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Deep Generative Modeling of LiDAR Data

Lucas Caccia1,2, Herke van Hoof1,4, Aaron Courville2,3, Joelle Pineau1,2,3

Abstract— Building models capable of generating structured
output is a key challenge for AI and robotics. While generative
models have been explored on many types of data, little work
has been done on synthesizing lidar scans, which play a key
role in robot mapping and localization. In this work, we show
that one can adapt deep generative models for this task by
unravelling lidar scans into a 2D point map. Our approach can
generate high quality samples, while simultaneously learning a
meaningful latent representation of the data. We demonstrate
significant improvements against state-of-the-art point cloud
generation methods. Furthermore, we propose a novel data
representation that augments the 2D signal with absolute
positional information. We show that this helps robustness to
noisy and imputed input; the learned model can recover the
underlying lidar scan from seemingly uninformative data.

I. INTRODUCTION

One of the main challenges in mobile robotics is the
development of systems capable of fully understanding their
environment. This non-trivial task becomes even more com-
plex when sensor data is noisy or missing. An intelligent
system that can replicate the data generation process is much
better equipped to tackle inconsistency in its sensor data.
There is significant potential gain in having autonomous
robots equipped with data generation capabilities which can
be leveraged for reconstruction, compression, or prediction
of the data stream.

In autonomous driving, information from the environment
is captured from sensors mounted on the vehicle, such as
cameras, radars, and lidars. While a significant amount of
research has been done on generating RGB images, relatively
little work has focused on generating lidar data. These scans,
represented as an array of three dimensional coordinates, give
an explicit topography of the vehicle’s surroundings, poten-
tially leading to better obstacle avoidance, path planning, and
inter-vehicle spatial awareness.

To this end, we leverage recent advances in deep gener-
ative modeling, namely variational autoencoders (VAE) [1]
and generative adversarial networks (GAN) [2], to produce
a generative model of lidar data. While the VAE and GAN
approaches have different objectives, they can be used in
conjunction with Convolutional Neural Networks (CNN) [3]
to extract local information from nearby sensor points.

Unlike some approaches for lidar processing, we do not
convert the data to voxel grids [4], [5]. Instead, we build
off existing work [6] which projects the lidar scan into a 2D
spherical point map. We show that this representation is fully
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Fig. 1: Best viewed in color. Top: real LiDAR sample from
the test set. Middle: reconstruction from our proposed model.
Bottom: reconstruction from the baseline model.

compatible with deep architectures previously designed for
image generation. Moreover, we investigate the robustness of
this approach to missing or noisy data, a crucial property for
real world applications. We propose a simple, yet effective
way to improve the model’s performance when the input is
degraded. Our approach consists of augmenting the 2D map
with absolute positional information, through extra (x, y, z)
coordinate channels. We validate these claims through a
variety of experiments on the KITTI [7] dataset.

Our contributions are the following:

• We provide a fully unsupervised method for both con-
ditional and unconditional lidar generation.

• We establish an evaluation framework for lidar recon-
struction, allowing the comparison of methods over a
spectrum of different corruption mechanisms.

• We propose a simple technique to help the model
process noisy or missing data.
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II. RELATED WORK

A. Lidar processing using Deep Learning

The majority of papers applying deep learning methods to
lidar data present discriminative models to extract relevant
information from the vehicle’s environment. Dewan et al.
[8] propose a CNN for pointwise semantic segmentation to
distinguish between static and moving obstacles. Caltagirone
et al. [9] use a similar approach to perform pixel-wise
classification for road detection. To leverage the full 3D
structure of the input, Bo Li [10] uses 3D convolutions on a
voxel grid for vehicle detection. However processing voxels
is computationally heavy, and does not leverage the sparsity
of LiDAR scans. Engelcke et al. [5] propose an efficient 3D
convolutional layer to mitigate these issues.

Another popular approach [6], [11]–[13] to avoid using
voxels relies on the inherent two-dimensional nature of
lidars. It consists of a bijective mapping from 3D point cloud
to a 2D point map, where (x, y, z) coordinates are encoded
as azimuth and elevation angles measured from the origin.
This can also be seen as projecting the point cloud onto a
2D spherical plane. Using such a bijection lies at the core
of our proposed approach for generative modeling of lidar
data.

B. Grid-based lidar generation

An alternative approach for generative modeling of lidar
data is from Ondruska et al [14]. They train a Recurrent
Neural Network for semantic segmentation and convert their
input to an occupancy grid. More relevant to our task, they
train their network to also predict future occupancy grids,
thereby creating a generative model for lidar data. Their
approach differs from ours, as the occupancy grid used
assigns a constant area (400 cm2) to every slot, whereas
we operate directly on projected coordinates. This not only
reduces preprocessing time, but also allows us to efficiently
represent data with non-uniform spatial density. We can
therefore run our model at a much higher resolution, while
remaining computationally efficient.

Concurrent with our work, Tomasello et al. [15] explore
conditional lidar synthesis from RGB images. The authors
use the same 2D spherical mapping proposed in [6]. Our
approach differs on several points. First, we do not require
any RGB input for generation, which may not always be
available (e.g. in poorly lit environments). Second, we ex-
plore ways to augment the lidar representation to increase
robustness to corrupted data. Finally, we look at generative
modeling of lidar data (compared to a deterministic mapping
in their case).

C. Point Cloud Generation

A recent line of work [16]–[19] considers the problem
of generating point clouds as unordered sets of (x, y, z)
coordinates. This approach does not define an ordering on the
points, and must therefore be invariant to permutations. To
achieve this, they use a variant of PointNet [20] to encode
a variable-length point cloud into a fixed-length represen-
tation. This latent vector is then decoded back to a point

cloud, and the whole network is trained using permutation
invariant losses such as the Earth-Mover’s Distance or the
Chamfer Distance [19]. While these approaches work well
for arbitrary point clouds, we show that they give suboptimal
performance on lidar, as they do not leverage the known
structure of the data.

D. Improving representations through extra coordinate
channels

In this work, we propose to augment the 2D spherical
signal with Cartesian coordinates. This can be seen as a
generalization of the CoodConv solution [21]. The authors
propose to add two channels to the image input, correspond-
ing to the (i, j) location of every pixel. They show that
this enables networks to learn either complete translation
invariance or varying degrees of translation dependence,
leading to better performance on a variety of downstream
tasks.

III. TECHNICAL BACKGROUND : GENERATIVE
MODELING

The underlying task of generative models is density es-
timation. Formally, we are given a set of d-dimensional
i.i.d samples X = {xi ∈ Rd}mi=1 from some unknown
probability density function preal. Our objective is to learn
a density pθ where θ ∈ F represents the parameters of our
estimator and F a parametric family of models. Training is
done by minimizing some distance D between preal and pθ.
The choice of both D and the training algorithm are the
defining components of the density estimation procedure.
Common choices for D are either f -divergences such as
the Kullback-Liebler (KL) divergence, or Integral Probability
Metrics (IPMs), such as the Wasserstein metric [22]. These
similarity metrics between distributions often come with
specific training algorithms, as we describe next.

A. Maximum Likelihood Training

Maximum likelihood estimation (MLE) aims to find model
parameters that maximize the likelihood of X . Since samples
are i.i.d, the optimization criterion can be viewed as :

max
θ∈F

Ex∼preal log(pθ(x)). (1)

It can be shown that training with the MLE criteria converges
to a minimization of the KL-divergence as the sample size
increases [23]. From Eqn (1) we see that any model admitting
a differentiable density pθ(x) can be trained via backpropa-
gation. Powerful generative models trained via MLE include
Variational Autoencoders [1] and autoregressive models [24].
In this work, we focus on the former, as the latter have slow
sampling speed, limiting their potential use for real world
applications.
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Fig. 2: Best viewed in color. Our proposed ordering of points from 3D space (left) into a 2D grid (right). Points sampled
from the same elevation angle share the same color. The ordering of every row is obtained by unrolling points in increasing
azimuth angle. The showed lidar was downsampled for visual purposes.

1) Variational Autoencoders (VAE): The VAE [1] is a
regularized version of the traditional autoencoder (AE). It
consists of two parts: an inference network φenc ≡ q(z|x)
that maps an input x to a posterior distribution of latent
codes z, and a generative network ψdec ≡ p(x|z) that aims
to reconstruct the original input conditioned on the latent
encoding. By imposing a prior distribution p(z) on latent
codes, it enforces the distribution over z to be smooth and
well-behaved. This property enables proper sampling from
the model via ancestral sampling from latent to input space.

The full objective of the VAE is then:

L(θ;x) = Eq(z|x)
log p(x|z)− KL(q(z|x)||p(z)) ≤ log p(x),

(2)
which is a valid lower bound on the true likelihood, thereby
making Variational Autoencoders valid generative models.
For a more in depth analysis of VAEs, see [25].

B. Generative Adversarial Network (GAN)

The GAN [2] formulates the density estimation problem
as a minimax game between two opposing networks. The
generator G(z) maps noise drawn from a prior distribution
pnoise to the input space, aiming to fool its adversary, the
discriminator D(x). The latter then tries to distinguish
between real samples x ∼ preal and fake samples x′ ∼ G(z).
In practice, both models are represented as neural networks.
Formally, the objective is written as

min
G

max
D

E
x∼preal

log(D(x)) + E
z∼pnoise

log(1−D(G(z))). (3)

GANs have shown the ability to produce more realistic
samples [26] than their MLE counterparts. However, the
optimization process is notoriously difficult; stabilizing GAN
training is still an open problem. In practice, GANs can also
suffer from mode collapse [27], which happens when the
generator overlooks certain modes of the target distribution.

IV. PROPOSED APPROACH FOR LIDAR GENERATION

We next describe the proposed deep learning framework
used for generative modeling of lidar scans.

A. Data Representation

Our approach relies heavily on 2D convolutions, therefore
we start by converting a lidar scan containing N (x, y, z)
coordinates into a 2D grid. We begin by clustering together
points emitted from the same elevation angle into H clusters.

Second, for every cluster, we sort the points in increasing
order of azimuth angle. In order to have a proper grid with a
fixed amount of points per row, we divide the 360◦ plane into
W bins. This yields a H ×W grid, where for each cell we
store the average (x, y, z) coordinate, such that we can store
all the information in a H ×W × 3 tensor. We note that the
default ordering in most lidar scanners is the same as the one
obtained after applying this preprocessing. Therefore, sorting
is not required in practice, and the whole procedure can be
executed in O(N). Figure 2 provides a visual representation
of this mapping. This procedure yields the same ordering of
points as the projection discussed in II-A. The latter would
then return a grid of H ×W × 2, where the (x, y) channels
are compressed as d =

√
x2 + y2. We will refer to the two

representations above as Cartesian and Polar respectively.
While this small change in representation seems innocuous,
we show that when the input is noisy or incomplete, this
compression can lead to suboptimal performance.

B. Training Phase

1) VAEs: In practice, both encoder φ and decoder ψ are
represented as neural networks with parameters θenc and θdec
respectively.

Similar to a traditional AE, the training procedure first en-
codes the data x into a latent representation z = φ(x; θenc).
The variational aspect is introduced by interpreting z not as
a vector, but as parameters of a prior distribution. In our
work we choose a Gaussian N (0, 1) prior, and therefore z
decomposes as µx, σx.

We then sample from this distribution z̃ ∼ N (µx, σx)
and pass it through the decoder to obtain x̃ = ψ(z̃; θdec).
Using the reparametrization trick [1], the network is fully
deterministic and differentiable w.r.t its parameters θenc
and θdec, which are updated via stochastic gradient descent
(SGD).

2) GANs: Training alternates between updates for the
generator and discriminator, with parameters θgen and θdis.
Similarly to the VAE, samples are obtained by ancestral
sampling from the prior through the generator. In the original
GAN, the networks are updated according to Eqn. 3. In
practice, we use the Relativistic Average GAN (RaGAN)
objective [28], which is easier to optimize. Again, θgen and
θdis are updated using SGD. For a complete hyperparameter
list, we refer the reader to our publicly available source
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code.1

C. Model Architecture

Deep Convolutional GANs (DCGANs) [29] have shown
great success in generating images. They use a symmetric
architecture for the two networks: The generator consists of
five transpose convolutions with stride two to upsample at
each layer, and ReLU activations. The discriminator uses
stride two convolutions to downsample the input, and Leaky
ReLU activations. In both networks, Batch Normalization
[30] is interleaved between convolution layers for easier
optimization. We use this architecture for all our models:
The VAE encoder setup is simply the first four layers of
the discriminator, and the decoder’s architecture replicates
the DCGAN generator. We note that for both models, more
sophisticated architectures [31], [32] are fully compatible
with our framework. We leave this line of exploration as
future work.

V. EXPERIMENTS

This section provides a thorough analysis of the per-
formance of our framework fulfilling a variety of tasks
related to generative modeling. First, we explore conditional
generation, where the model must compress and reconstruct
a (potentially corrupted) lidar scan. We then look at uncon-
ditional generation. In this setting, we are only interested in
producing realistic samples, which are not explicitly tied to
a real lidar cloud.

A. Dataset

We consider the point clouds available in the KITTI
dataset [7]. We use the train/validation/test set split proposed
by [33], which yields 40 000, 80 and 700 samples for train,
validation and test sets. We use the preprocessing described
in section IV-A to get a 40 × 256 grid. For training we
subsample from 10 Hz to 3 Hz since temporally adjacent
frames are nearly identical.

B. Baseline Models

Since, to the best of our knowledge, no work has attempted
generative modeling of raw lidar clouds, we compare to our
method models that operate on arbitrary point clouds. We
first choose AtlasNet [17], which has shown strong modeling
performance on the Shapenet [34] dataset. This network
first encodes point clouds using a shared MLP network that
operates on each point individually. A max-pooling operation
is performed on the point axis to obtain a fixed-length global
representation of the point cloud. In other words, the encoder
treats each point independently of other points, without
assuming an ordering on the set of coordinates. This makes
the feature extraction process invariant to permutations of
points. The decoder is given the encoder output along with
(x, y) coordinates of a 2D-grid, and attempts to fold this 2D-
grid into a three-dimensional surface. The decoder also uses
a MLP network shared across all points.

1https://www.github.com/pclucas14/lidar_
generation

Similar to AtlasNet, we compare our model with the one
from Achlioptas et al [16]. Only its decoder differs from
AtlasNet; the model does not deform a 2D grid, but rather
uses fully-connected layers to convert the latent vector into
a point cloud, making it less parameter efficient.

Both networks are trained end-to-end using the Chamfer
Loss [19], defined as

dCH =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22, (4)

where S1 and S2 are two sets of (x, y, z) coordinates. We
note again that this loss is invariant to the ordering of the
output points. For both autoencoders, we regularize their
latent space using a Gaussian prior to get a valid generative
model.

C. Conditional Generation

We proceed to test our approach in a conditional genera-
tion task. In this setting, we do not evaluate the GAN, as this
family of model -in their original formulation- does not have
an inference mechanism. In other words, we consider four
models: our approach, using either the Cartesian or the Polar
representation, and the two baselines above. Since we are
not sampling, but rather reconstructing an input, we consider
both VAE and AE variants of every model, and report the
best performing one.

Formally, given a lidar cloud, we evaluate a model’s ability
to reconstruct it from a compressed encoding. More relevant
to real word applications, we look at how robust the model’s
latent representation is to input perturbation. Specifically, we
look at the two following corruption mechanisms:
• Additive Noise : we add Gaussian noise drawn from
N (0, σ) to the (x, y, z) coordinates of the lidar cloud.
For this process, we normalize each of the three di-
mension independently prior to noise addition. We
experiment with varying levels of σ.

• Data Removal : We remove random points from the
input lidar scan. Specifically, the probability of re-
moving a point is modeled as a Bernoulli distribution
parametrized by p. We consider different values for p.

D. Unconditional Generation

For this section, we consider the GAN model introduced
in section IV-C. Our goal is to train a model that can produce
realistic samples. Having access to such a generator can
lead to better simulator development, which are heavily used
to train self-driving agents [35]. In this use case, an agent
operating in an environment that lacks crispness will likely
result in poor skill transfer to real world navigation. Since
the use of GANs has been shown to produce more realistic
samples than MLE based models on images [36], we hope
to see similar results with our model in the case of LiDAR
data.

Evaluation criteria: Rigorous quantitative evaluation of
samples produced by GANs and generative models is an
open research question. GANs trained on images have been
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Fig. 3: EMD and Chamfer Distance under varying levels of added noise (left) and missing data (right). We remove models
with poor performance for clarity. For both metrics lower is better.

evaluated by the Inception Score [27] and the Frechet Incep-
tion Distance (FID) [37]. Since there exists no standardized
metric for unconditional generation of lidar clouds, we rely
on visual inspection of samples for quality assessment.

1) Evaluation criteria: To measure how close the recon-
structed output is to the original point cloud, we use the
Earth-Mover’s Distance [19]. It is defined as

dEMD(S1, S2) = min
γ:S1−→S2

∑
x∈S1

||x− γ(x)||2 (5)

where γ is a bijection between the two sets.
The EMD gives the solution to the optimal transportation

problem, which attempts to transform one point cloud into
the other. Recent work [16] has shown that this metric
correlates well with human evaluation, and does so better
than the Chamfer Distance. Moreover, the Earth Mover’s
Distance is sensitive to both global and local structure, and
does not require points to be ordered. Additionally, training
and evaluating models on the same metric can result in
models overfitting to this criterion, at the expense of sample
quality [38]. Nevertheless, we also provide results measured
by the Chamfer Distance for completeness.

2) Training Protocol: For every model considered, we
perform the same hyperparameter search. We randomly se-
lect the learning rate, the latent dimension and the batch size
from a predetermined set of values. This set of values is the
same for all models to ensure fairness. This process is re-
peated for 10 different configurations, from which we choose
the one obtaining the best performance on the validation set.
We then proceed to evaluate this configuration on the test
set according to the metrics described above. All models are
trained end-to-end on the same dataset.

VI. RESULTS

In this section, we will first discuss results for conditional
generation and subsequently evaluate results for uncondi-
tional generation of lidar images.

A. Conditional

In all conditional tasks, our proposed approach beats
available baselines by a significant margin, both in terms
of EMD, Chamfer Distance and visual inspection.

Fig. 4: Top : corrupted lidar from the test set, where we
added noise drawn from N (0, 0.8) on the preprocessed scan.
Middle : reconstructed point cloud given corrupted input.
Bottom : original lidar scan

1) Reconstructing clean data: while the baseline models
are able to reconstruct the global structure of the lidar scan,
they are unable to recover the more fine grained detail of
the input (see Fig.1). This suggests that leveraging the known
structure of the lidar plays a key role in obtaining high quality
reconstructions. Quantitative results are shown in Table I.

Model EMD Chamfer
Random 4331.9 253.6
AtlasNet 1571.2 2.85

Ach. et al 1103.1 2.16
Ours(xyz) 137.2 1.23
Ours(pol) 127.0 1.04

TABLE I: EMD and Chamfer distance measured on test set
reconstructions (in both cases lower is better)

2) Reconstructing corrupted data: Next, we evaluate the
proposed models on their ability to extract important in-
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Fig. 5: We compare generated GAN samples (left) with their nearest neighbor in feature space (middle) from the test set.
We show the corresponding RGB image (right). Regions of interest are highlighted in red.

formation from corrupted lidar scans. As shown in Fig.
4, the proposed VAE correctly reconstructs the defining
components of the original cloud, even if the given input
is seemingly uninformative. We emphasize that our model
was not trained with such corrupted data, therefore
these results are quite surprising. Animations and additional
reconstructions can be found here .

Moreover, we observe that as soon as the input is mod-
erately noisy, the proposed Cartesian representation yields
better performance. As seen in Fig. 3, this representation
performs better than its Polar alternative over the majority
of the graph. In addition, we observe a similar trend when
points are randomly removed from the input, as shown in
Fig. 3; when more than 15% of the points are missing, using
(x, y, z) coordinates performs favorably according to EMD.
This result suggests that in this corruption regime, having
access to absolute positional information provides a better
signal to the model. Interesting future work would be to
leverage the best of the two representations.

We note that the suboptimal performance of the baselines
is mainly due to two factors. First, since points are encoded
independently, only information about the global structure is
kept, and local fine-grained details are neglected. Second, the
Chamfer Distance used for training assumes that the point
cloud has a uniform density, which is not the case for lidar
scans.

B. Unconditional

We perform a visual inspection of generated samples,
located in the leftmost column of Figure 5 (more samples
are available here). We see that our model generates realistic
samples. First, the scans have a well-defined global structure:
an aerial view of the samples show points correctly aligned

to model the structure of the road. Second, the samples
share local characteristics of real data: the model correctly
generates road obstacles, such as cars, or cyclists. This
amounts to having locations with a dense aggregation of
points, followed by a trailing area with almost no points,
similar to the shadow of an object. Third, model respects
the point density of the data, where the density is roughly
inversely proportional to the distance from the origin. Lastly,
our models show good sample diversity.

1) What is the GAN generating?: In order to better
interpret samples from the unconditional generator, we try to
match them to real data examples. We perform the following
procedure: we encode every sample to a latent representation,
given by the output of the third layer of our discriminator.
We similarly encode random datapoints from the test set, and
match the generated sample to the real datapoint yielding
the smallest latent L2 loss. We show three examples of this
matching in Figure 5. In the first row, we see the model
generating a two layer roadside to the right, consisting of a
long shrub, followed by a line of trees. On the second row,
we find a large tilted object to the right, which matches a
bus turning right. Finally, on the last row we see a sharp
enclosing, corresponding to a driveway leading to a garage
door.

VII. DISCUSSION AND FUTURE WORK

In this work we introduced two generative models for raw
lidars, a GAN and a VAE. We have shown that the proposed
adversarial network can generate highly realistic data, and
captures both local and global features of real lidar scans.
The LiDAR-VAE successfully encodes and reconstructs lidar
samples, and is highly robust to missing or inputed data.
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We demonstrate that when adding enough noise to render
the scan uninformative to the human eye, the proposed
VAE still extracts relevant information and generates the
missing data. Our work in deep generative modeling of
lidar enables concrete advancements in real life applications;
the former model can help reduce the discrepancy between
synthetic and real lidars in driving simulators, while the latter
can be leveraged in deployed vehicles for reconstruction,
compression, or prediction of the data stream.
Moreover, we proposed a simple way to encode absolute
positional information in the lidar representation, and showed
that this leads to better reconstructions when the input is
noisy or incomplete. Interesting future work would be to
see if this can also lead to improvements in standard lidar
processing tasks.
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