkbird 1.00 0.94 0.97
Glucose Monitor - Choice 1.00 0.88 0.93
Glucose Monitor - iHealth 1.00 0.91 0.95
HR Monitor - Polar 1.00 0.91 0.95
HR Monitor - Zephyr 1.00 0.83 0.91
Pulse Oximeter - iHealth 1.00 1.00 1.00
Smart Scale - Gurus 1.00 0.90 0.95
Smart Scale - Renpho 1.00 0.90 0.95
Smart Lock - August 0.87 1.00 0.93
Smart Lock - Schlage 1.00 0.86 0.92
TENS Unit - Omron 1.00 0.92 0.96
Thermometer - Kinsa 1.00 0.97 0.98

Table 4.8: The precision, recall, and F1-score for one-vs-all verification by device type and
make (device-type-make). The corresponding confusion matrices are shown in Figure 4.15.
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Figure 4.15: Confusion matrices for one-vs-all verification by device type and make (device-
type-make). While our smart-device testbed contained 20 devices in total, some devices were
functionally similar (same type) but may or may not have been made by the same manufac-
turer. In this experiment, our testbed was separated into 15 different classes based on type
and make. The confusion matrices show the success of verification when a type and make
was fixed and all other types and makes were combined into a single class.
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Verification Task #3: Classification by Device Instance

In this experiment we investigated whether VIA can verify that a new sample

belongs to a specific device (device-instance). To evaluate verification by device

instance, we re-labeled data (recall Table 4.3) according to a one-vs-all strategy: We

fixed one instance (e.g., Environment Sensor - Inkbird (1)) to be the target class

for verification, and grouped the remaining device instances into an other class;

traces associated with the fixed instance were labeled as members of the target

class, and all other traces (associated with all of the other instances) were labeled as

members of the other class. After re-labeling the data using the one-vs-all strategy,

we conducted a stratified 10-fold cross-validation using models learned from the

re-labeled data. We repeated this process 20 times to produce results where each

device instance is fixed as the target class. The cross-validation results for each of the

20 device-instance classes are summarized in Table 4.9 and visualized in Figure 4.16.

In the device-instance verification tasks, VIA achieved an F1-score of 93% or better in

nearly all device-instance classes. Indeed, the only cases where VIA performed worse

were tasks where VIA had to perform verification when nearly identical devices

(e.g., environment sensors, heart-rate monitors) were in both the target class and the

other class. We discuss this observation further in the Discussion section below.

164



Device Instance Precision Recall F1-score

BP Monitor - Choice (Upper Arm) 1.00 1.00 1.00
BP Monitor - iHealth (Upper Arm) 1.00 0.92 0.96
BP Monitor - iHealth (Wrist) 1.00 0.88 0.94
BP Monitor - Omron (Upper Arm) 1.00 1.00 1.00
BP Monitor - Omron (Wrist) 1.00 1.00 1.00
Environment Sensor - Inkbird (1) 0.20 0.14 0.17
Environment Sensor - Inkbird (2) 0.40 0.22 0.29
Glucose Monitor - Choice (1) 1.00 0.94 0.97
Glucose Monitor - iHealth (1) 1.00 0.91 0.95
HR Monitor - Polar (1) 1.00 0.45 0.62
HR Monitor - Polar (2) 1.00 0.09 0.17
HR Monitor - Zephyr (1) 1.00 0.83 0.91
Pulse Oximeter - iHealth (1) 1.00 1.00 1.00
Smart Scale - Gurus (1) 1.00 0.90 0.95
Smart Scale - Renpho (1) 1.00 0.90 0.95
Smart Lock - August (1) 0.87 1.00 0.93
Smart Lock - Schlage (1) 1.00 0.90 0.95
TENS Unit - Omron (1) 1.00 0.92 0.96
Thermometer - Kinsa (Ear) 1.00 1.00 1.00
Thermometer - Kinsa (Oral) 1.00 0.94 0.97

Table 4.9: The precision, recall, and F1-score for one-vs-all verification by device instance
(device-instance). The corresponding confusion matrices are shown in Figure 4.16.
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Figure 4.16: Confusion matrices for one-vs-all verification by device instance (device-instance).
Our smart-device testbed contained 20 devices (distinct instances) in total. In this experiment,
our testbed was separated into 20 different classes based on the number of distinct device
instances. The confusion matrices show the success of verification when a specific device
instance was fixed and all other instances were combined into a single class.
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Discussion

In our evaluation of VIA’s ability to perform verification tasks, it is important to

understand that the F1-score is lower in the device-type-make evaluation and the

device-instance evaluation because similar (sometimes nearly identical) devices are in

both the target and other classes. For instance, when attempting to verify an iHealth

blood-pressure monitor in the device-type-make evaluation, there are blood-pressure

monitors in both the target class (all iHealth blood-pressure monitors) and other

class (Choice and Omron blood-pressure monitors). As another example, when

attempting to verify an Inkbird environment sensor in the device-instance evaluation,

there is one instance of an environment sensor in both the target class (Environment

Sensor - Inkbird (1)) and other class (Environment Sensor - Inkbird (2)). As we noted

above in the discussion of identification tasks, these particular observations are not

surprising. The similar devices – and indeed the nearly identical devices – operate

in similar ways, and in some cases even run the same software, on different (but

similar) hardware. It is therefore unsurprising to observe that VIA confused these

devices when performing certain verification tasks.

One could conclude that VIA’s verification is best done at the granularity

of device-type; however, we urge the reader to consider the consequences of this

conclusion. For example, the consequence of verification at the granularity of device-

type is that VIA may not take into account important distinctive features that arise

from devices with different make, model, or instance. Furthermore, we would be

remiss to not point out that VIA’s perceived success in performing verification may

be exaggerated by the fact that our testbed contained few devices that shared the

same type, make and model – the cases where VIA is most likely to be confounded.

In light of these observations, we conclude that further analysis is needed to

better understand the strengths and limitations of VIA. To this end, we performed

additional experiments with subsets of the highly-similar devices that we did have
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in our testbed. We present our findings in the next section.

4.5.5 Similarity Experiments & Results

Our previous experiments show that our models are exceptionally accurate in many

identification and verification tasks, but they also illustrate interesting cases where

our models may not perform well. In the experiments we discuss next, we examine

cases where devices were highly similar (e.g., same device type, same device make,

same device model).

Blood-Pressure Monitors

For this experiment, we used five different blood-pressure monitors from three

different manufacturers (Omron, iHealth, and Choice) and conducted a comparative

analysis among the five devices. We trained and evaluated models based on these

five classes, similar to the identification tasks above. The cross-validation results

are summarized in Table 4.10 and visualized in Figure 4.17.

It is clear from the confusion matrix in Figure 4.17 that our models result

in highly-accurate classification. In other words, our approach shows coherent

differentiation between the models learned for devices from different manufacturers.

It is also evident, however, that there was confusion between similar devices made

by the same manufacturer. In other words, similar types of devices made by the

same manufacturer may result in highly similar device profiles. For instance, in

this experiment, we used two blood-pressure monitors from iHealth; one takes

measurements from the wrist (WR) while the other takes measurements from

the upper arm (UA). From the observed network traffic between the iHealth app

and the iHealth blood-pressure monitors, these devices appeared to be nearly

identical. (See Figure A.2 and Figure A.3 in Appendix A for detailed depictions of

their respective device profiles.) A similar discussion applies for the Omron WR
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and UA devices. This result suggests that VIA will have difficulty distinguishing

between devices of the same type, made by the same manufacturer. This outcome

is not unexpected, however. It makes sense that device makers would use similar

hardware and software (perhaps even the same hardware and software) to build

their various devices. Thus, our takeaway is that VIA is able to verify that traces

belonging to similar devices from the same manufacturer are consistent with a

previously learned model. Indeed, if we were to collapse the confusion matrix

in Figure 4.17 down to separation by manufacturer, we would see perfect separation.

We conclude that even though the devices themselves are similar in terms

of the function they provide to the end-user (blood-pressure measurements), this

experiment demonstrates that VIA can reliably distinguish between functionally-

similar devices that are made by different manufacturers. This strongly suggests

that it would be difficult for adversaries to successfully masquerade themselves as

authentic devices at the same time that they carry out any other nefarious actions

(since even highly similar devices are rarely misclassified).
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Blood-Pressure Monitor Instance Precision Recall F1-score

BP Monitor - Choice (Upper Arm) 1.00 1.00 1.00
BP Monitor - Omron (Upper Arm) 1.00 1.00 1.00
BP Monitor - Omron (Wrist) 1.00 1.00 1.00
BP Monitor - iHealth (Upper Arm) 1.00 0.92 0.96
BP Monitor - iHealth (Wrist) 0.94 1.00 0.97

Table 4.10: The corresponding precision, recall, and F1-score for the confusion matrix shown
in Figure 4.17.

Figure 4.17: Confusion matrix for classification of blood-pressure monitors. Our smart-device
testbed contains five different blood-pressure monitors from three different manufacturers, with
a variety of measurement locations (i.e., wrist vs. upper arm monitors).
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Environment Sensors

For this experiment, we used two Inkbird environment sensors to investigate VIA’s

ability to distinguish among distinct instances of the same device (i.e., devices that

are identical in their hardware, firmware, and software). We trained and evaluated

models based on these two classes, similar to the identification tasks above. The

cross-validation results are summarized in Table 4.11 and visualized in Figure 4.18.

It is clear from the confusion matrix in Figure 4.18 that VIA struggled to

distinguish between these highly similar devices. Once again, this result is not

surprising. These devices are identical in terms of their software and hardware;

it therefore makes sense that these devices would exhibit similar communication

patterns and packet contents. While this does point to a limitation of VIA’s ability to

distinguish between distinct devices, we argue that this result does not undermine

the value of VIA. Because our objective is to verify the authenticity of interactions

between apps and devices, the results presented in Table 4.5 and Table 4.8 are much

more representative of the value of VIA in practice; i.e., confusion between profiles

for an app and two devices that appear to function and communicate in nearly

identical ways does not pose an immediately obvious threat to a WPAN.

Heart-Rate Monitors

The Polar heart-rate monitors in our testbed presented another opportunity to

investigate VIA’s ability to distinguish among distinct instances of the same device.

Further experiments with these devices, however, produced no new insights from

what was discussed above. For this reason, we omit the table that summarizes the

precision, recall, and F1-score, as well as the corresponding confusion matrix.
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Environment Sensor Instance Precision Recall F1-score

Environment Sensor - Inkbird (1) 0.43 0.43 0.43
Environment Sensor - Inkbird (2) 0.56 0.56 0.56

Table 4.11: The corresponding precision, recall, and F1-score for the confusion matrix shown
in Figure 4.18.

Figure 4.18: Confusion matrix for classification of environment sensors. Our smart-device
testbed contains two identical environment sensors (same make and model) from the same
manufacturer.
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4.5.6 Future Exploration

In summary, we believe these results demonstrate that our approach to modeling

authentic app-device interactions can provide a reliable means for verifying the

authenticity of future interactions between devices once an initial (authentic) model

is learned/obtained. There are a myriad of ways that we can further explore the

dataset we presented in this section. Similarly, there is still much that we can

do to evaluate VIA and its viability as a mechanism to ensure more trustworthy

interactions between devices in WPANs over time. This work is a starting point

for future research, and would benefit from continued exploration to provide more

insight into the extent to which VIA can improve the trustworthiness of interactions

within WPANs.

4.6 Discussion

In this section we add interesting insights from this work, discuss some of the

challenges and opportunities surrounding real-world deployments of VIA, as well

as limitations of our present work.

4.6.1 Observations of Channel Security “In The Wild”

By collecting traces from more than 20 Bluetooth devices we were able to make

interesting observations about the type of security used in devices that were manu-

factured relatively recently (all devices in our testbed were manufactured in 2016 or

later).

Using Encryption in Higher-Level Protocols for Data Security

Wang et al. observed that uniform byte-frequency distributions are observed in

n-grams computed from packet payloads where the underlying channel is en-
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crypted [188]. Through manual observation of the many HCI traces we collected,

we were able to identify interesting patterns consistent with the use of encrypted

channels (or lack thereof). Namely, from our analysis we found that only two

devices (the smartlocks) in our entire testbed use encryption for communications

above the link layer. This result is especially surprising considering the fact that

the majority of the devices in our testbed communicate personal health data, which

can be stolen or tampered with within the Host while in transit between the apps

and devices. Indeed, this finding reinforces the importance of the work presented

in Chapter 2.

While our observations were the result of manual inspection of HCI traces, in

the future we can employ common entropy tests22 to analyze whether Bluetooth-

based WPAN devices make use of encryption at higher protocol layers. In the

same vein of our work (making WPANs more trustworthy), it may be useful (e.g.,

enforcing security policies) to know whether connected devices are using encryption

at higher protocol layers.

Using Encryption in Lower-Level Protocols for Data Security

Since we have access to all traffic across the HCI, we can observe (from software)

which devices and connections make use of over-the-air security features. This is

done by observing the HCI command opcodes that are used to negotiate and estab-

lish channel security at the lower layers of the Bluetooth protocol. As stated above,

this information may prove useful for evaluating or improving the trustworthiness

of WPANs.

22High entropy is indicative of less information in data; less information in data is generally
achieved through explicit obfuscation of the data, for example using encryption.
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4.6.2 Challenges & Opportunities for Real-World Deployment

This section discusses some of the challenges and opportunities surrounding a

real-world deployment of VIA. This section also helps to shed light on how we

believe our current work should be extended to meet our larger vision of using VIA

as an approach to improve the integrity and security of WPANs.

Bootstrapping: Obtaining Initial Verification Models

In practice, a deployment of VIA must address how initial verification models are

obtained. We envision two likely approaches (recall Figure 4.4): One approach is to

learn verification models on-the-fly. For example, when a new, previously-unseen

peripheral device connects with a hub running VIA, some number of initial interac-

tions can be used to learn the models for authentic interactions. After this initial

phase, the learned models can be used for performing verification of subsequent

interactions.

Another approach is to obtain verification models from a trusted source, such

as a device manufacturer or software/firmware vendor. These models could be

fetched based on device identifiers that are exchanged when two devices initiate a

connection establishment procedure. Similar to on-the-fly learning, after the appro-

priate model(s) have been retrieved, they can be used for performing verification

of subsequent interactions. We note that this approach is gaining traction today:

for example, Manufacturer Usage Descriptions (MUDs) [115] is a proposed IETF

standard for formally specifying the expected network behavior of an IoT device.

MUD exploits a similar observation that we do: IoT devices (generally) perform a

limited set of functions, and therefore have a recognizable communication pattern

that can be represented by a model (referred to as a MUD profile in the context of

MUD).
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Both approaches have trade-offs. Models that are learned on-the-fly may only

capture a small subset of all the possible normal interactions, which may lead to

false positives later on; this approach, however, ensures that VIA can always create

and have access to verification models when needed. Models that are fetched from

a trusted source may be better models for subsequent verification since domain

experts are able to build the models; this approach, however, requires participation

from the original device and software vendors (i.e., they must be willing to exercise

all of the normal interactions to create models, and provide an infrastructure to

share the models), as well as high-availability access to the trusted source(s) (since

new devices could be encountered at any time). A robust deployment of VIA will

likely support both approaches, relying on more robust models fetched from trusted

sources when they are available, and learning models on-the-fly as needed.

Model Updates

Software and firmware on the various devices within WPANs will be updated at

some point, which may change the underlying characteristics for what authentic

interactions look like. Given this reality, it will be necessary to have a mechanism to

update verification models over time. In Bluetooth-based WPANs, we envision a

strategy for model adaptation based on the “Services Changed” feature defined in

the Bluetooth specification [35] (Vol. 3, Part F, Section 3.2.6). The Services Changed

feature exists so that one device (a BLE attribute server) can indicate to its connected

devices (BLE attribute clients) that services have changed (i.e., added, removed,

or modified).23 Furthermore, the Services Changed procedure requires that clients

acknowledge that they received the server’s indication. In the context of our work,

23The real reason this feature exists seems to be for performance. Attribute handles are expected
to be stable for each device across subsequent connections, which allows clients to cache information,
using less packets (and less energy) to retrieve attribute values after a first discovery. The Services
Changed feature is a way for the server to inform a client that server attributes have changed (e.g.,
after a firmware upgrade), so that a client can repeat the service discovery procedure.
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this explicit service-update feature can be used to trigger VIA to fetch an updated

model from a trusted source, or re-train models on the fly (e.g., using the next five

interactions to learn updated verification models).

Response Strategies

Our work thus far focuses on techniques to verify authentic interactions, but an open

challenge is how to best respond when verification fails. Current strategies that we

are considering are to: “flag” the device and increase the verification requirements

to make them more strict going forward; discard data that is not from a verified

source; alert the user (e.g., mobile notification, SMS, email, auto-generated report to

technical auditor); disconnect the app/device connection; and temporarily disable

the network interface altogether.

One concern with the practical deployment of VIA is that false positives (i.e.,

failed verification that is not due to malicious activity) could deny a user access to

a device or app that is needed at a critical time. To mitigate such usability issues,

VIA’s responsive actions could initially be more lenient and become more aggressive

if there is continued deviation from a verification model over time. For instance, a

device may first be flagged and inspected in more detail; if verification continues to

fail, the system may then generate an alert, then disconnect an app/device, then

temporarily disable the relevant network interface to prevent further exploitation

possibility, and so forth.

Diagnosing Issues

Today, detection schemes, such as those deployed in IDSs, are generally only used

in settings where dedicated technical staff can examine network logs and diagnose

issues in their networks. The staff can, for example, identify the affected devices

and patch them or remove them from the network. This approach does not translate

177



to WPANs where non-technical people are responsible for managing their own

devices and networks and diagnosing issues.

One possible solution is to depend on device manufacturers, app developers,

or other trusted third-party diagnostics services to provide assistance. This ap-

proach could be similar to sharing crash reports with software vendors – a common

practice today – allowing an end-user to actively confirm that they want to share in-

formation produced by VIA’s analysis when some issue is detected. This approach

has the added benefit that it incorporates the expertise and domain knowledge of

those most familiar with authentic behavior of devices and applications to aid in

diagnosis and improving VIA’s models.

Complimentary Approaches

There are other ways to provide guarantees over the integrity and trustworthiness

of connections between devices. One approach is to use an encryption protocol

between two parties to protect the confidentiality and integrity of a channel between

them. This approach, however, will fail if the secret key is ever divulged (e.g.,

if one device is compromised and a key is stolen). Furthermore, this approach

requires that all devices support the same encryption protocol, which may require

implementation changes to many peripheral devices.

Another approach is to use PHY-layer sensing and techniques for device

fingerprinting. This approach is similar to our approach in that its primary aim

is to learn specific characteristics (e.g., clock skews) of nearby devices [16, 193]. A

previously-learned fingerprint can be used to verify that devices encountered in the

future are or are not devices with a known fingerprint. One issue with this approach

is that it requires access to PHY-layer sensing, which is not ubiquitously available.

Indeed, to support PHY-layer sensing, many devices would need new hardware

or firmware that provides access to PHY-layer information. Another issue with
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PHY-layer sensing is that it cannot necessarily detect if the same device (and radio)

is being used by malware instead of authentic software; in this case, the device

hardware and its PHY-layer features have not changed, but the previously-created

trust relationships between devices can still be abused.

Our approach develops models for communication between devices and apps

based on information obtained at the network layer and above, and uses them

to verify that future communications are consistent with the previously-learned

models. A significant benefit of our approach is that it does not require invasive

changes to devices: it could be implemented tomorrow in a trusted OS, or next

week in an Intel controller, and most people would not even be aware that it is

happening.

All of the approaches discussed in this section have strengths and weaknesses.

In an ideal deployment, one or more of these approaches would be deployed

together to provide multi-layer protection.

4.6.3 Limitations

The central limitation of this work is that it would benefit from (1) further data

collection with the aim of capturing rare (but authentic) interactions, such as catas-

trophic events, (2) further evaluation with an adversarial presence in the WPAN,

and (3) further exploration of the limitations of VIA models.

Rare Interactions & Events

The new smart-device dataset we present in this work captures short (approximately

3-10 minutes), typical interactions in each network trace. Because our initial data

collection effort was concentrated on observing typical app-device interactions, it is

possible that our current dataset misses other types of interactions. For example,

network traffic that only occurs when a patient has a catastrophic health event, such
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as a heart attack. In the future, we will explore ways to introduce examples of rare

interactions and events into network traces.

Mimicry Attacks

One especially prevalent issue that must be addressed in intrusion detection sys-

tems is mimicry attacks. We chose to adopt models based on n-grams in our work to

aid in the characterization of network communications between apps and devices.

We made this choice largely because of past work that showed that n-grams effec-

tively model traffic patterns in a manner that is resilient to mimicry attacks [188].

Evaluating mimicry attacks requires more examples of Bluetooth-based attacks,

but identifying relevant examples is difficult. Recent, known vulnerabilities (e.g.,

BlueBorne [21]), do not try to mimic authentic behavior – they aim to exploit specific

vulnerabilities in implementation of Bluetooth software. For instance, the Android

information leak vulnerability (CVE-2017-0785) aims to exploit a buffer underflow

that leaks the internal memory of an Android device. The exploit is triggered by

repeatedly sending redundant requests, which ultimately results in sequential reads

of internal memory. In such an attack, the resulting n-grams should yield a high

frequency of a limited set of byte values for ingress traffic, and a large amount of

widely variable egress traffic. In theory, this sort of behavior would immediately

deviate from any authentic verification model we have seen in this work. Never-

theless, future work should explore opportunities to exercise known exploits and

evaluate how well our models can recognize these kinds of network interactions.

Intra-Class Similarity

In our evaluation we found evidence that our verification models are effective at

differentiating between devices within the same class (e.g., blood-pressure moni-

tors). This is not, however, true in all cases. For example, in our examination of
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two environment sensors made by the same manufacturer our models were not as

successful. As we explain above, we suspect this outcome results from the similarity

of the hardware and software in these nearly identical devices. (To see just how

similar their profiles appear, see the n-grams in Appendix A.) This result points to

a potential limitation of VIA: highly similar devices (e.g., same make and model)

may not be distinguishable from one another. Although not a serious limitation, it

does warrant further investigation into more cases of similar devices to determine

the degree to which VIA can distinguish among makes and models.

4.7 Summary

In this chapter we describe an approach to verify interactions between apps and

devices over time. We apply techniques commonly used in anomaly-detection and

intrusion-detection systems to characterize normal, authentic interactions between

apps and devices within WPANs. We observed that authentic app-device interac-

tions in the form of Bluetooth communications are extremely consistent from one

interaction to the next. We exploit this observation to learn models early on (e.g.,

when two devices first connect and “pair”), that can be used to verify that future

communications remain consistent over time. If new interactions are found to be

inconsistent with previously-learned models, subsequent action can be taken to

preserve the integrity and trustworthiness of the WPAN. In summary, we make the

following contributions:

• We contribute a new data set that captures more than 300 Bluetooth HCI traces

for interactions between 13 different smartphone apps and 20 smart-health

and smart-home devices.

• We contribute extensions to open-source Bluetooth analysis software that

improve access to tools for practical exploration of the Bluetooth protocol and
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Bluetooth-based apps.

• We show how past work in anomaly-detection and intrusion-detection sys-

tems can be adapted to work in Bluetooth-based WPANs and learn models

that recognize authentic app-device interactions.

• We provide empirical results to show that our approach is successful in differ-

entiating between devices of different types and devices made by manufactur-

ers.
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5
Summary and Future Directions

In this dissertation we explore issues associated with the trustworthiness of WPANs,

and develop solutions to address these issues.

In Chapter 2, we present our work on BASTION-SGX [156, 184]. We intro-

duce an architecture and methodology for achieving secure and trustworthy I/O

on platforms with SGX-enabled processors. In doing so, we identify and solve

several challenges in realizing Trusted I/O for Bluetooth on SGX-enabled platforms;

we define and present a new Trusted I/O architecture; we present an analytical

evaluation of the performance impact of Trusted I/O; and we present a prototype

and a case study that demonstrates how our solution effectively protects sensitive
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Bluetooth I/O data from privileged malware. This work demonstrates that it is

possible to establish more trustworthy channels for app-device communications

in WPANs.

In Chapter 3, we present our work on Amulet [91, 139]. We present a secure,

low-power platform and suite of tools for developing and deploying mobile-health

applications. My specific contributions to this project include substantial contribu-

tions to the design and implementation of Amulet’s software stack and runtime

system, the design and implementation of Amulet’s firmware-production toolchain

that guarantees application isolation, the design and implementation of resource

models that are deployed in graphical developer tools that aid developers in devel-

oping secure and efficient applications, and an experimental evaluation of Amulet.

This work demonstrates how to design more trustworthy peripheral devices for

WPANs. The entire Amulet platform has been publicly released and is freely

available.

In Chapter 4, we present our work on VIA. We introduce a novel approach for

ongoing verification of authentic interactions between apps and devices in WPANs.

We assembled a testbed made up of two distinct device categories (smart-health

and smart-home devices) consisting of 9 different device types, and 20 devices in

total. From this testbed, we produced a novel dataset of more than 300 Bluetooth

HCI network traces. We contribute extensions to open-source Bluetooth analysis

software for practical exploration of the Bluetooth protocol and Bluetooth-based

apps. We present a novel modeling technique (hierarchical segmentation), coupled

with n-gram models to reliably characterize and verify app-device interactions. We

present an experimental evaluation of our work using the 20 off-the-shelf devices

from our testbed. This work demonstrates that it is possible to verify trustworthy

behavior within WPANs.

The evaluation of our solutions shows promise for improving the trustworthi-

184



ness of WPANs. There are, however, remaining questions and other areas of future

investigation. We discuss some of these areas next.

App-Device Binding

In future work I will explore a binding mechanism that binds applications (on a

mobile device) with devices (or, if relevant, applications on devices) in a mean-

ingful way. Pierson et al. show how devices in close proximity can easily share a

secret [158]. Often, this exchange is needed to share a secret, such as a cryptographic

key, that is used to encrypt information between devices (e.g., over a wireless radio

channel). Any entity with the key – in this case, each device – has the ability to

decrypt the information. Is this really what a user intends when two devices are

connected to share information? For example, suppose a user wishes to securely

connect a medical device with their smartphone or a smart display in a doctor’s

office to visualize their medical data. Should the phone or display as a whole have

access to any information from the medical device? The answer is surely “no.”

Generally, when a user connects two (or more) devices in this way, they (implicitly)

intend for a specific application or system service to have access to the data from the

device. The problem here is that there exists no mechanism for a user (or automated

system) to connect a specific application with a specific external device.

When devices “pair,” they form a “bond” at the device level (i.e., smartphone

to medical device). This problem has previously been studied within the context of

Android devices [144] and is referred to as the threat of external device mis-bonding. In

their work, the authors propose Dabinder: a solution to automatically generate se-

curity policies (“app-device relations”) that bind an external device to its authorized

app, and enforces the policies without otherwise impeding on the normal operation.

Their approach, however, automatically generates policies by monitoring which

application first tries to create a connection with a newly paired device; the applica-
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tion that first tries this connection becomes the “authorized app” (which they hope

is also the “official app”). While automatic policy generation in this way makes

sense on some level (i.e., no human input is needed), it is vulnerable to malware

that also looks for newly paired devices and attempts to create a connection with a

device first, enabling the malware to become the “official app” that is allowed to

communicate with the external device.

An appropriate app-device binding should extend the exchange of secret

information to be between the intended (“official”) application and external device,

while also enabling a human to confirm or “bless” a security policy. The models we

presented in Chapter 4 may be applicable here. For example, a binding between an

app and device could be allowed so long as the interactions are consistent with a

pre-defined VIA model.

Our recent work shows how binding/relationships between apps-devices

can be continuously (re-)verified, which presents an interesting alternative to the

DaBinder solution, which is static. If, however, an app or device is compromised at

a later time, it can abuse its access to the device/app to carry out nefarious activity.

Exploring Additional Anomaly Detection Techniques

In past work, many approaches to anomaly detection have been pursued, including

information theoretic approaches, neural networks, support vector machines, ge-

netic algorithms, and many more [178]. We plan to explore other algorithms and

features that may lead to improvements in our models.

Anomalies in WPANs

In the past there have been concerns around the effectiveness of machine learning

in network intrusion detection [178]. Much of this past work – which focuses on the

detection of intrusions in IP-based network traffic – faces extreme challenges due to
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characteristics of the networks in which they were deployed. For example, machine

learning models have to overcome enormous variability in benign network traffic.

Also, because of the size, scale, and nature of these networks, it is challenging

to know how a network operator should interpret something that is flagged as

anomalous; is an anomaly indicative of a cybersecurity threat? Or in the context of

smart-health devices and health monitoring, is an anomaly indicative of a critical health

event? Or is an anomaly an indication that the anomaly-detection model simply failed to

model this type of network activity? The criticisms thus far seem to ultimately be rooted

in the fact that anomaly detection is not coupled with tools to help with interpretation.

In other words, anomaly detection needs to be supported by a description of the

anomaly. While this is not an easy task, past work has proposed tools that can

help, such as the Multivariate Exploratory Data Analysis (MEDA) Toolbox [49];

these tools could, for example, be used to help network operators understand what

event(s) and what feature(s) led to their anomaly-detection system identifying

something as anomalous. In future work, we will explore the use of the MEDA

Toolbox and other related tools to better understand the anomalies that our work

detects, and to better understand the limitations of our approach.

Extending & Applying VIA

Our larger vision for VIA is that it would be deployed within WPANs to perform

active verification of network interactions over time. Our work thus far does not

make instantaneous decisions about the trustworthiness of a connection. Rather,

it assembles a sequence of interactions (packets) and measures the consistency of

those interactions with a previously-learned model. But how can this be further

quantified?

One idea is to determine the trustworthiness of active connections, based on

computed scores from observations in network traffic and compare this against pre-
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computed normative models. Different types of scores can be used to evaluate new

network traffic across different dimensions. For instance, for each observation one

could compute an instantaneous confidence score. Each instantaneous score can then

applied to a global and temporal confidence score that records changes in the system’s

overall confidence (global) over time (temporal). Ultimately, this confidence is

used to make decision about whether a previously established connection remains

trustworthy.

Coarse-grained Modeling & Analysis

One present limitation of VIA is that it primarily makes use of fine-grained features

obtained from network traffic. Past work (e.g., [112, 48]) has shown that anomaly-

detection models computed from normal network statistics based on network flows

can be quite effective in detecting anomalies (e.g., an abnormally high volume of

packets – volume anomalies – from a device observed in a short period of time),

which may indicate anomalous activity that warrants further investigation (e.g., a

network attack). The successes of past work lead us to believe that incorporating

more coarse-grained network features may improve our current approach.

To model normal network traffic based on network flows, many approaches

have been considered. Some are based on Principle Component Analysis (PCA),

including PCA-based Multivariate Statistical Process Control (PCA-MSPC) [112]

and, more recently, PCA-based Multivariate Statistical Network Monitoring (PCA-

MSNM) [48]. One of the major benefits of PCA is its unsupervised nature (i.e., it

requires no a priori specification of potential anomalies).

At a high level, PCA-based anomaly detectors (specifically those based on

Multivariate Statistical Process Control Theory) work by dividing network data

(calibration data) into two sets (subspaces): a structured subspace (model) and

a noisy subspace (residual). Anomaly detection is performed in both subspaces
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using different statistical tests to detect anomalies.1 The statistics (Q-statistic and

D-statistic) are computed using the calibration data to set thresholds (control limits)

that can be used to detect anomalies in their respective subspaces. As incoming

data is processed by the detector, it is projected into one of the aforementioned

subspaces, and the control limits are used to identify anomalies, such as limits being

significantly or consistently exceeded [48].

Generally speaking, PCA is applied to a two-dimensional dataset consisting of

a number of observations (rows) of a number of features (columns). Like others [112,

47, 46], we can adopt the use of simple counters as quantitative features (“feature-

as-a-counter”). Basically, each observed feature value is defined as the number of

times a given event (e.g., the number of incoming/outgoing packets and bytes;

the number of requests to a port or group of ports) takes place during a time

window w. While this definition is rather general, it has been shown to be capable

of representing most of the types of information of interest in monitoring network

traffic for security [47]. See Figure 5.1 for an example of features used in recent

work demonstrating the effectiveness of a PCA-MSNM system [46].

Modeling and analyzing network traffic in a coarse-grained way stands to

provide additional, useful information to how our current models are learned.

Furthermore, we note that it is not possible to analyze the packet contents inside

individual datagrams when network traffic uses secure connections (e.g., HTTPS);

in these cases, fine-grained features extracted from deep packet inspection is im-

possible, but flow-level analysis can still provide meaningful insights into network

traffic.

We have already begun to investigate different types of features that can be

1A criticism of some past work is that they divide data into two subspaces: one representing
normal behavior and one representing anomalous behavior. Anomaly detection is performed only in
the latter. This is not consistent with Multivariate Statistical Process Control Theory – which recent
work [48] points out – and is the cause of some problems of past work.
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a given event–e.g. the apparition of a word in a log or of
a traffic flow involving a given port in a Netflow file–takes
place during a given time window. This general definition
makes it possible to handle, in a suitable way, most sources
of information in anomaly detection, like aggregated traffic
volume by location or ports, or logging information of spe-
cific events arranged according to severity levels. Moreover,
the feature-as-a-counter definition simplifies the fusion of
different data sources in a single set of features. See [7] for
more details.

4. Experimental Framework

The experimentation is carried out on a real network of
a Tier 3 ISP. The services provided by the ISP are mainly
virtualization and hosting. To a shorter extent, the ISP also
provides common Internet access services.

Netflow sensors were deployed in the border routers of
the network to collect legitimate background traffic cor-
responding to the normal operation of the network. In
addition, a total of 25 virtual machines were deployed in
order to perform controlled malicious activities. Some of
these virtual machines were used to launch a number of
specific attacks over time against the rest, which acted as
the victims of the attacks. The obvious ethical reason for
using virtual machines as victims of the controlled attacks
is to avoid negative effects on the normal operation of the
legitimate services. Both the attackers and the victims are
inside the ISP infrastructure to avoid the potential detection
and blocking of the attacks by other intermediate ISPs. The
ISP personnel was aware and collaborated in the experiment.

The following are the details of the legitimate traffic
data, referred as LD:

• Monitoring time: 3 months, from 10:50-03/18/2016
to 18:27-06/26/2016.

• Data volume: 13,615 nfcapd files of Netflow traffic
of 10 minutes each (730GB of bynary data).

• Statistics: more than 600M external IPs correspond-
ing to around 10M different (sub)networks and a
total of more than 5,000M differentiated flows.

We performed a second capture of traffic in which the
attacks were launched with real background traffic. The
resulting dataset is named CD, where letter C stands for
‘combined’. The complete attack experiment is carried out in
intervals of 2 hours that alternate with legitimate traffic dur-
ing 12 consecutive days. The total number of attack episodes
in the data set is 264. The types of attacks implemented are:

• Low-rate DoS: TCP SYN attack during 3 minutes
by using the tool hping3.

• Port scanning: Scanning to the victim’s IP during 3
minutes by using nmap.

• Botnet-related activity: We simulate botnet traffic
through data exfiltration from some infected ma-
chines to the attacker where the botmaster is as-
sumed to be located. Each of the bots performs these
exfiltrations variants: i) Exf1KB: 1KB length file is

TABLE 1. VARIABLE VALUES CONSIDERED AS FEATURES IN OUR
DETECTION SYSTEM.

Variable #features → values
Source IP 2 → public, private
Destination IP 2 → public, private
Source port 50 → specific services, Other
Destination port 50 → specific services, Other
Protocol 5 → TCP, UDP, ICMP, IGMP, Other
Flags 6 → A, S, F, R, P, U
ToS 3 → 0, 192, Other
# Packets in 5 → very low, low, medium, high, very high
# Packets out 5 → very low, low, medium, high, very high
# Bytes in 5 → very low, low, medium, high, very high
# Bytes out 5 → very low, low, medium, high, very high

sent to the botmaster. ii) Exf1MB: 1MB file is sent
to the botmaster. iii) Exf1MBp: 1MB of information
split in 1KB files is sent to the botmaster.

4.1. Anomaly Detection Techniques

We assessed the performance of the MSNM anomaly
detector and compared this performance with that of a one-
class support vector machine (OCSVM) [19], [20]. The
OCSVM is a classification-based network anomaly detec-
tion method [21] reported to provide excellent results [22].
Following [23], we used default values to set the metapa-
rameters, since other approaches like cross-validation are ill-
defined to set a one-class classifier. We considered both the
linear and non-linear versions of OCSVM, the latter based
on radial basis functions (RBF), the most extended kernel
choice. However, the non-linear version failed to converge,
reason why results are only presented for the linear variant.

4.2. Experiments configuration and selection of fea-
tures

Data from LD and CD datasets are parsed into M -
dimensional vectors (observations) representing time inter-
vals of 1 minute. In particular, we defined a set of M=138
network-related features, corresponding to 11 different Net-
flow variables as shown in Table 1. Traffic corresponding to
LD is used to train our detection system, that is, to estimate
the normality model. A test procedure is subsequently car-
ried out by using CD, so that false positive rate (FPR) and
true positive rate (TPR) can be estimated.

The anomaly detection methods are compared with the
Receiver Operating Characteristic (ROC) curves, that show
the evolution of the TPR versus the FPR for different values
of the classifier threshold. A practical way to compare sev-
eral ROC curves is with the Area Under the Curve (AUC),
i.e. an scalar that quantifies the quality of the anomaly
detector. An anomaly detector should present an AUC as
close to 1 as possible, while an AUC around 0.5 corresponds
to a random classifier.

The ROC curves for MSNM were obtained by varying
a threshold in a specific combination of the Q-st and the
D-st:
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Figure 5.1: Variable values considered as features in a recent PCA-based anomaly detec-
tor [46].

used to detect anomalies in network traffic. Some of the previous features that we

thought would be useful were not as useful as we originally believed they would

be. For example, inquiry and connection establishment is considerably different for

Bluetooth classic devices when compared to BLE devices. It turns out that some

of the features (e.g., COD, PSM) are exchanged infrequently or not at all in BLE

network communications. In future work we will continue to explore opportunities

to include coarse-grained features into our current approach to model learning.
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A
N-Grams From Smart-Device Testbed

This appendix contains examples of n-grams (in our current work, 1-grams) that

are calculated from devices in our smart-device testbed. In each plot, we overlay

the n-grams computed from subsequent traces. Plotting n-grams in this way shows

how subsequent (authentic) interactions are very similar.

The n-grams shown below are computed over the payload portion of L2CAP

packets. We found that n-grams computed over L2CAP payloads provide a high-

quality source of information for learning our verification models and performing

subsequent verification. We also note that the L2CAP protocol is the layer at

which apps and devices exchange data in Bluetooth; because our work is interested

in modeling app-device interactions, this protocol layer is a logical choice for

modeling.
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Figure A.1: Choice Blood Pressure Monitor - Upper Arm
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Figure A.2: iHealth Blood Pressure Monitor - Upper Arm

Figure A.3: iHealth Blood Pressure Monitor - Wrist
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Figure A.4: Omron Blood Pressure Monitor - Upper Arm

Figure A.5: Omron Blood Pressure Monitor - Wrist
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Figure A.6: Inkbird Environment Sensor (1)

Figure A.7: Inkbird Environment Sensor (2)
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Figure A.8: Choice Glucose Monitor

Figure A.9: iHealth Glucose Monitor
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Figure A.10: Polar H7 Heart Rate Monitor (1)

Figure A.11: Polar H7 Heart Rate Monitor (2)
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Figure A.12: Zephyr Heart Rate Monitor

Figure A.13: iHealth Pulse Oximeter
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Figure A.14: Gurus Scale

Figure A.15: RENPHO Scale
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Figure A.16: August Smart Lock

Figure A.17: Schlage Smart Lock
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Figure A.18: Omron TENS Unit

Figure A.19: Kinsa Thermometer - Ear
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Figure A.20: Kinsa Thermometer - Oral
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When I use a word, it means just what I choose it to mean.

—Humpty Dumpty, in Alice in Wonderland’s Through the Looking Glass

Glossary

advertiser: A BLE device sending advertising packets.

ATT/GATT client: A Bluetooth device that sends requests to a server and receives

responses (and server-initiated updates) from it.

ATT/GATT server: A Bluetooth device that receives requests from a client and

sends responses back. It also sends server-initiated updates when configured

to do so, and it is the role responsible for storing and making the user data

available to the client, organized in attributes. Every BLE device sold must

include at least a basic GATT server that can respond to client requests, even

if only to return an error response.

authentic: “To be of undisputed origin; genuine; made or done in the original way,

or in a way that faithfully resembles an original; based on facts; accurate or

reliable” [118].

bandwidth: The amount of data that can be transferred from one point to another

per unit time; typically measured in bits per second.

BLE central: A BLE device that “repeatedly scans the preset frequencies for con-

nectable advertising packets and, when suitable, initiates a connection” [62].
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BLE peripheral: A BLE device that “sends connectable advertising packets period-

ically and accepts incoming connections” [62].

Bluetooth: Bluetooth (Classic) is a wireless technology for exchanging data be-

tween devices over short distances using short-wavelength UHF radio waves

in the ISM radio bands (2.400 to 2.485 GHz). Bluetooth Classic and BLE are

ideal technologies for building wireless personal area networks (WPANs).

Bluetooth controller: In Bluetooth, A logical entity made up of all of the layers

below the HCI.

Bluetooth Device Address: A unique 48-bit hardware device address used to iden-

tify a Bluetooth device, similar to an Ethernet MAC address for a computer.

Bluetooth host: “A logical entity made up of all the layers between Bluetooth’s

core profiles (i.e., Bluetooth applications and services) and the HCI” [35].

Bluetooth Low Energy: Bluetooth Low Energy (BLE) is a wireless personal area

network (WPAN) technology intended to provide simpler Bluetooth connec-

tivity with considerably reduced power consumption and cost.

Bluetooth master: A Bluetooth device that initiates a connection and manages it

later.

broacaster: A BLE device that “sends nonconnectable advertising packets periodi-

cally to anyone willing to receive them” [62].

Class of Device: In Bluetooth, A 3-byte value that consists of major and minor

class numbers that are intended to define a general family of devices; the

Bluetooth specification [35] intends for this attribute to be used to indicate the

capabilities of a device.
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connection interval: In Bluetooth, the period in which each side communicates

with the other at least once.

egress: Refers to a packet that flows along the exit path from a hub to a connected

peripheral device; also referred to as h2d (host-to-device).

enclave: CPU-enforced containers that protect selected code and data from disclo-

sure or modification.

FRAM: Ferroelectric RAM (FRAM) is non-volatile memory technology that offers

persistent storage without power, and is 100 times faster than flash memory.

ingress: Refers to a packet that flows along the entry path into a hub from a

connected peripheral device; also referred to as d2h (device-to-host).

interaction: Any exchange of packets between a hub and peripheral device.

make: Refers to the manufacturer of the device.

Manufacturer Usage Description: An IETF specification and framework for for-

mally specifying the expected network behavior of an IoT device.

model: Refers to an identifier, such as a name or number, that is used to distinguish

between devices made by the same manufacturer.

network latency: The amount of time it takes for a packet to cross the network

from a device that created the packet to the destination device.

observer: A BLE device that “repeatedly scans preset frequencies to receive any

nonconnectable advertising packets currently being broadcasted” [62].

piconet: In Bluetooth, a collection of devices sharing a single radio channel (syn-

chronized to a master device).
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scanner: A BLE device scanning for advertising packets.

security policy: A specification of Bluetooth I/O metadata that is used to protect

I/O channels between a trusted app and the Bluetooth Controller.

slave: A Bluetooth device that accepts a connection request and follows the mas-

ter’s timing.

SRAM: Static RAM (SRAM) is volatile memory technology that offers storage

while powered.

trace: A packet capture consisting of all packets that are observed between the time

that a hub and peripheral device establish and terminate a connection.

trusted app: An app that protects select code and data using security features of

the platform.

trusted path: A secure path between a user app and a user I/O device, typically

realized by a combination of trusted components working together to protect

the I/O channel(s).

type: Refers to a device’s functionality and purpose.

verification: “The process of establishing the truth, accuracy, or validity of some-

thing; the act of making sure or demonstrating that (something) is true, accu-

rate, or justified” [173].
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Acronyms

AEAD: authenticated encryption with associated data.

AFT: Amulet Firmware Toolchain.

AOS: Amulet-OS.

ARP: Amulet Resource Profiler.

ARP-View: Amulet Resource Profiler View.

ATT: Attribute Protocol.

BASTION-SGX: Bluetooth and Architectural Support for Trusted I/O on SGX.

BDADDR: Bluetooth Device Address.

BER: Bit Error Rate.

BLE: Bluetooth Low Energy.

BT: Bluetooth.

CI: connection interval.

COD: Class of Device.
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CRC: Cyclic Redundancy Check.

DLE: Data Length Extension.

fn: False Negative.

fp: False Positive.

GATT: Generic Attribute Protocol.

HCI: Host Controller Interface.

IDS: Intrusion Detection System.

IFS: Inter Frame Space.

IoT: Internet of Things.

L2CAP: Logical Link Control and Adaptation Protocol.

LL: Link Layer.

MIC: Message Integrity Check.

MTU: Maximum Transmission Units.

MUD: Manufacturer Usage Description.

OS: Operating System.

OTA: Over-The-Air.

PAN: Personal Area Network.

PDU: Protocol Data Unit.
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PN: Personal Network.

PSM: Protocol/Service Multiplexor.

SGX: Software Guard Extensions.

TCB: Trusted Computing Base.

TEE: Trusted Execution Environment.

TIO: Trusted I/O.

tn: True Negative.

tp: True Positive.

TZ: TrustZone.

VIA: Verification of Interaction Authenticity.

VSDC: Vendor Specific Debug Command.

WPAN: Wireless Personal Area Network.
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