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Abstract

Euler’s elastica based unsupervised segmentation models have strong capability 
of completing the missing boundaries for existing objects in a clean image, but 
they are not working well for noisy images. This paper aims to establish a Euler’s 
elastica based approach that can properly deal with the random noises to improve 
the segmentation performance for noisy images. The corresponding formulation 
of stochastic optimization is solved via the progressive hedging algorithm (PHA) 
and the description of each individual scenario is obtained by the alternating di-
rection method of multipliers (ADMM). Technically, all the sub problems derived 
from the framework of PHA can be solved by using the curvature weighted ap-
proach and the convex relaxation method. Then an alternating optimization strat-
egy is applied by using some powerful accelerating techniques including the fast 
Fourier transform (FFT) and generalized soft threshold formulas. Extensive exper-
iments have been conducted on both synthetic and real images, which displayed 
significant gains of the proposed segmentation models and demonstrated the ad-
vantages of the developed algorithms.

Keywords Euler’s elastic energy, stochastic noises, progressive hedging algo-
rithm (PHA), alternating direction method of multipliers (ADMM), curvature wei-
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1 Introduction

In image segmentation, the Mumford-Shah model [1] is regarded as one of the most
significant region-based models and has been applied to many applications. In 2001,
the two-phase Chan-Vese (CV) model [2] was proposed to detect objects in a given im-
age. With the increasing complexity of images, the multiphase segmentation models
[3, 4] were proposed and these models mainly represent different regions by using the
level set functions [5, 12, 14, 16]. In order to reduce the number of level set functions,
Chan et al. proposed a multiphase segmentation model [6], which is a generalization
of CV model.

Some specific segmentation models [7, 8, 9] were also established subsequently
according to different noise distribution. They obtained the characteristic information
contained in images by estimating corresponding parameters. When dealing noisy
images, it is known that many segmentation problems need a suitable noise model,
e.g., synthetic aperture radar, positron emission tomography, electron micrograph or
medical ultrasound imaging, etc. Especially when the data were collected with poor
statistics, it is necessary to consider the influence of the noise probability distribution
in segmentation implementation.

Recently, authors in [10, 11, 12] made some progress in achieving illusory contour
recovery while doing segmentation, which can identify absent boundaries or missing
shapes successfully without necessary region features. In detail, [10] employed the
fitting terms of two-phase CV model and the Euler’s elastica term [11] as the regu-
larization. Its major contribution was that the missing boundaries were interpolated
automatically without specifying the regions. [12] improved the segmentation with
depth problem [13, 14] and achieved acceleration via the strategies of model simplifi-
cation and constraint projection. Its significant performance enhancements included
shape reconstruction of occluded objects and determination of their ordering relation
in a specific scene based on only one single image. Many other works illustrated that
the curvature-related terms have played crucial roles in the boundary reconstruction
[15, 16] and image restoration [17, 18, 19] with the capacity of producing excellent edge
and corner preservation results. All of these researches show the significant potential
for curvature-based methods.

However, the current segmentation models mentioned above cannot be directly
applied for noisy images when the type of noise is unknown or there are more than
one type of noise in the image. The reason is that in these models there exists a one-to-
one mapping relationship between the parameters to be evaluated and the noisy im-
ages with some probability density distribution. Besides, the curvature-related terms
will bring extra computational complexity due to the existence of nonlinear higher-
order derivatives. This issue also appears in other variational models such as the non-
texture image inpainting [20] and image denoising [21] with features (edge, corner,
smoothness, contrast, etc.) preservation. Hence it is essential to take some mathemati-
cal optimization techniques, for example with global solution, stability guarantee and
calculation acceleration, into consideration in the process of algorithm design.

For the difficulty of dealing with stochastic noises which are inherently generated
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by the acquisition procedure of imaging due to various issues, [22, 23] have given
us a great source of inspiration. The authors extended the range of applications for
progressive hedging algorithm (PHA) in multistage stochastic variational inequality
problems and explored stochastic complementarity problems in a two-stage formula-
tion. Convergence of the algorithm was proved in detail and how the PHA performs
was validated through numerical experiments as well as its stability and practicabil-
ity. One of our major motivations in this paper is to embed stochastic property into
segmentation energy functional in images with unknown noises or arbitrary dam-
ages and then implement PHA to solve it. Furthermore, Euler’s elastica term will be
also considered as the regularization in our variational formulations design since it
has better properties in dealing with image feature information. Last but not least,
in order to improve the computational efficiency and solve problems caused by the
non-convex, non-differentiable, nonlinear and higher order terms involved in Euler’s
elastica related functional, fast algorithms of alternating direction method of multi-
pliers (ADMM) [12, 16, 18, 26] and curvature weighted approach [20, 27, 28] will be
systematically designed in the PHA algorithm framework as a fusion for energy min-
imization problems. The novel introduction of Euler’s elastica term along with its
analytical study will be another main contribution of our research.

Our contributions can be summarized in the following aspects:

(i) We propose novel formulations for image segmentation with stochastic noises
for various applications by transforming the original minimization problems
into the optimization framework of stochastic programming.

(ii) Euler’s elastica term is employed to achieve completion of meaningful missing
boundaries, reconstruction of occluded structures of objects and realization of
segmentation simultaneously, which further enhances the segmentation perfor-
mance.

(iii) Our novel variational formulations will be applied in the problems of two-phase
Euler’s elastica based segmentation and segmentation with depth in gray and
color spaces respectively.

(iv) A general numerical algorithm based on PHA is proposed. Fusion of ADMM
and curvature weighted approach (ADMM-C) is designed for the minimization
of the Euler’s elastica energy related sub variational problems. The minimization
problems derived from ADMM-C will be then efficiently solved by Fast Fourier
transform (FFT) [28, 36] and analytical soft threshold formulas [16, 18].

The rest of this paper is structured as follows. Section 2 briefly reviews the re-
lated approaches in this field. Our proposed approach and algorithm framework are
presented in Section 3. The experiments conducted with performance evaluation and
comparison are described in Section 4 followed by the conclusion in Section 5.
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2 Research background

For the purpose of clarifying the motivations in this paper, some related works will be
briefly reviewed before presenting our contributions clearly in Sections 3.

2.1 Euler’s elastica based segmentation

Illusory contour capture and shape reconstruction [29, 30] are a challenging problem
which aims to complete the missing boundaries or fuzzy areas for existing objects in
an image. It is a very common phenomenon in human vision. Part of illusory contours
consists of objects’ actual boundaries and the other part is made of missing perceptual
edges. However, current computer technique can only deal with closed boundaries. It
is extremely difficult for computers to identify illusory contours automatically. Euler’s
elastica based segmentation techniques play an important role due to their crucial
roles in boundary reconstruction and image restoration.

Two-phase Euler’s elastica based segmentation: Zhu, Tai, and Chan [10] pro-
posed the Chan-Vese-Euler (CVE) model designed for the foreground shape recovery
problem by combining the CV model [2] and Euler’s elastica regularizer [11]. This
model could recover the illusory contours and form a complete meaningful object,
even without requiring initialization of fixed points. According to their work, the
energy functional is defined as

E(φ, c) = α1

∫
Ω

(f − c1)2φdx+ α2

∫
Ω

(f − c2)2(1− φ)dx+

∫
Ω

(α + βκ2)|∇φ|dx, (1)

where µ, α, β are positive penalty parameters, φ is a binary level set representation
supposed to take on either 0 or 1. The last term of this functional is the classic Euler’s
elastica term. κ denotes the curvature represented as κ = ∇ · (∇φ/|∇φ|).

Segmentation with depth information: In [13], Nitzberg, Mumford and Shiota de-
fined the problem of segmentation with depth information as a problem of recovering
occluded shapes and their ordering relations based on a 2D image. The variables de-
fined in this problem are in three folds: 1) the shapes of the regions R1, R2, · · · , Rn to
which different objects belong; 2) the ordering relations among objects; 3) the pixel
intensities of objects. Without loss of generality, one can assume that the objects
R1, R2, . . . , Rn in an image are in ascending order, i. e., R1 is the nearest object to
the observer while Rn is the farthest one (i.e. background). Let R′i be defined as
the visible part of Ri, i.e., R′1 = R1, R′i = Ri −

⋃
j<iRj , (i = 2, . . . , n). In addition,

R′n+1 = Ω −
⋃
j<n+1Rj is defined as the visible background. Based on the above as-

sumptions and definitions, the level set based energy functional is formulated as in
[14]

E(ϕ, c) =
n∑
i=1

∫
Ω

(α + β|κi|)|∇ϕi|δ(ϕi)dx+

∫
Ω

(f − cn+1)2

n∏
j=1

(1−H(ϕj))dx

+
n∑
i=1

(∫
Ω

(f − ci)2H(ϕi)
i−1∏
j=1

(1−H(ϕj))dx

)
, (2)
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where α, β are two positive penalty parameters, ci ∈ Ri is the pixel intensity of the i-th
object, and f is the image to be processed. κi denotes the curvature of boundary for
region Ri. Here |κ| is chosen to substitute the square in Euler’s elastica term with the
reason that the object corners can be preserved when |κ| becomes large. In contrast, the
model containing curvature related terms in quadratic form would inevitably smear
those corners. The difference about the function of curvature selection between κ2

and |κ| for elastica term reflecting in segmentation performance were also indicated
in [12, 14]. The level set function ϕ is represented by a continuous signed distance
function. H(x) and δ(x) are Heaviside function and Dirac delta function described in
detail in [2, 6].

2.2 Segmentation models incorporating noise distributions

Studies [7, 8, 9] investigated noisy image segmentation problems by using specific pa-
rameter estimation based on different noise distributions. All the related parameters
are calculated via the maximum a posteriori probability (MAP) estimation from the
viewpoint of Bayesian probability models. For example, estimation of variance infor-
mation is used for images degraded with Gaussian noise; The square of image inten-
sity value with capacity of enhancing weak properties is incorporated in the Rayleigh
model; Models with great segmentation performance of dealing with Poisson and
Gamma noises are built on the standard deviation and average. The general varia-
tional functional is written as follows

E(θ, φ) = α1

∫
Ω

Q1(x, θ1)φdx+ α2

∫
Ω

Q2(x, θ2)(1− φ)dx+ γ

∫
Ω

|∇φ|dx, (3)

where α1, α2, γ are positive penalty parameters, φ is a binary level set as defined in
functional (1). Specific representations of function Q derived from the maximum like-
lihood method and the computation of their related parameters are given in Table 1.
θ = (µ, σ) refers to the corresponding parameters of function Q need to be estimated.

TABLE 1 Potential functions of different noise distributions

Functions Gaussian noise Rayleigh noise
Qi(i=1,2)

1
2

log 2π + log σi + (f−µi)2

2σ2
i

2 log σi − log f + f2

2σ2
i

Parameters µi =
∫
Ω fφ

2−i(1−φ)i−1dx∫
Ω φ

2−i(1−φ)i−1dx σ2
i =

∫
Ω f

2φ2−i(1−φ)i−1dx

2
∫
Ω φ

2−i(1−φ)i−1dx
θi = (µi, σi) σ2

i =
∫
Ω(f−µi)2φ2−i(1−φ)i−1dx∫

Ω φ
2−i(1−φ)i−1dx

Functions Poisson noise Gamma noise
Qi(i=1,2) σi − f log σi

f
µi

+ log µi
Parameters

σi =
∫
Ω fφ

2−i(1−φ)i−1dx∫
Ω φ

2−i(1−φ)i−1dx
µi =

∫
Ω fφ

2−i(1−φ)i−1dx∫
Ω φ

2−i(1−φ)i−1dxθi = (µi, σi)
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2.3 The progressive hedging algorithm for two-stage stochastic pro-
gramming

The progressive hedging algorithm (PHA) was originally designed by Rockafellar and
Wets [25] for multistage stochastic minimization problems and it has recently been
extended [23] to monotone stochastic variational inequality (SVI) problems of the form

x(·) ∈ N and w(·) ∈M such that −∇F (x(·))− w(·) ∈ NC(x(·)), (4)

where F is a convex continuously differentiable functional,NC(x(·)) is the normal cone
to C at x(·), N is a linear subspace of the Hilbert space L composed of all x(·), andM
is the complementary subspace of N . The notation of x(·) indicates that the solution
of Problem (4) is a function and L is therefore a functional space. This understanding
of (4) is particularly suitable for multistage stochastic optimization, where one seeks
the best response function x(ξ) for each realization of a random vector ξ. In such case
Problem (4) respersents the necessary condition for optimality and it is also sufficient
if the stochastic programming problem is convex.

To clarify this point, let us present a brief introduction to the two-stage stochastic
programming problem, which will be the model we shall use for the image segmen-
tation problem. A two-stage stochastic programming is an optimization problem to
make two decisions, one at each stage. The first-stage decision is made before a ran-
dom vector is realized, and the second-stage decision is a response after the random
vector is observed. Let ξ be the random vector and let Ξ be the set of all the possible
realizations of ξ (assumed to be finite). Then, the response mapping x(·) of a two-stage
stochastic programming has the following form:

x(·) : ξ 7→ x(ξ) = (x1(ξ), x2(ξ)) ∈ Rn1 × Rn2 = Rn,

where x1(ξ) is the first-stage decision variable and x2(ξ) is the second-stage decision
variable. Consider the Hilbert space L consisted of all the mappings x(·) ∈ Rn. Since
in our two-stage model the first decision is made before ξ is realized, the solution to
the two-stage stochastic programming problem should satisfy the so-called nonantic-
ipativity constraint x(·) ∈ N , where

N := {x(·) = (x1(·), x2(·)) ∈ L | x1(ξ) does not depend on ξ}.

Clearly, N is a subspace of L. In addition, suppose every decision x(·) must satisfy a
set of constraints and the constraints generally depend on ξ. We write this fact in the
form of

x(·) ∈ C ⊂ L, which means x(ξ) ∈ C(ξ) ∀ξ ∈ Ξ,

where each C(ξ) refers to a nonempty closed convex subset of Rn and the set C there-
fore denotes a nonempty closed convex subset of L. Let the total cost of the decison
x(ξ) in two stages be f(x(ξ), ξ). Then the two-stage stochastic programming problem
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can be formulated as

min
x(·)

F (x(·)) = Eξ[f(x(ξ), ξ)] :=
∑
ξ

p(ξ)f(x(ξ), ξ)

s.t. x(·) ∈ C ∩ N , (5)

where E stands for the expectation, p(ξ) > 0 represents the known probability of each
scenario ξ, and the sum of these probabilities is 1. If f(·, ξ) is a continuously differen-
tiable convex function, then the the following Karush-Kuhn-Tucker (KKT) conditions
will be both necessary and sufficient for the optimality of x(·):

−∇F (x(·)) ∈ NC∩N (x(·)). (6)

When certain constraint qualifications such as ri C ∩ N 6= ∅ (or C ∩ N 6= ∅ if the sets
C(ξ) are all polyhedral) are met, the following equality holds.

NC∩N (x(·)) = NC(x(·)) +NN (x(·)).

SinceN is a subspace, which yields that NN (x(·)) = N⊥ :=M. Based on this equality,
the SVI (6) can be rewritten as the following equivalent form:

x(·) ∈ N and w(·) ∈M such that −∇F (x(·)) ∈ NC(x(·)) + w(·). (7)

Subsequently, SVI (4) can be easily obtained from (7) just through moving the term
w(·) from the righthand side to the lefthand side. One can also regard SVI (4) as an
equivalent alternative extension of (6). The focus of PHA is to transform solving the
original problem stated in (6) into solving the problem

−∇F (x(·))− w(·) ∈ NC(x(·)) ⇐⇒ −∇xf(x(ξ), ξ)− w(ξ) ∈ NC(ξ)(x(ξ)), ∀ξ. (8)

As described in [23], the powerful feature of PHA is its capability of decomposition in
terms of solving separate “deterministic” problem for each scenario ξ, while keeping
each iterate in the space N by projection. In this regard, the vector w(·) serves as the
multiplier vector for the nonanticipativity constraint, each of thew-iterates is also kept
in the spaceM, see the following description of the algorithm.

PHA in two-stage stochastic programming
Given xν(·) ∈ N and wν(·) ∈M := N⊥ with a fixed parameter r > 0,
Step 1. For every ξ, solve

x̂ν(ξ) = arg minx(ξ)∈C(ξ) {f(x(ξ), ξ) + wν(ξ)Tx(ξ) + r
2
‖x(ξ)− xν(ξ)‖2};

Step 2. Update xν+1(·) = PN (x̂ν(·)), wν+1(·) = wν(·) + r(x̂ν(·)− xν+1(·)).
ν := ν + 1, repeat until a stopping criterion is met.

Here the existence and uniqueness of the solution x̂ν(ξ) will be guaranteed by the
fact that the r-term makes the related minization subproblems be strongly convex. PN
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is the projection mappings onto the linear subspacesN , and actually has the following
explicit form in the two-stage stochastic programming:

PN (x(·)) := (z1(·), z2(·)) with z1(ξ) =
∑
ξ

p(ξ)x1(ξ) and z2(ξ) = x2(ξ) ∀ ξ. (9)

If problem (5) is convex and there exists at least one solution, then the sequence gen-
erated by PHA converges to an optimal solution. More details in terms of theorems
and proofs can be found in [23]. An alternative proof of its convergence is provided
in [42] in terms of alternating direction method of multipliers (ADMM). The conver-
gence properties of PHA for the two-stage stochastic programming problem can be
summarized as follows.

Convergence properties of the PHA. (Theorem 2 of [23]) As long as the (mono-
tone) variational inequality (4) satisfies the constraint qualification and has at least
one solution, the sequence {xν(·), wν(·)} generated by the progressive algorithm will
converge to some pair (x̄(·), w̄(·)) satisfying (7) and thus furnish x̄(·) as a solution to
(4). In this the distance expressions

||xν(·)− x̄(·)||2 +
1

r2
||wν(·)− w̄(·)||2

will form a decreasing sequence that goes to zero. The decrease will surely be at a
linear rate if, in particular, the sets C(ξ) are polyhedral and the functions f(x(ξ), ξ) are
convex quadratic (including linear as a special case).

The motivation of our work is to treat the noisy image segmentation process as a
two-stage stochastic programming problem, in which the first-stage decision is to de-
termine the curve of the object in the image and the randomness ξ is the distributions
of noise, thus we adopt PHA framework to handle the curve under stochastic noises,
which will be discussed in more details in the following.

3 Novel formulations for different segmentation prob-
lems incorporating stochastic noises via progressive hedg-
ing

Motivated by the research using PHA to solve the minimization problem of stochastic
programming, we aim to propose novel formulations tackling different segmentation
issues in consideration of the advantages of Euler’s elastica term and the influence
of unknown noises. In this way, we not only can fulfill general segmentation tasks
with the classic model, but also can deal with some worse situations such as low qual-
ity images with large noises, absent boundaries, missing shapes or occlusion. Then
we show how to implement PHA with developed ADMM-C algorithm to obtain the
optimal solutions efficiently.

Before we get into our paper topic, we first illustrate how to formulate a new prob-
lem and apply progressive hedging algorithm in stochastic programming to improve
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the segmentation performance. The obvious feature of this approach is not just ro-
bust to noise. It can also deal with stochastic noises, which means we don’t need to
know what the specific types of noises contained in the image. Figure 1 presents the
comparison of results to further demonstrate this feature. The original image is given
in (a). (b) presents the image with unknown noises. Results without or with PHA
in stochastic programming are shown in (c) and (d) respectively. Here we take the
classic CV model [2] as an example. And this application will be also a preprocessing
procedure providing the initialization of binary level set functions for our segmenta-
tion with depth cases. Specifically, the model for this example can be expressed as the
minimization of the following energy functional

ECV
SP-gray(θξ, φξ) = α1

∫
Ω

Q1(x, θ1(ξ))φ(ξ)dx+ α2

∫
Ω

Q2(x, θ2(ξ))(1− φ(ξ))dx

+ γ

∫
Ω

|∇φ(ξ)|dx+

∫
Ω

(vk(ξ)φ(ξ) +
τ

2
(φ(ξ)− φkξ )2)dx, (10)

which is an PHA-extended variational model comes from model (3). Here each ele-
ment ξi of set ξ = (ξ1, ξ2, · · · , ξN) is one specific noise type as summarized in Table 1.
In accordance with the PHA framework in two-stage stochastic programming intro-
duced in Section 2.3, binary level set functions φ(ξ) = (φ(ξ1), φ(ξ2), · · · , φ(ξN)) are the
variables of Stage 1 solved by Step 1. Likewise, φξ belongs to the variable of Stage 2 re-
lying on the projection mappings implemented on the variables from Stage 1 in Step 2.
And the multipliers v(ξ) = (v(ξ1), v(ξ2), · · · , v(ξN)) correspond to the multipliers w(ξ),
which also need to be upgraded in Step 2. Now stochastic property of noises has been
successfully formulated into classic CV segmentation model by taking advantage of
PHA framework.

(a) Original image (b) Noisy image (c) Classic CV (d) Developed CV

Figure 1: Example of PHA in stochastic programming for segmentation improvement. (a): original image; (b): noisy image;
(c): results obtained by CV model; (d): results obtained by CV model with PHA in stochastic programming.

The region-based CV model is well known for capabilities of being insensitive to
noises and capturing desired results even on weak boundaries. From Figure 1 (c),
we can see that the performance of CV model may be influenced by stronger noises.
And (d) validates that the classic CV model using PHA in stochastic programming
can achieve improvements for standard segmentation.

We plan to design along this way and develop our work into Euler’s elastica based
segmentation In this paper. Our works possess the abilities of: 1) producing standard
segmentation results as good as the classic CV model [2]; 2) achieving better perfor-
mance on images with strong unknown noises, missing boundaries or fuzzy areas
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(e.g. can complete the disconnected parts of the branch in Figure 1 (d), while CV-PHA
functional (10) doesn’t have this advantage); and 3) additionally, handling problem of
recovering occluded shapes while multiphase segmentation models [3, 4, 6] can’t do.

3.1 Two-phase segmentation based application

Based on two-phase Euler’s elastica based segmentation formulated in (1) and CV-
PHA model (10), we propose a novel segmentation model incorporating influence of
different noises expressed as the following stochastic programming (SP) form. The
reconstructed contour can be obtained by minimizing the following energy functional
with respect to φ(ξ).

arg min
θξ,φξ∈{0,1}

{
EEuler’s elastica

SP-gray (θξ, φξ)

= α1

∫
Ω

Q1(x, θ1(ξ))φ(ξ)dx+ α2

∫
Ω

Q2(x, θ2(ξ))(1− φ(ξ))dx (11)

+

∫
Ω

(α + β

∣∣∣∣∇ · ∇φ(ξ)

|∇φ(ξ)|

∣∣∣∣)|∇φ(ξ)|dx+

∫
Ω

(vk(ξ)φ(ξ) +
τ

2
(φ(ξ)− φkξ )2)dx

}
ξ = (ξ1, ξ2, · · · , ξN) represent different noise distributions and Qi(x, θi(x)) contain the
stochastic information need to be estimated. φ(ξ) is the optimal solution of (11) under
distribution ξ. Here we continue the definition of φ(ξ) in [10] using the binary repre-
sentation which can also be explained as a substitution φ = H(ϕ). As they described,
this binary representation was originally used for finding the global minimizer. And
it can also reduce the computational complexity to some extent such as avoiding the
necessary calculation associated with level sets. One can be observed that (11) will
reduce to the CV-PHA model (discussed in Functional (10)) when β equals 0. In this
way, we can also regard CV based models as particular cases of our proposed segmen-
tation models. Functional (10) gives a good example that incorporating different noise
distributions into one formulation based on PHA can enhance the ability of handling
strong noise better than applying them separately and the improved performance has
been validated in Figure 1 as well. In addition, Euler’s elastica was studied for visual
construction in [10, 13, 14, 15], of which the major advantages lied in the effect of re-
constructing illusory contours or recovering occluded shapes. [12, 16] found that this
good property of Euler’s elastica term also reflected in robust against noises. Accord-
ing to the limitation of functional (10) discussed previously, we aim to employ Euler’s
elastica term as the regularization into our PHA-based segmentation framework with
the purpose of merging the advantages of these techniques and make great progress
in performance.

According to the segmentation model for vector-valued images proposed in [31],
the averages of the data terms over all channels are used for coupling. Let f =

(f1, f2, . . . , fm) be a original color image defined on a domain Ω. Then function Q

should be also in the multichannel form (Q1, Q2, . . . , Qm). In fact, our proposed model
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used to solve color image segmentation can be stated as follows:

arg min
θξ,φξ∈{0,1}

{
EEuler’s elastica

SP-color (θξ, φξ)

= α1

∫
Ω

m∑
l=1

Q1l(x, θ1l(ξ))φ(ξ)dx+ α2

∫
Ω

m∑
l=1

Q2l(x, θ2l(ξ))(1− φ(ξ))dx (12)

+

∫
Ω

(α + β

∣∣∣∣∇ · ∇φ(ξ)

|∇φ(ξ)|

∣∣∣∣)|∇φ(ξ)|dx+

∫
Ω

(vk(ξ)φ(ξ) +
τ

2
(φ(ξ)− φkξ )2)dx

}
where l = 1, 2, . . . ,m denotes the number of layers of a vector-valued image. Then
novel Euler’s elastica based formulations embedding stochastic noises for two-phase
segmentation are obtained. In the following section we shall implement the calcula-
tion under PHA, which is one useful and effective tool for solving above multistage
stochastic programming problem.

3.2 PHA with developed ADMM-C algorithm for two-phase seg-
mentation application

In order to demonstrate the precise numerical procedure of PHA in solving (11) and
(12), we focus on the general model integrating the gray space and color space cases.
Detailed proofs for convergence of this algorithm are provided in [23]. The original
minimization problems (11) and (12) are based on separate sub optimization prob-
lems,

arg min
θξ,φξ∈{0,1}

{EEuler’s elastica
SP-general (θξ, φξ)} ⇒


arg minθ,φ∈{0,1} {EEuler’s elastica

SP-general (θξ1 , φξ1)}
argmin θ,φ∈{0,1} {EEuler’s elastica

SP-general (θξ2 , φξ2)}
argmin θ,φ∈{0,1} {EEuler’s elastica

SP-general (θξ3 , φξ3)}
argmin θ,φ∈{0,1} {EEuler’s elastica

SP-general (θξ4 , φξ4)}

(13)

where ξ = (ξ1, ξ2, · · · , ξN) refer to noise distributions. For each distribution ξi, it has
a known probability p(ξi) > 0 which can be set empirically through experiments, and
the sum

∑
i p(ξi) = 1 has to be guaranteed. According to PHA approach, φξ can be

obtained by the following steps.
I. First the minimization problems need to be solved separately, which are given in

the right side of (13).

(θk+1
ξi

, φk+1
ξi

) = arg min
θ,φ∈{0,1}

{
EEuler’s elastica

SP-general (θξi , φξi)

= α1

∫
Ω

Q∗1(x, θ1(ξi))φ(ξi)dx+ α2

∫
Ω

Q∗2(x, θ2(ξi))(1− φ(ξi))dx (14)

+

∫
Ω

(α + β|κ(ξi)|)|∇φ(ξi)|dx+

∫
Ω

(vk(ξi)φ(ξi) +
τ

2
(φ(ξi)− φkξ )2)dx

}
where κ = ∇ · ∇φ|∇φ| . For the gray space issue, there is only one layer of the image infor-
mation to be calculated, which means Q∗(x, θ(ξi)) = Q(x, θ(ξi)). For the color space is-
sue,Q∗(x, θ(ξi)) should be substituted with the coupling terms

∑
lQl(x, θl(xii)). Q∗(x, θ(ξi))

11



is the potential function for specific noise distribution in each channel of the image.
Table 1 shows the representations of Q(x, θ(ξi)) and estimations of parameters θ(ξi).
φξi is the optimal solution of (14) in distribution ξi.

II. Next, all of the obtained optimal solutions are utilized to gain the final optimum
φξ.

φk+1
ξ =

N∑
i=1

p(ξi)φ
k+1
ξi

, (15)

III. At last, the sub problems’ solutions φk(ξi) and the Lagrangian multipliers vk(ξi)
need to be updated at the end of each iteration.

φk+1(ξ1) = φk+1
ξ

φk+1(ξ2) = φk+1
ξ

...
φk+1(ξN) = φk+1

ξ

,


vk+1(ξ1) = vk(ξ1) + τ(φk+1(ξ1)− φk+1

ξ )

vk+1(ξ2) = vk(ξ2) + τ(φk+1(ξ2)− φk+1
ξ )

...
vk+1(ξN) = vk(ξN) + τ(φk+1(ξN)− φk+1

ξ )

. (16)

Then updated φk+1(ξi), vk+1(ξi) and the parameters θk+1(ξi) derived from (14) are
passed to the next iteration from step I.

To solve the minimization problems (14) separately, both simplification and effec-
tiveness of the algorithm should be considered. In fact, there are three main compu-
tational difficulties in the functional as listed below, followed by the corresponding
algorithm design.

(i) One main challenge of the Euler’s Elastica based functional is due to the non-
smoothness and non-convexity of g(κ) = α+ β|κ|. As described in [20, 27, 28], it
is more efficient when the curvature term g(κ) is computed separately from the
functional (14). Inspired by the concept of curvature weighted approach, we can
rewrite functional (14) as the following simplified version

(θk+1
ξi

, φk+1
ξi

) = arg min
θ,φ∈{0,1}

{
EEuler’s elastica

SP-general (θξi , φξi) (17)

= α1

∫
Ω

Q∗1(x, θ1(ξi))φ(ξi)dx+ α2

∫
Ω

Q∗2(x, θ2(ξi))(1− φ(ξi))dx

+

∫
Ω

g(κ(ξi))|∇φ(ξi)|dx+

∫
Ω

(vk(ξi)φ(ξi) +
τ

2
(φ(ξi)− φkξ )2)dx

}
The proposed approach essentially reduces the minimization problem (17) to a
total variation type [32]. Here the case of division by zero in g(κ) should be
avoided. In practice, the denominator is often replaced by |∇φ|ε = max(ε, |∇φ|)
(ε is a arbitrarily small positive parameter). Then g(κ(ξi)) is represented as
∇ · (∇φ(ξi))/|∇φ(ξi)|ε.

(ii) Note that the binary constraint for φ will also cause non-convexity in sub prob-
lems (17). [33] demonstrated that certain non-convex minimization problems

12



can be equivalent to the following convex minimization problems

(θk+1
ξi

, φk+1
ξi

) = arg min
θ,φ∈[0,1]

{
EEuler’s elastica

SP-general (θξi , φξi) (18)

= α1

∫
Ω

Q∗1(x, θ1(ξi))φ(ξi)dx+ α2

∫
Ω

Q∗2(x, θ2(ξi))(1− φ(ξi))dx

+

∫
Ω

g(κ(ξi))|∇φ(ξi)|dx+

∫
Ω

(vk(ξi)φ(ξi) +
τ

2
(φ(ξi)− φkξ )2)dx

}
This convex minimization scheme could find global minimizers for (17) by thresh-
olding the solution of (18), which was classified as a continuous min-cut algo-
rithm. Together with its equivalent form, the continuous max-flow algorithm,
the min-cut algorithm has been proved to be an exact convex relaxation of the
original problem as discussed in [34, 35].

(iii) Another critical issue for solving (18) is the inevitable high order derivatives
in numerical implementation, which is proven to be tedious and prone to errors.
Then a developed ADMM-C algorithm is designed to each sub problem by intro-
ducing auxiliary variables, Lagrangian multipliers and an alternating directional
optimization strategy.

Here the detailed implementation on solving each sub-problem by the ADMM-
C algorithm will be presented. Firstly, some auxiliary variables are introduced, i.e.,
~w(ξi) = [w1(ξi), w2(ξi)]

T with property ~w ≈ ∇φ(ξi) and the Lagrangian multipliers
~λ(ξi) = [λ1(ξi), λ2(ξi)]

T . Based on this observation, we can transform (18) into the
following augmented Lagrangian functional

(θk+1
ξi

, φk+1
ξi

, ~wk+1
ξi

) = arg min
θ,φ∈[0,1]

{
EEuler’s elastica

SP-general (θξi , φξi) (19)

= α1

∫
Ω

Q∗1(x, θ1(ξi))φ(ξi)dx+ α2

∫
Ω

Q∗2(x, θ2(ξi))(1− φ(ξi))dx

+

∫
Ω

g(κ(ξi))|~w(ξi)|dx+

∫
Ω

(vk(ξi)φ(ξi) +
τ

2
(φ(ξi)− φkξ )2)dx

+

∫
Ω

(~λ(ξi) · (~w(ξi)−∇φ(ξi)) +
µ

2
(~w(ξi)−∇φ(ξi))

2)dx

}
where µ is a positive penalty parameter. It is worth noting that this kind of simple
structure of (19) requires fewer variables and parameters compared with other works
[11,18,19] using the ADMM to deal with the curvature term directly. After the initial-
ization of φ0(ξi), ~w0(ξi) and ~λ0(ξi), a minimization problem is carried out in each step
with respect to one variable while keeping other variables fixed temporarily. When
alternating optimization for all the variables is completed, the Lagrangian multipliers
will be updated subsequently. This gives

θk+1
ξi

= arg min
θ

{
α1

∫
Ω

Q∗1(x, θ1(ξi))φ
k(ξi)dx+ α2

∫
Ω

Q∗2(x, θ2(ξi))(1− φk(ξi))dx
}
, (20)
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φk+1
ξi

= arg min
φ∈[0,1]

{
α1

∫
Ω

Q∗1(x, θk+1
1 (ξi))φ(ξi)dx+ α2

∫
Ω

Q∗2(x, θk+1
2 (ξi))(1− φ(ξi))dx

+

∫
Ω

(vk(ξi)φ(ξi) +
τ

2
(φ(ξi)− φkξ )2)dx (21)

+

∫
Ω

(~λk(ξi) · (~wk(ξi)−∇φ(ξi)) +
µ

2
(~wk(ξi)−∇φ(ξi))

2)dx

}

~wk+1
ξi

= argmin ~w

{∫
Ω

g(κk+1(ξi))|~w(ξi)|dx+

∫
Ω

~λk(ξi) · (~w(ξi)−∇φk+1(ξi)) (22)

+
µ

2
(~w(ξi)−∇φk+1(ξi))

2dx
}
, where g(κk+1(ξi)) = ∇ ·

∇φk+1
ξi

|∇φk+1
ξi
|ε
,

~λk+1
ξi

= ~λkξi + µ(~wk+1(ξi)−∇φk+1(ξi)). (23)

To obtain θk+1 = (µ, σ): In the k + 1 step of the proposed ADMM-C, the average
image intensity values µξi as well as variances σξi in the foreground and background
can be obtained by using the standard variational method for (20). Table 1 gives all
the solutions for distributions ξ = (ξ1, ξ2, . . . , ξN).
To obtain φk+1: Optimal value of φξi for a certain distribution ξi is obtained by solving
the minimization of (21) with respect to φ(ξi). We can get the update rule based on the
corresponding Euler-Lagrange equations

(−µ∆ + vk(ξi) + τ)φ(ξi) = τφkξ − rξi(θk+1
1 , θk+1

2 )−∇ · ~λk(ξi)− µ∇ · ~wk(ξi), (24)

where rξi(θ
k+1
1 , θk+1

2 ) = α1Q
∗
1(x, θk+1

1 (ξi))− α2Q
∗
2(x, θk+1

2 (ξi)). Like in [36], equation (24)
is a screened Poisson equation for which the Fast Fourier transform (FFT) [28, 36] is
a well-known solver with very low computational cost for imaging problems. Here
FFT is applied for further improving the calculation efficiency. Equation (24) can be
rewritten as

F ∗LFφ(ξi) = τφkξ − rξi(θk+1
1 , θk+1

2 )−∇ · ~λk(ξi)− µ∇ · ~wk(ξi), (25)

where L = −µF∆F ∗+vk(ξi)+τ and F ∗ is the discrete inverse Fourier transform. Then
we can obtain φk+1

ξi
as follows

φk+1
ξi

= F ∗(L−1F (τφkξ − rξi(θk+1
1 , θk+1

2 )−∇ · ~λk(ξi)− µ∇ · ~wk(ξi))). (26)

To obtain ~wk+1: The minimization problem (22) of ~w can be solved via the generalized
soft thresholding formula [16, 18], which is given by

~wk+1
ξi

= max

(
|∇φk+1

ξi
−
~λk(ξi)

µ
| − g(κk+1(ξi))

µ
, 0

)
∇φk+1

ξi
− ~λk(ξi)

µ

|∇φk+1
ξi
− ~λk(ξi)

µ
|
. (27)

For clarity, we present the overall algorithm for the two-phase Euler’s elastica
based segmentation in stochastic programming in a pseudo code format as follows.
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Algorithm 1 Computing framework for (11) and (12) via PHA
Input: φ0(ξi), p(ξi), v

0(ξi), α, β, τ, α1, α2

for k ≥ 1, do the following steps recurrently

1: Obtain φk+1
ξi

via Algorithm 2

2: Update φk+1
ξ via Equation (15)

3: Update φk+1(ξi), vk+1(ξi) via Equation (16)

4: if some stopping criteria (given in Section 3.5) are satisfied break

Return optimal value φk+1
ξ after thresholding

Algorithm 2 Detailed implementation for step 1 in Algorithm 1 via ADMM-C
If k = 1

input ~w0(ξi), ~λ
0(ξi), µ

else solve the following problems alternatively

1: Update θk+1
ξi

according to distribution laws

2: Update φk+1
ξ via minimization problem (21)

3: Update ~wk+1
ξi

via minimization problem (22)

4: Update ~λk+1
ξi

via (23) using gradient ascent method

The idea of the ADMM-C method is intentionally applied for the main challenge
of the non-convex, non-smooth and non-linear problems in Euler’s elastics and it has
attracted extensive attention. ADMM algorithm has been given analytical properties
in [37, 38] and many other applications [39, 40] are provided in which many similar
algorithms are developed and successfully used to achieve excellent performances via
solving a variety of non-convex problems. Then a similar idea as in [20, 28] of design-
ing a new algorithm to deal with the sub-problems derived from PHA framework is
adopted.

3.3 Segmentation with depth based application

We intend to use similar stochastic programming skills as the ones applied in the two-
phase issue in this part. Based on original segmentation with depth model for gray
space reviewed in Section 2.1, we can establish the energy functional by introducing
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random noise set as follows

arg min
θξ,φξ∈{0,1}

{
E

Depth
SP-gray(θξ, φξ) (28)

=
n∑
h=1

∫
Ω
(α+ β|∇ · ∇φh(ξ)

|∇φh(ξ)|
|)|∇φh(ξ)|dx+

n∑
h=1

∫
Ω
Qh(x, θh(ξ))φh(ξ)

h−1∏
j=1

(1− φj(ξ))dx

+

∫
Ω
Qn+1(x, θn+1(ξ))

n∏
j=1

(1− φj(ξ))dx+
n∑
h=1

∫
Ω
(vkh(ξ) · φh(ξ) +

τ

2
(φh(ξ)− φkh(ξ))2)dx


where h = 1, 2, . . . , n denote the number of objects in the image, and φn+1(ξ) = 1

is set only for consistency of description. We can still extend above segmentation
with depth incorporating stochastic noises model to multichannel case. Analog to the
coupling approach used in (12), the formulation is written as

arg min
θξ,φξ∈{0,1}

{
E

Depth
SP-color(θξ, φξ) (29)

=
n∑
h=1

∫
Ω

(α + β|∇ · ∇φh(ξ)
|∇φh(ξ)|

|)|∇φh(ξ)|dx

+
n∑
h=1

∫
Ω

m∑
l=1

Qhl(x, θhl(ξ))φh(ξ)
h−1∏
j=1

(1− φj(ξ))dx

+

∫
Ω

m∑
l=1

Q(n+1)l(x, θ(n+1)l(ξ))
n∏
j=1

(1− φj(ξ))dx

+
n∑
h=1

∫
Ω

(vkh(ξ) · φh(ξ) +
τ

2
(φh(ξ)− φkh(ξ))

2)dx

}
In order to describe the calculation procedure explicitly, we plan to conduct on the
general model integrating the gray space and color space cases. According to the
curvature-weighted approach used in (17), the simplified version can be directly writ-
ten as

arg min
θξ,φξ∈{0,1}

{
E

Depth
SP-general(θξ, φξ) (30)

=
n∑
h=1

∫
Ω

g(κh(ξ))|∇φh(ξ)|dx+
n∑
h=1

∫
Ω

Q∗h(x, θh(ξ))χh(ξ)dx

+

∫
Ω

Q∗n+1(x, θn+1(ξ))χn+1(ξ)dx+
n∑
h=1

∫
Ω

(vkh(ξ) · φh(ξ) +
τ

2
(φh(ξ)− φkh(ξ))

2)dx

}
where g(κh(ξ)) = ∇·(∇φh(ξ))/|∇φh(ξ)|ε) and the definition of |∇φh(ξ)|ε is given in (17).
Q∗h(x, θh(ξ)) is Qh(x, θh(ξ)) for gray space issue and

∑
lQhl(x, θhl(ξ)) for color space is-

sue. And the characteristic function for the h-th region reads χh(ξ) = φh(x)
∏

j=1:h−1(1−
φj(ξ)). Particularly, χn+1(ξ) = φn+1(ξ)

∏
j=1:n(1− φj(ξ)) =

∏
j=1:n(1− φj(ξ)) represent-

ing the (n + 1)-th region background. Next section we shall calculate above general
formulation under PHA with detailed implementation.
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3.4 PHA with developed ADMM-C algorithm for segmentation with
depth application

For the numerical part, we shall try to use similar ideas as used in the sophisticated
two-phase imaging tasks. The main program loop for PHA is shown below

I. First we need to solve the sub minimization problems of (30) separately, which
gives

(θk+1
h(ξi)

, φk+1
h(ξi)

)

= arg min
θh,φh∈{0,1}

{
E

Depth
SP-general(θh(ξi), φh(ξi)) (31)

=
n∑
h=1

∫
Ω

g(κh(ξi))|∇φh(ξi)|dx+
n∑
h=1

∫
Ω

Q∗h(x, θh(ξi))χh(ξi)dx

+

∫
Ω

Q∗n+1(x, θn+1(ξi))χn+1(ξi)dx+
n∑
h=1

∫
Ω

(vkh(ξi) · φh(ξi) +
τ

2
(φh(ξi)− φkh(ξ))

2)dx

}

II. Next all of the obtained optimal solutions (φh(ξ1), φh(ξ2), ..., φh(ξN )) are utilized to
gain the final optimum φh(ξ).

φk+1
h(ξ) =

N∑
i=1

p(ξi)φ
k+1
h(ξi)

. (32)

III. At last, the sub problems’ solutions φkh(ξi) and the Lagrangian multipliers vkh(ξi)

need to be updated at the end of each iteration.
φk+1
h (ξ1) = φk+1

h(ξ)

φk+1
h (ξ2) = φk+1

h(ξ)

...
φk+1
h (ξN) = φk+1

h(ξ)

,


vk+1
h (ξ1) = vkh(ξ1) + τ(φk+1

h (ξ1)− φk+1
h(ξ))

vk+1
h (ξ2) = vkh(ξ2) + τ(φk+1

h (ξ2)− φk+1
h(ξ))

...
vk+1
h (ξN) = vkh(ξN) + τ(φk+1

h (ξN)− φk+1
h(ξ))

. (33)

Then updated φk+1
h (ξi), vk+1

h (ξi) and the parameters θk+1(ξi) derived from (31) are
passed to the next iteration from step I.

In order to solve the minimization problems (31) in step I separately, we will
show how to apply the designed ADMM-C algorithm. Note that there are n binary
functions (φ1(ξi), φ2(ξi), . . . , φn(ξi)) need to be obtained for one specific noise distribu-
tion. Thus n auxiliary variables (~w1(ξi), ~w2(ξi), . . . , ~wn(ξi)) are introduced and each
component is defined as ~wh(ξi) = [~wh1(ξi), ~wh2(ξi)]

T with property ~wh ≈ ∇φh(ξi).
Likewise, n Lagrangian multipliers (~λ1(ξi), ~λ2(ξi), . . . , ~λn(ξi)) are also brought in with
~λh(ξi) = [~λh1(ξi), ~λh2(ξi)]

T . Based on the convex relaxation method, (31) is rewritten
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into the following augmented Lagrangian functional

(θk+1
h(ξi)

, φk+1
h(ξi)

, ~wk+1
h(ξi)

)

= arg min
θh,φh∈{0,1}

{
E

Depth
SP-general(θh(ξi), φh(ξi)) (34)

=
n∑
h=1

∫
Ω

g(κh(ξi))|∇φh(ξi)|dx+
n∑
h=1

∫
Ω

Q∗h(x, θh(ξi))χh(ξi)dx

+

∫
Ω

Q∗n+1(x, θn+1(ξi))χn+1(ξi)dx+
n∑
h=1

∫
Ω

vkh(ξi) · φh(ξi) +
τ

2
(φh(ξi)− φkh(ξ))

2dx

+
n∑
h=1

∫
Ω

~λh(ξi) · (~wh(ξi)−∇φh(ξi)) +
µ

2
(~wh(ξi)−∇φh(ξi))2dx

}

where µ is a positive penalty parameter. Here h = 1, 2, . . . , n refer to the number of bi-
nary level set functions and i = 1, 2, . . . , N refer to the number of noise distributions.
In order to solve (34) efficiently with the ADMM-C, we first initialize the unknown
φ0
h(ξi), ~w0

h(ξi) and ~λ0
h(ξi) at the initial iterative step k = 0, then, we solve some min-

imization problems with espect to only one kind of unknowns while other ones are
temporarily fixed at each step from k-th to (k + 1)-th until convergence is reached.
With this alternating direction optimization strategy, we can divide the optimization
problem (34) into three minimization problems in the iterative process from k-th to
(k + 1)-th step:

θk+1
h(ξi)

= arg min
θh

{
n∑
h=1

∫
Ω

Q∗h(x, θh(ξi))χ
k
h(ξi)dx+

∫
Ω

Q∗n+1(x, θn+1(ξi))χ
k
n+1(ξi)dx

}
, (35)

φk+1
h(ξi)

= arg min
φ∈[0,1]

{
n∑
h=1

∫
Ω

Q∗h(x, θ
k+1
h (ξi))χh(ξi)dx+

∫
Ω

Q∗n+1(x, θk+1
n+1(ξi))χn+1(ξi)dx

+
n∑
h=1

∫
Ω

(vkh(ξi)φh(ξi) +
τ

2
(φh(ξi)− φkh(ξ))

2)dx (36)

+
n∑
h=1

∫
Ω

(~λkh(ξi) · (~wkh(ξi)−∇φh(ξi)) +
µ

2
(~wkh(ξi)−∇φh(ξi))2)dx

}

~wk+1
h(ξi)

= arg min
~wh

{
n∑
h=1

∫
Ω

g(κk+1
h (ξi))|~wh(ξi)|dx+

n∑
h=1

∫
Ω

~λkh(ξi) · (~wh(ξi)−∇φk+1
h (ξi))

+
µ

2
(~wh(ξi)−∇φk+1

h (ξi))
2dx
}
, where g(κk+1

h (ξi)) = ∇ ·
∇φk+1

h(ξi)

|∇φk+1
h(ξi)
|ε
, (37)

~λk+1
h(ξi)

= ~λkh(ξi)
+ µ(~wk+1

h (ξi)−∇φk+1
h (ξi)). (38)
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To obtain θk+1
h = (µh, σh): The average image intensity values µk+1

h (ξi) as well as vari-
ances σk+1

h (ξi) in the foreground and background can be obtained by using the stan-
dard variational method based on (35), which are given by the following equations

TABLE 2 Potential functions of different noise distributions for
segmentation with depth application

Functions Gaussian noise Rayleigh noise
Qh′ 1

2
log 2π + log σh′ +

(f−µh′ )2

2σ2
h′

2 log σh′ − log f + f2

2σ2
h′(h′ = 1, . . . , n+ 1)

Parameters µh′ =
∫
Ω fχh′dx∫
Ω χh′dx σ2

h′ =
∫
Ω f

2χh′dx

2
∫
Ω χh′dxθh′ = (µh′ , σh′) σ2

h′ =
∫
Ω(f−µh′ )2χh′dx∫

Ω χh′dx

Functions Poisson noise Gamma noise
Qh′ σh′ − f log σh′

f
µh′

+ log µh′
(h′ = 1, . . . , n+ 1)

Parameters
σh′ =

∫
Ω fχh′dx∫
Ω χh′dx

µh′ =
∫
Ω fχh′dx∫
Ω χh′dxθh′ = (µh′ , σh′)

To obtain φk+1
h : For the minimization problem (36) with respect to the function

φh(ξi), the corresponding Euler-Lagrange equation is given as

(−µ∆ + vkh(ξi) + τ)φh(ξi)

= −Q∗h(x, θk+1
h (ξi))

h−1∏
j=1

(1− φj(ξi)) + τφkh(ξ) −∇ · ~λkh(ξi)− µ∇ · ~wkh(ξi)

+
n+1∑
s=h+1

{Q∗s(x, θk+1
s (ξi))φs(ξi)

h−1∏
j=1

(1− φj(ξi))
s−1∏

j=h+1

(1− φj(ξi))} (39)

Though above equation is more complicated, FFT can be still applied here for acceler-
ating the calculation. Equation (39) can be rewritten as

F ∗LFφh(ξi) = τφkh(ξ) − Λh(ξi)−∇ · ~λkh(ξi)− µ∇ · ~wkh(ξi), (40)

where L = −µF∆F ∗ + vk(ξi) + τ and F ∗ is the discrete inverse Fourier transform and

Λh(ξi) = Q∗h(x, θ
k+1
h (ξi))

h−1∏
j=1

(1− φj(ξi))

−
n+1∑
s=h+1

{Q∗s(x, θk+1
s (ξi))φs(ξi)

h−1∏
j=1

(1− φj(ξi))
s−1∏

j=h+1

(1− φj(ξi)).

Then we can obtain optimal value of φh(ξi) as follows

φk+1
h(ξi)

= F ∗(L−1F (τφkh(ξ) − Λh(ξi)−∇ · ~λkh(ξi)− µ∇ · ~wkh(ξi))). (41)
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To obtain ~wk+1
h : The calculation result of ~w minimization problem (37) can be obtained

via the generalized soft thresholding formula as

~wk+1
h(ξi)

= max

(
|∇φk+1

h(ξi)
−
~λkh(ξi)

µ
| − g(κk+1

h (ξi))

µ
, 0

)
∇φk+1

h(ξi)
−

~λkh(ξi)

µ

|∇φk+1
h(ξi)
−

~λkh(ξi)

µ
|
. (42)

For clarity, the overall algorithm for the Euler’s elastica based segmentation with
depth in stochastic programming in a pseudo code format is presented as follows.

Algorithm 3 Computing framework for (28) and (29) via PHA
Input: φ0

h(ξi) (h = 1, . . . , n), p(ξi), v0
h(ξi), α, β, τ

for k ≥ 1, do the following steps in turn

1: Obtain φk+1
h(ξi)

via Algorithm 4

2: Update φk+1
h(ξ) via Equation (32)

3: Update φk+1
h (ξi), vk+1

h (ξi) via Equation (33)

4: if some stopping criteria (given in Section 3.5) are satisfied break

Return optimal value (φk+1
1(ξ) , φ

k+1
2(ξ) , . . . , φ

k+1
n(ξ)) after thresholding

Algorithm 4 Detailed implementation for step 2 in Algorithm 3 via ADMM-C
If k = 1

input ~w0
h(ξi), and ~λ0

h(ξi)(h = 1, . . . , n), µ

else solve the following problems alternatively

1: Update θk+1
h(ξi)

according to distribution laws

2: Update φk+1
h(ξi)

via minimization problem (36)

3: Update ~wk+1
h(ξi)

via minimization problem (37)

4: Update ~λk+1
h(ξi)

via (38) using gradient ascent method

3.5 Termination criteria

The stopping criteria for our entire algorithm are described in this section. As de-
scribed in [18, 41], the iterations need to be terminated when the following criteria are
satisfied:

• For major framework PHA in Algorithm 1 and Algorithm 3: During iteration,
the constraint errors of (φξi − φξ), the relative errors of Lagrange multipliers and
the optimal solutions should be monitored. They should decrease to a suffi-
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ciently small level

Algorithm 1



Rk
τ =

N∑
i=1

p(ξi)‖φkξi−φ
k
ξ‖L1

N∑
i=1

p(ξi)‖φ0
ξi
−φ0

ξ‖L1

(43)

Rk
vξ

=
‖vkξ−v

k−1
ξ ‖L1

‖vk−1
ξ ‖L1

with vkξ =
N∑
i=1

p(ξi)v
k(ξi) (44)

Rk
φξ

=
‖φkξ−φ

k−1
ξ ‖L1

‖φk−1
ξ ‖L1

(45)

Algorithm 3



Rk
τ =

n∑
h=1

N∑
i=1

p(ξi)‖φkh(ξi)
−φk

h(ξ)
‖L1

n∑
h=1

N∑
i=1

p(ξi)‖φ0
h(ξi)

−φ0
h(ξ)
‖L1

(46)

Rk
vh(ξ)

=
‖vk
h(ξ)
−vk−1

h(ξ)
‖L1

‖vk−1
h(ξ)
‖L1

with vkh(ξ) =
N∑
i=1

p(ξi)v
k
h(ξi) (47)

Rk
φh(ξ)

=
‖φk
h(ξ)
−φk−1

h(ξ)
‖L1

‖φk−1
h(ξ)
‖L1

(48)

where, ‖ · ‖L1 denotes the L1 norm on image domain Ω. All components are
calculated in pixel wise. If Rk < l ( l is a small enough parameter), the iteration
process will be stopped. Note that Equation (44) and (47) can be quite small if
the penalty parameters are large. This is due to their explicit dependence on the
penalty parameters.

The relative energy error should also be considered, we can use the following
form:

Rk
e = ‖Ek − Ek−1‖/‖Ek−1‖ (49)

where Ek =
∑

i=1:N p(ξi)E
k(ξi). The computation stops automatically when Rk

e

is less than a predefined tolerance, which indicates that the energy approaches
to its steady state.

• For sub minimization problems using ADMM-C in Algorithm 2 and Algo-
rithm 4: The following constraint errors of (~wξi −∇φξi) and the relative errors of
its corresponding Lagrange multipliers in iterations need to be monitored

Algorithm 2


Rk
~wξ

=

N∑
i=1

p(ξi)‖~wkξi−∇φ
k
ξi
‖L1

N∑
i=1

p(ξi)‖~w0
ξi
−∇φ0

ξi
‖L1

(50)

Rk
~λξ

=
‖~λkξ−~λ

k−1
ξ ‖L1

‖~λk−1
ξ ‖L1

with ~λkξ =
N∑
i=1

p(ξi)~λ
k(ξi) (51)

Algorithm 4


Rk
~wh(ξ)

=

n∑
h=1

N∑
i=1

p(ξi)‖~wkh(ξi)
−∇φk

h(ξi)
‖L1

n∑
h=1

N∑
i=1

p(ξi)‖~w0
h(ξi)

−∇φ0
h(ξi)

‖L1

(52)

Rk
~λh(ξ)

=
‖~λk
h(ξ)
−~λk−1

h(ξ)
‖L1

‖~λk−1
ξ ‖L1

with ~λkh(ξ) =
N∑
i=1

p(ξi)~λ
k
h(ξi) (53)
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All numerical quantities are presented in log scale. Some specific methods are used
to tune parameters in the implementation process of the proposed approach. The two
parameters in g(κ) = α + β|κ|, α and β, control the length and curvature of the seg-
mentation boundary. The ratio between a and b is related to the connectivity and
smoothness of the level lines. As discussed in [10], the connection of disconnected
level lines and smoothness of level lines can be guaranteed by a large parameter β.
In addition, how to determine another two parameters: τ and µ associated with La-
grange multipliers will be illustrated. Numerical indicators give the basis of penalty
parameter adjustment. One example of their values selection is given in Experiment
4.1.

Lastly, we turn to the discussion related to the convergency of PHA. PHA is ap-
plied to the general stochastic programming problems of two-phase image segmen-
tation and segmentation with depth in gray and color images, which are formulated
in (17) and (30). Then PHA is implemented relying on convex minimization for each
scenario ξi (given in Algorithm 1 and Algorithm 3). In this way, the sequence of pairs
(φkξ , υ

k
ξ ) generated from PHA are hence sure to converge to a solution pair. The authors

in [23] also came to a conclusion about the convergence of PHA theoretically with a
clear proof procedure.

4 Experimental results

We apply the proposed segmentation formulations and developed algorithm exten-
sively on various synthetic and real images for multiple purposes. Experimental re-
sults are used to validate the performance and efficiency of our proposed models and
algorithm. All the experiments are implemented on the same platform (Matlab 8.2) on
a PC (Intel (R), CPU: 2.80GHz, RAM: 16GB, cores number: 4, architecture: 64-bit).

4.1 Experiments for two phase cases on Synthetic Images

Some Synthetic images of size 256 × 256 pixels are used as the test images. In these
experiments, two-phase CV model [2] and the CVE model [10] are used for compari-
son in order to show the performance of our proposed model. The reason of choosing
[2] and [10] for comparison is that they are both classic models in variational seg-
mentation with excellent results, which brought us a lot of inspiration. First, we set
v0(ξi) = 0, ~w0(ξi) = ~0, ~λ0(ξi) = ~0 and all the Lagrange multipliers are initially set to be
0 for all the numerical experiments in this section. The same initialization of variables
in each experiment are used in order to have a relatively fair comparison. In Figure 2,
some results of the CV model, CVE model and our proposed model are first presented
respectively. The original images, noisy images with stochastic noises including the
Gaussian noise, Rayleigh noise, Poisson noise and Gamma noise, and initialization
for φ0 are shown in (a) and (e). In addition, the pepper & salt noise is additionally
contained in (e). And results obtained by the CV model are presented in (b) and (f).
(c) and (g) give the final results obtained by CVE model, results from our model (11)
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are presented in (d) and (h) separately. From left to right in (b)-(d) and (f)-(h), we
start with the optimal solution φξ, followed by final curves plotted on noisy images
(red lines) and final curves plotted individually (blue lines). It helps to distinguish
the detailed differences among results obtained from different models by presenting
the final results in blue separately. It can be clearly seen that the results obtained by
our model (11) are much better than those two models. The results obtained from CV
model are totally different since it is driven by the mean level of the target region re-
sulting in the fact that it can not recognize whether one particular pixel belongs to big
noises or objects. The CVE model’s performance is unsatisfactory when the desired
object has similar density as the background. With the increase of the homogeneity
degree, this kind of drawback becomes more obvious.

One thing should be noted is that all the noises are randomly contained in the im-
ages for our experiment section, which means we don’t need to set specific rate for
each type of noise. What proportion of one noise is randomly chosen, so the percent-
age is also possible to be 0%. From the observation of all experiments, CV model can
be robust against noises. But when the noise level is getting higher, CV model fails to
obtain the desired results. And CV model can not complete disconnected curves or
missing shapes. CVE model has better properties in dealing with segmentation prob-
lems in noisy images as well as capturing meaningful structures. While it is also able
to omit relatively tiny ones of the objects, thus some small and homogeneous part can
not be captured. The parameters for CV model, CVE model and our proposed model
are given as follows

CV model [2] CVE model [10]

Figure 2 (b):
µ = 20, γ = 3

Figure 2 (c):
α = 3, β = 15, µ = 20

α1 = 10, α2 = 10 α1 = 8, α2 = 8

Figure 2 (f):
µ = 20, γ = 3

Figure 2 (g):
α = 3, β = 10, µ = 20

α1 = 7, α2 = 7 α1 = 8, α2 = 8

Our proposed model (11) via PHA with ADMM-C

Figure 2 (d):
α = 3, β = 25, τ = 5, µ = 20

α1 = 10, α2 = 10, p(ξ) = (0.4, 0.1, 0.3, 0.2)

Figure 2 (h):
α = 3, β = 25, τ = 5, µ = 20

α1 = 7, α2 = 7, p(ξ) = (0.4, 0.1, 0.3, 0.2)
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(a) Original, noisy images and initial
contour

(b) CV model results

(c) CVE model results (d) Our model (11) results

(e) Original, noisy images and initial
contour

(f) CV model results

(g) CVE model results (h) Our model (11) results

Figure 2: Two phase segmentation for synthetic noisy images with incomplete shapes and letters. (a) and (e): original
images, noisy images and the same initial φ0; (b) and (f): results obtained by CV model; (c) and (g): results obtained by CVE
model; (d) and (h): final results from our proposed model (11).

Figure 3 gives an example that illustrates the convergence of the relative residuals
(Eqn. 43 and 50), the relative errors of Lagrange multipliers (Eqn. 44 and 51), the
relative error of φkξ (Eqn. 45) and the energy curve (Eqn. 49) in our model respectively.
They are obtained for the image in Figure 2 (d). It is clearly shown that the proposed
algorithm has converged well before 100 iterations. They also give an important clue
on how to choose the penalty parameters t and m. In order to ensure convergence as
well as achieving a high speed of convergence, the errors Rk

τ , Rk
~w, Rk

v and Rk
~λ

should
converge steadily with nearly the same speed. If Rk

τ , Rk
~w go to zero faster than the

others, τ and µ can be decreased and vice versa. Rk
τ , Rk

~w will converge to zero with the
same speed as the iteration proceeds and the energy will decrease to a steady constant
value when τ and µ are chosen properly.

24



(a) (b) (c) (d)

(e) (f)

Figure 3: The relative residual plots. (a): auxiliary variables in (43); (b): auxiliary variables in (50); (c): Lagrange multipliers
in (44); (d): Lagrange multipliers in (51); (e): optimal solution φkξ ; (f): the energy functional.

4.2 Experiments for two phase cases on real Images

Real tiger image of size 481 × 321 and butterfly image of size 230 × 137 are used as
the test images. Visual comparisons with the results and the evolution process of our
model are given subsequently. In Figure 4, some results of the color CV model [31],
color CVE model and our proposed model (12) are shown respectively. The color CVE
model is stated as

E(φ, c) = α1

∫
Ω

m∑
l=1

(fl − c1l)
2φdx+ α2

∫
Ω

m∑
l=1

(fl − c2l)
2(1− φ)dx

+

∫
Ω

(α + βκ2)|∇φ|dx. (54)

Here we extend CVE model from gray scale to color scale according to the coupling
approach used in [31]. Figure 4 (a), (g) show the real noisy images. (b), (h) give the
initialization of φ0. The segmented images by using the color CV model are shown in
(c) and (i). Figure 4 (d) and (j) show the results of color CVE model. Our proposed
model’s performance is reflected in (e) and (k). (f) and (l) show the intermediate evolu-
tion process of the contour φξ obtained from the proposed model. We directly choose
the results from color CV model as the input of φ0. One can also initialize φ0 randomly
while the final results vary a little. One feature in both of these two images is that a
few discontinuous stripes on the tiger’s tail or sparse spots on the butterfly’s wings.
With the proceeding of iteration, it can be observed that CV model fails to capture the
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correct boundaries of objects, while both CVE and our model are able to complete an
intact shape regardless of the existing gaps within the objects. However, CVE model
is inevitably influenced by the stochastic noises especially when these noises smear
the elongated structures like the tiger’s tail or they increase the homogeneity degree.
The parameters used to obtain Figure 4 (c)-(e) and (i)-(k) are

Color CV model [31] Color CVE model (54)

Figure 4 (c):
µ = 3, γ = 3

Figure 4 (d):
α = 3, β = 8, µ = 20

α1 = 8, α2 = 5 α1 = 5, α2 = 5

Figure 4 (i):
µ = 3, γ = 3

Figure 4 (j):
α = 3, β = 20, µ = 20

α1 = 8, α2 = 5 α1 = 7, α2 = 7

Our proposed model (12) via PHA with ADMM-C

Figure 4 (e):
α = 3, β = 4, τ = 5, µ = 80

α1 = 4, α2 = 4, p(ξ) = (0.6, 0.1, 0.2, 0.1)

Figure 4 (k):
α = 3, β = 16, τ = 3, µ = 50

α1 = 4, α2 = 4, p(ξ) = (0.6, 0.1, 0.2, 0.1)
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(a) Noisy tiger image (b) Initialization φ0

(c) Color CV model
result

(d) Color CVE
model result

(e) Our model (12)
result

(f) Intermediate curve evolution from our model (12)

(g) Noisy tiger image (h) Initialization φ0

(i) Color CV model re-
sult

(j) Color CVE model re-
sult

(k) Our model (12) re-
sult

(l) Intermediate curve evolution from our model (12)

Figure 4: Two phase segmentation for real noisy images with incomplete shapes. (a) and (g): noisy images; (b) and (h):
initial φ0; (c) and (i): results obtained by CV model; (d) and (j): results obtained by CVE model; (e) and (k): final results from our
proposed model (12); (f) and (l): intermediate curve evolution by our proposed model.

27



4.3 Experiments for segmentation with depth cases on Synthetic Im-
ages

The proposed models (28) and (29) using PHA with ADMM-C algorithm into syn-
thetic images will be compared with classic segmentation with depth model (2) with-
out stochastic programming. The detailed implementation framework is shown as
follows and all experiments for segmentation with depth applications follow the same
procedure.

In order to speed up the evolution of contours and improve the accuracy of results,
we initialize the binary level-set functions φ0

h(ξ1) = · · · = φ0
h(ξN) using the results from

the the standard multiphase segmentation model in stochastic programming, which
is given by

arg min
θξ,φξ∈{0,1}

{
EMulti

SP-general(θξ, φξ)

=
n∑
h=1

∫
Ω

|∇φh(ξ)|dx+
n∑
h=1

∫
Ω

Q∗h(x, θh(ξ))χh(ξ)dx+

∫
Ω

Q∗n+1(x, θn+1(ξ))χn+1(ξ)dx

+
n∑
h=1

∫
Ω

(vkh(ξ) · φh(ξ) +
τ

2
(φh(ξ)− φkh(ξ))

2)dx

}
(55)

Different form the traditional ones [12, 14] that initialized contours by the standard
multiphase segmentation model without stochastic programming, we take the situ-
ation of unknown noises into consideration. In experiments, we find the initializa-
tion of φ0

h(ξi) will be inevitably influenced when big stochastic noises contained in the
original image. Then it may lead to a failure for entire framework to obtain expected
results. An example is shown below in Figure 5 to explain this situation clearly. Figure
5 (a) gives the synthetic image (size 100 × 100) with two circles corrupted by noises
randomly for testing and standard multiphase segmentation results. (b) shows the
initialization of the binary level set functions by using the results of standard segmen-
tation method. And the final results obtained by traditional segmentation with depth
model [12, 14] are presented in (c). It can be observed that traditional implementation
framework will not work under the impact of big noises. What’s more, the CVE model
was designed only for one foreground shape recovery problem without considering
segmentation with depth information, which can not be used for comparison.
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(a) Noisy image and standard multi-
phase segmentation results

(b) Initial φ0h based on standard multi-
phase segmentation results

(c) traditional segmentation with depth results

Figure 5: Traditional segmentation with depth for an image with two circles. (a): noisy images and results obtained by the
standard multiphase segmentation model; (b): the initialization for two binary functions φ0

h; (c): results obtained by traditional
segmentation with depth model [13,15].

Figure 6 presents the novel implementation framework for segmentation with depth
in stochastic programming. The same testing image is used in (a). With the applica-
tion of (55), we obtain separate objects shown in (a) and initialize φ0

h in (b). Obvious
progress in performance of our proposed model (28) compared with the traditional
one lies in (c), the final shapes are reconstructed successfully even though there exist-
ing big noises. The parameters used for our proposed model (28) are

Our proposed model (28) via PHA with ADMM-C
Figure 6 (c): α = 3, β = 10, τ = 5, µ = 30, p(ξ) = (0.5, 0.1, 0.2, 0.2)
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(a) Noisy image and results obtained
from functional (55)

(b) Initial φ0h for two binary functions

(c) Our proposed model (28) results

Figure 6: Our proposed model (28) for an image with two circles. (a): noisy images and results obtained by the standard
multiphase segmentation in stochastic programming model; (b): the initialization for two binary functions φ0

h; (c): final results
obtained by the proposed model

In order to determine the ordering relations of the white circle and gray circle, we
minimize the energy functional (28) based on the assumptions that the white circle
is occluded by the gray circle or the gray circle is occluded by the white circle. The
results are listed in Table 3, from which we can deduce that the white circle, the gray
circle and the background are ordered from the nearest to farthest with respect to the
observer.

TABLE 3 Minimal energies of different ordering relations

Possible Order Minimum of energy functional
1. white circle⇒ gray circle 18.56
2. gray circle⇒white circle 20.83

4.4 Experiments for segmentation with depth cases on real Images

In the last experiment, one real image with a circle and a hand (size 360× 360) and the
other with a bird and a trunk (size 220 × 241) are shown in Figure 6. Figure 6 (a) and
(d) show the original noisy image and the result from standard segmentation model
in stochastic programming plotted on the original noisy image. The two initial values
for φ0

h are given in (b) and (e). The final results from our model (29) are provided in
(c) and (f). Our model can clearly perform well in real images. The parameters for our
proposed model (29) are given as follows

Our proposed model (29) via PHA with ADMM-C
Figure 6 (c): α = 3, β = 25, τ = 5, µ = 20, p(ξ) = (0.4, 0.1, 0.3, 0.2)

Figure 6 (f): α = 3, β = 25, τ = 3, µ = 10, p(ξ) = (0.5, 0.1, 0.3, 0.1)
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(a) Noisy image and results
obtained from functional (55)

(b) Initial φ0h based on results
of functional (55)

(c) Our proposed model (29) results

(d) Noisy image and re-
sults obtained from func-
tional (55)

(e) Initial φ0h based on re-
sults of functional (55)

(f) Our proposed model (29) results

Figure 7: Our proposed model (29) for real image. (a) and (d): noisy images and results obtained by the standard multiphase
segmentation in stochastic programming model; (b) and (e): the initialization for two binary functions φ0

h; (c) and (f): final results
obtained by the proposed model.

For the ordering relations determination for Figure 7 (c) and (f), we minimize the
energy functional based on the assumptions including all the potential ordering re-
spectively. From the results listed in Table 4 and Table 5, we can choose the correct
orderings which are mapping to the minimal functional values.

TABLE 4 Minimal energies of different ordering relations for Figure 7(a)

Possible Order Minimum of energy functional
1. green circle⇒ hand 40.57
2. hand⇒ green circle 45.26
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TABLE 5 Minimal energies of different ordering relations for Figure 7(b)

Possible Order Minimum of energy functional
1. bird⇒ trunk 28.56
2. trunk⇒ bird 20.83

There is one important thing need to be noted. When dealing with the convex
optimization problem, we have to use a threshold method to realize the binarization
of φk+1

h(ξ). It is an important way to help find the accurate results. The histograms of
non-threshold and threshold results from Figure 7 (c) are given in Figure 8. It gives us
a good way to choose the threshold of φk+1

h(ξ). In practice, we find the threshold η = 0.5

could be applicable.

(a) φ1ξ no threshold (b) φ2ξ no threshold (c) φ1ξ with threshold (d) φ2ξ with threshold

Figure 8: Histograms of the final binary level set functions (non-threshold and thresh-
old). (a) and (b): histogram of non-threshold solutions; (c) and (d): histogram of
threshold solutions; (a)-(d) are from Figure 7 (c).

At last, the efficiency of our proposed PHA with ADMM-C algorithm is empha-
sized by presenting the number of iterations and computation time in Table 6. The
iterations and time are shown according to all of our proposed models applied in Ex-
periment 1 to 4. The computational time is measured in seconds.

TABLE 6 Number of iterations and computational time

Image Size Iterations Time
Figure 2 (d) 256× 256 80 1.53
Figure 2 (h) 256× 256 73 1.25
Figure 4 (e) 481× 321 55 7.6
Figure 4 (k) 230× 137 50 0.79
Figure 6 (c) 100× 100 45 1.23
Figure 7 (c) 360× 360 60 8.9
Figure 7 (f) 220× 241 55 2.69
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5 Conclusions

We propose a novel variational approach for image segmentation with stochastic noises
and develop a progressive hedging algorithm to solve them. Our approach possesses
three outstanding advantages: 1) improving segmentation ability for noisy images
without the prerequisite that one given model and one specific noise distribution are
counterpoints; 2) realizing completion of meaningful missing boundaries and recon-
struction of occluded structures of objects in a highly noisy background; 3) We incor-
porate the ADMM method and a curvature weighted approach into the calculation
procedure to guarantee the segmentation quality on both convergence and efficiency.
Extensive experiments were conducted on images with multiple segmentation pur-
poses which is more challenging due to the limited image quality. Experiment results
demonstrate the significant performance improvements of our work. Furthermore,
for cases with big stochastic noises and damages, our proposed model achieves bet-
ter performance than the traditional model, which is of great significance for image
understanding with problems such as occlusion, large damages or noises, etc.

In future, our work will focus on embedding other powerful techniques such as
deep network with generative capacity into a variational framework to cope with
more complicated situations. For instance, segmenting salient objects from images
with complex background or lower resolution, even though with clutter and partial
occlusions.
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