39,140 research outputs found

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    SIMDAT

    No full text

    IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science

    Full text link
    "Science gateway" (SG) ideology means a user-friendly intuitive interface between scientists (or scientific communities) and different software components + various distributed computing infrastructures (DCIs) (like grids, clouds, clusters), where researchers can focus on their scientific goals and less on peculiarities of software/DCI. "IMP Science Gateway Portal" (http://scigate.imp.kiev.ua) for complex workflow management and integration of distributed computing resources (like clusters, service grids, desktop grids, clouds) is presented. It is created on the basis of WS-PGRADE and gUSE technologies, where WS-PGRADE is designed for science workflow operation and gUSE - for smooth integration of available resources for parallel and distributed computing in various heterogeneous distributed computing infrastructures (DCI). The typical scientific workflows with possible scenarios of its preparation and usage are presented. Several typical use cases for these science applications (scientific workflows) are considered for molecular dynamics (MD) simulations of complex behavior of various nanostructures (nanoindentation of graphene layers, defect system relaxation in metal nanocrystals, thermal stability of boron nitride nanotubes, etc.). The user experience is analyzed in the context of its practical applications for MD simulations in materials science, physics and nanotechnologies with available heterogeneous DCIs. In conclusion, the "science gateway" approach - workflow manager (like WS-PGRADE) + DCI resources manager (like gUSE)- gives opportunity to use the SG portal (like "IMP Science Gateway Portal") in a very promising way, namely, as a hub of various virtual experimental labs (different software components + various requirements to resources) in the context of its practical MD applications in materials science, physics, chemistry, biology, and nanotechnologies.Comment: 6 pages, 5 figures, 3 tables; 6th International Workshop on Science Gateways, IWSG-2014 (Dublin, Ireland, 3-5 June, 2014). arXiv admin note: substantial text overlap with arXiv:1404.545
    • …
    corecore