109 research outputs found

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Bayesian Approach in a Learning-Based Hyperspectral Image Denoising Framework

    Get PDF
    International audienceHyperspectral images are corrupted by a combination of Gaussian-impulse noise. On one hand, the traditional approach of handling the denoising problem using maximum a posteriori criterion is often restricted by the time-consuming iterative optimization process and design of hand-crafted priors to obtain an optimal result. On the other hand, the discriminative learning-based approaches offer fast inference speed over a trained model; but are highly sensitive to the noise level used for training. A discriminative model trained with a loss function which does not accord with the Bayesian degradation process often leads to sub-optimal results. In this paper, we design the training paradigm emphasizing the role of loss functions; similar to as observed in model-based optimization methods. As a result; loss functions derived in Bayesian setting and employed in neural network training boosts the denoising performance. Extensive analysis and experimental results on synthetically corrupted and real hyperspectral dataset suggest the potential applicability of the proposed technique under a wide range of homogeneous and heterogeneous noisy settings. INDEX TERMS Bayesian estimation, discriminative learning, Gaussian-impulse noise, hyperspectral imaging, residual network

    A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, with an Application to HDR Imaging

    Full text link
    Recently, impressive denoising results have been achieved by Bayesian approaches which assume Gaussian models for the image patches. This improvement in performance can be attributed to the use of per-patch models. Unfortunately such an approach is particularly unstable for most inverse problems beyond denoising. In this work, we propose the use of a hyperprior to model image patches, in order to stabilize the estimation procedure. There are two main advantages to the proposed restoration scheme: Firstly it is adapted to diagonal degradation matrices, and in particular to missing data problems (e.g. inpainting of missing pixels or zooming). Secondly it can deal with signal dependent noise models, particularly suited to digital cameras. As such, the scheme is especially adapted to computational photography. In order to illustrate this point, we provide an application to high dynamic range imaging from a single image taken with a modified sensor, which shows the effectiveness of the proposed scheme.Comment: Some figures are reduced to comply with arxiv's size constraints. Full size images are available as HAL technical report hal-01107519v5, IEEE Transactions on Computational Imaging, 201

    Denoising Scanning Tunneling Microscopy Images of Graphene with Supervised Machine Learning

    Full text link
    Machine learning (ML) methods are extraordinarily successful at denoising photographic images. The application of such denoising methods to scientific images is, however, often complicated by the difficulty in experimentally obtaining a suitable expected result as an input to training the ML network. Here, we propose and demonstrate a simulation-based approach to address this challenge for denoising atomic-scale scanning tunneling microscopy (STM) images, which consists of training a convolutional neural network on STM images simulated based on a tight-binding electronic structure model. As model materials, we consider graphite and its mono- and few-layer counterpart, graphene. With the goal of applying it to any experimental STM image obtained on graphitic systems, the network was trained on a set of simulated images with varying characteristics such as tip height, sample bias, atomic-scale defects, and non-linear background. Denoising of both simulated and experimental images with this approach is compared to that of commonly-used filters, revealing a superior outcome of the ML method in the removal of noise as well as scanning artifacts - including on features not simulated in the training set. An extension to larger STM images is further discussed, along with intrinsic limitations arising from training set biases that discourage application to fundamentally unknown surface features. The approach demonstrated here provides an effective way to remove noise and artifacts from typical STM images, yielding the basis for further feature discernment and automated processing.Comment: Includes S

    Unsupervised Image Restoration Using Partially Linear Denoisers.

    Get PDF
    Deep neural network based methods are the state of the art in various image restoration problems. Standard supervised learning frameworks require a set of noisy measurement and clean image pairs for which a distance between the output of the restoration model and the ground truth, clean images is minimized. The ground truth images, however, are often unavailable or very expensive to acquire in real-world applications. We circumvent this problem by proposing a class of structured denoisers that can be decomposed as the sum of a nonlinear image-dependent mapping, a linear noise-dependent term and a small residual term. We show that these denoisers can be trained with only noisy images under the condition that the noise has zero mean and known variance. The exact distribution of the noise, however, is not assumed to be known. We show the superiority of our approach for image denoising, and demonstrate its extension to solving other restoration problems such as image deblurring where the ground truth is not available. Our method outperforms some recent unsupervised and self-supervised deep denoising models that do not require clean images for their training. For deblurring problems, the method, using only one noisy and blurry observation per image, reaches a quality not far away from its fully supervised counterparts on a benchmark dataset
    corecore