7,414 research outputs found

    Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models

    Get PDF
    Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset

    Deep Generative Modeling of LiDAR Data

    Get PDF
    Building models capable of generating structured output is a key challenge for AI and robotics. While generative models have been explored on many types of data, little work has been done on synthesizing lidar scans, which play a key role in robot mapping and localization. In this work, we show that one can adapt deep generative models for this task by unravelling lidar scans into a 2D point map. Our approach can generate high quality samples, while simultaneously learning a meaningful latent representation of the data. We demonstrate significant improvements against state-of-the-art point cloud generation methods. Furthermore, we propose a novel data representation that augments the 2D signal with absolute positional information. We show that this helps robustness to noisy and imputed input; the learned model can recover the underlying lidar scan from seemingly uninformative dataComment: Presented at IROS 201

    A Novel Euler's Elastica based Segmentation Approach for Noisy Images via using the Progressive Hedging Algorithm

    Get PDF
    Euler's Elastica based unsupervised segmentation models have strong capability of completing the missing boundaries for existing objects in a clean image, but they are not working well for noisy images. This paper aims to establish a Euler's Elastica based approach that properly deals with random noises to improve the segmentation performance for noisy images. We solve the corresponding optimization problem via using the progressive hedging algorithm (PHA) with a step length suggested by the alternating direction method of multipliers (ADMM). Technically, all the simplified convex versions of the subproblems derived from the major framework of PHA can be obtained by using the curvature weighted approach and the convex relaxation method. Then an alternating optimization strategy is applied with the merits of using some powerful accelerating techniques including the fast Fourier transform (FFT) and generalized soft threshold formulas. Extensive experiments have been conducted on both synthetic and real images, which validated some significant gains of the proposed segmentation models and demonstrated the advantages of the developed algorithm
    • …
    corecore