125,292 research outputs found

    Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Get PDF
    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS

    Factory Radio Design of a 5G Network in Offline Mode

    Get PDF
    The manufacturing industry is connecting people and equipment with new digital technologies, enabling a more continuous stream of data to represent processes. With more things connected, the interest in a connectivity solution that can support communication with high reliability and availability will increase. The fifth generation of telecommunication, i.e., 5G has promising features to deliver this, but the factory environment introduces new challenges to ensure reliable radio coverage. This will require efficient ways to plan the Factory Radio Design prior to installation. 3D laser scanning is used at an ever-increasing rate for capturing the spatial geometry in a virtual representation to perform layout planning of factories. This paper presents how to combine 3D laser scanning and physical optics (PO) for planning the Factory Radio Design of a cellular Long-Term Evolution (LTE) network (5G) in a virtual environment. 3D laser scanning is applied to obtain the spatial data of the factory and the virtual representation serves as the environment where PO computation techniques can be performed. The simulation result is validated in this paper by comparison to measurements of the installed network and empirical propagation models. The results of the study show promising opportunities to simulate the radio coverage in a virtual representation of a factory environment

    The Virtual Factory: Discontinuous Work in a Virtual Organization

    Get PDF
    The Virtual Factory is an organized network for regional cooperation in the manufacturing industry in the region around Lake Constance, on the border between Germany, Switzerland and Austria. The network was developed through a collaborative action research project started by the Institute for Technology Management, University of St. Gallen2. Project leadership (the core partners) came from entrepreneurs and senior managers from companies in the region and four researchers from the Institute

    Real walking in virtual environments for factory planning and evaluation

    Get PDF
    Nowadays, buildings or production facilities are designed using specialized design software and building information modeling tools help to evaluate the resulting virtual mock-up. However, with current, primarily desktop based tools it is hard to evaluate human factors of such a design, for instance spatial constraints for workforces. This paper presents a new tool for factory planning and evaluation based on virtual reality that allows designers, planning experts, and workforces to walk naturally and freely within a virtual factory. Therefore, designs can be checked as if they were real before anything is built.ISSN:2212-827

    Digital factory – virtual reality environments for industrial training and maintenance

    Get PDF
    This study evaluates the use of virtual reality (VR) platforms, which is an integrated part of the digital factory for an industrial training and maintenance system. The digital factory-based VR platform provides an intuitive and immersive human–computer interface, which can be an efficient tool for industrial training and maintenance services. The outcomes from this study suggested that use of the VR platform for training and maintenance of complex industrial tasks should be encouraged and use of the VR platform for that purpose should be further evaluated. This paper highlighted the generic concept of the application of virtual reality technique within the digital factory to industrial maintenance and to build a low-cost VR application for a training and maintenance system. An application case on virtual reality technique in a power plant operations and maintenance is demonstrated within the scope of this research. Overall research implications on virtual reality concept in industrial applications are concluded with future research directions.fi=vertaisarvioitu|en=peerReviewed

    Virtual Ergonomics and Time Optimization of a Factory

    Get PDF
    This manuscript focuses on designing the virtual factory which has become a subject of paramount importance to all major manufacturing companies. Such virtual solutions enable to verify all conflict situations before real implementation of factories and to optimize the performance, productivity, timing, costs and ergonomics by using simulation and virtual reality technologies. This model sees a real factory as a combination of various sub-systems and includes them. In manufacturing, it creates a virtual simulation exercise that helps in replicating the real life scenario and helps in designing and implementation. Using ergonomics module, distance traveled from end-to-end departments to complete the entire manufacturing process is calculated. Within the virtual factory, assembly planning and manufacturing planning is demonstrated through real-life worker simulation considering the musculoskeletal disorders (MSD). Awkward working postures and improper workstation design leads to MSD. In this paper, virtual representation of a shop floor activity is done by using a digital modeling tool DELMIA V6. The task is performed by the digital human (manikin) and the ergonomic analysis is carried out virtually for the tasks which includes worst working condition. Simulating the manual tasks in virtual environment, the worker postures have been evaluated using the Rapid Upper Limb Assessment (RULA) Analysis, Lift Lower Analysis and Biomechanics Single Action Analysis which are used to provide the level of risk for the musculoskeletal disorders

    Natural Virtual Reality User Interface to Define Assembly Sequences for Digital Human Models

    Get PDF
    Digital human models (DHMs) are virtual representations of human beings. They are used to conduct, among other things, ergonomic assessments in factory layout planning. DHM software tools are challenging in their use and thus require a high amount of training for engineers. In this paper, we present a virtual reality (VR) application that enables engineers to work with DHMs easily. Since VR systems with head-mounted displays (HMDs) are less expensive than CAVE systems, HMDs can be integrated more extensively into the product development process. Our application provides a reality-based interface and allows users to conduct an assembly task in VR and thus to manipulate the virtual scene with their real hands. These manipulations are used as input for the DHM to simulate, on that basis, human ergonomics. Therefore, we introduce a software and hardware architecture, the VATS (virtual action tracking system). This paper furthermore presents the results of a user study in which the VATS was compared to the existing WIMP (Windows, Icons, Menus and Pointer) interface. The results show that the VATS system enables users to conduct tasks in a significantly faster way
    • …
    corecore