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Unsupervised Image Restoration Using Partially
Linear Denoisers

Rihuan Ke and Carola-Bibiane Schönlieb

Abstract—Deep neural network based methods are the state
of the art in various image restoration problems. Standard
supervised learning frameworks require a set of noisy measure-
ment and clean image pairs for which a distance between the
output of the restoration model and the ground truth, clean
images is minimized. The ground truth images, however, are
often unavailable or very expensive to acquire in real-world
applications. We circumvent this problem by proposing a class
of structured denoisers that can be decomposed as the sum of
a nonlinear image-dependent mapping, a linear noise-dependent
term and a small residual term. We show that these denoisers can
be trained with only noisy images under the condition that the
noise has zero mean and known variance. The exact distribution
of the noise, however, is not assumed to be known. We show the
superiority of our approach for image denoising, and demonstrate
its extension to solving other restoration problems such as image
deblurring where the ground truth is not available. Our method
outperforms some recent unsupervised and self-supervised deep
denoising models that do not require clean images for their
training. For deblurring problems, the method, using only one
noisy and blurry observation per image, reaches a quality not
far away from its fully supervised counterparts on a benchmark
dataset.

Index Terms—Image denoising, deep learning, convolutional
neural networks, unsupervised learning, partially linear denoiser

I. INTRODUCTION

THE acquisition of real life images usually suffers from
noise corruption due to different factors such as sensor

sensitivity, variations of photon numbers, air turbulence, just
to name a few. Image denoising [30, 25, 7, 38] aims to remove
noise from corrupted images. It is one of the most fundamental
and central problems tackled by the image processing com-
munity. A variety of image denoising approaches have been
developed in the past decades, which can be broadly classified
into model based denoisers (see e.g., [30, 4, 6, 3]) and data
driven denoisers [29, 5, 41].

Recent data driven techniques outperform conventional
model based methods and achieve the state of the art denoising
quality [22, 41, 42, 19]. These methods take advantage of
large sets of image data and use the models, particularly deep
convolutional neural networks (CNN), to learn the image prior
from the datasets rather than relying on predefined image
features. Compared to many model based methods, which
need to solve a difficult optimization problem for each test
image, CNN based denoisers are computationally efficient
once the CNN is trained. Nevertheless, CNN based denois-
ing approaches usually require a massive amount of ground
truth images in the training phase. Specifically, conventional
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training pipelines consist of a loss function or a metric, which
defines the distance between a clean ground truth image and
its reconstructed version, and an optimization step in which
the parameters of the models are adjusted so as to minimize
the loss function. One of the most commonly used metrics
is the mean squared error (MSE), the calculation of which
depends explicitly on the ground truth image. While these
learning processes can lead to high-quality denoisers, they
are problematic for application domains where ground truth
images are not accessible.

In the past years, several unsupervised deep learning tech-
niques have been developed to overcome this difficulty. It is
found that it is possible to train a deep neural network denoiser
by using only the noisy data if multiple versions of noisy
images are available for each unknown clean image [20], or if
the noise is independent within different regions of the image
[2, 15, 16]. Under the assumption of i.i.d. Gaussian noise, loss
functions can also be adapted, based on Stein’s unbiased risk
estimate of the MSE [32], such that they are defined only on
the noisy images while providing good approximations of the
MSE.

Fig. 1. Partially linear denoiser. The clean image x (top middle), the noise
n (top right), and the noisy image y := x + n (top left) are modeled as
random variables. A denoiser R is decomposed as R(y) = g(x) + Ln+ e
with a function g(x) (can be nonlinear), a linear mapping L (can depend on
x), and a residual term e. If the random variable e is of small variance, then
R is called a partially linear denoiser. Such denoisers can be learned from
only noisy images.

In this work, we address the problem of learning efficient
denoisers from a set of noisy images without the need for
precise modeling of the noise, and without multiple noisy
observations per image. We investigate a class of structured
nonlinear denoisers and their applications to inverse imaging
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problems including denoising and deblurring. Specifically, we
formulate a given denoiser R(·) as the sum of three terms (cf.
Fig. 1), including a (nonlinear) function of the ground truth
signal g(x), a linear mapping of the noise Ln, and a residual
term e. If the linear factor Ln is relatively small and the
residual term e, as a random variable, has small variance,
then the denoised image mainly depends on the ground truth
image and is not sensitive to the changes of the noise. In
this paper, we study denoisers with the property that e has
small variance, and we call denoisers of this type partially
linear denoisers (cf. Fig. 1). Such denoisers preserve nonlinear
image structure (similar to many classic image denoisers), and
additionally allow the nonlinearity to be learned from noisy
data only.

We observe that some natural denoisers, including deep
neural networks, exhibit certain degrees of partial linearity.
By exploiting this property, we show that a partially linear de-
noiser, in the learning setting, can be trained on noisy images
by only assuming that the noise is zero mean conditioned on
the images with known variance. Specifically, we introduce
an auxiliary random vector together with a partially linear
constraint, that we show establishes a correspondence between
the MSE and a loss function defined without clean images.
By doing this one can approximate the best partially linear
denoisers with a theoretically guaranteed approximation error
bound. Moreover, we propose an image deblurring approach,
based on the partially linear denoisers, that learns from single
noisy observation of the images.

Different from other existing unsupervised methods for
denoising, our approach does not require a group (or a pair)
of noisy observations for each image or an estimate on the
underlying noise distribution. Yet our approach leads to a
performance close to the fully supervised counterparts on some
denoising benchmark datasets. The proposed partially linear
denoisers are learned in an end-to-end manner and can be
built on top of any deep neural network architectures for
denoising. Once they are trained, the denoised results are
obtained without the auxiliary vectors or any post-processing.
Furthermore, we demonstrate our denoiser’s capacity of han-
dling other image restoration tasks in the absence of ground
truth or multiple noisy observations per image, by utilizing the
direct approximation to the MSE and its end-to-end learning
nature.

II. RELATED WORK

In the past decades, a wide variety of image denoising algo-
rithms were developed. They range from analytic approaches
such as filtering, variational methods, wavelet transforms,
Bayesian estimation to data-driven approaches such as deep
learning. In this section we review some major nonlinear
denoisers as well as recent deep learning approaches that do
not depend on ground truth images for learning.

A. Nonlinear denoisers

Natural images are non-Gaussian signals with fine structures
such as sharp edges and textures. One of the main challenges
in the image denoising task is to preserve these structures

while removing the noise. Traditional linear denoisers such as
Gaussian filtering and Tikhonov regularization usually do not
achieve satisfactory denoising quality, as they tend to smooth
the edges. Most of the existing image denoisers in the literature
are therefore nonlinear.

Total variation (TV) denoising [30] is one of the most
fundamental image denoising algorithms. The TV denoising
solution is a minimizer of the optimization problem

min
x

λ

2
‖x− y‖2 + ‖x‖TV

in which y ∈ Rm is the noisy image and ‖x‖TV := ‖∇x‖1
is the total variation of x ∈ Rm. TV denoising is known to
preserve sharp edges thanks to the non-linearity introduced by
the TV norm ‖ · ‖TV.

Patch based methods have gained popularity for image
denoising tasks because of their capacity of capturing the
self-similarity of images. The non-local means (NL-means)
algorithm proposed by Buades et al. [3] is among the most
successful methods in this category. The NL-means algorithm
removes noise by calculating a weighted average of the pixel
intensities, with weights defined based on a patch similarity
measure which emphasizes the connection among pixels in
similar patches. It is a nonlinear denoiser, different from the
local mean filtering, as the weights are image-dependent. As
another nonlinear patch based denoising method, the Block-
matching and 3D filtering (BM3D) algorithm [6] divides
image patches into groups based on a similarity criterion,
and collaborative filtering on each of the groups is then
performed to clean the patches. While patch based denois-
ers achieve promising denoising performance, they are often
time-consuming due to the high computational complexity in
calculating the weights or matching with similar patches.

In recent years, convolutional neural networks (CNN) based
denoisers became the state of the art for image denoising
[41, 42], thanks to the rapid development of deep learning
techniques. In particular, CNN are known to be efficient in
modeling image priors [35], which are crucial for the quality
of the denoiser. A typical CNN denoiser can be formulated as
a composition of mappings called layers, and a basic type of
layers y(k) → y(k+1) has the form

y(k+1) = σ
(
W ∗ y(k) + b

)
,

where ∗ denotes the convolution operation, (W, b) are pa-
rameters of the network that can be learned from the data,
and σ(·) is an activation function which is often nonlinear.
As such, CNN denoisers are in general nonlinear. There has
been growing interest in developing CNN denoisers with new
network architectures and building blocks being proposed,
such as batch-normalization [41], residual connection [10], and
residual dense block [42].

B. Unsupervised deep learning for denoising

While deep CNN based models have great advantages
in image denoising, the most standard learning techniques
are limited to the availability of sufficiently many noise-free
images. Recently, CNN-based learning algorithms for image
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denoising that do not require clean images as training data
have been developed. Soltanayev et al. [32] propose to use
Stein’s unbiased risk estimator (SURE) based loss function,
which is computed without knowing ground truth images, as
a replacement of the MSE loss function. In the setting of i.i.d.
Gaussian noise, SURE provides an unbiased estimate of the
MSE, and hence the minimization problems with respect to
these two losses are equivalent. Consequently, CNN denoisers
can be trained in an unsupervised manner, based on only one
noisy realization of each training image. Nevertheless, SURE
may not be identical to the MSE in the case of non-Gaussian
noise, e.g., shot noise. The SURE training scheme has been
extended to the setting of multiple noise realizations per image
as well as imperfect ground truths [43].

The Noise2Noise approach developed by Lehtinen et al.
[20] offers a different ground-truth free learning strategy for
denoising, based on the assumption that for each image at
least two different noisy observations are available. It is found
that replacing the clean targets by their noisy observations in
the MSE loss function leads to the same minimizers of the
original supervised loss if the noise has zero mean and an
infinite amount of training data are provided. Specifically, the
Noise2Noise loss function is∑

(y,ŷ)∈(Y,Ŷ)

‖fθ(ŷ)− y‖2 (1)

where y and ŷ represent two independent noisy observations of
the same image sample, and fθ is the denoiser parameterized
by θ. In contrast to the MSE loss

∑
(y,x)∈(Y,X ) ‖fθ(y)− x‖2

where x denotes the ground truth image, the loss function (1)
is defined on a noisy pair (y, ŷ) only. If the noise in y and the
noise in ŷ are independent and have zero means, it is shown
that the minimization of this loss function (1) with respect to
θ is equivalent to minimizing the MSE [20]. This implies that
the parameter θ can be computed from a training set of noisy
pairs. Besides, the Noise2Noise approach does not rely on an
explicit image prior or on structural knowledge about the noise
models.

In certain denoising tasks, however, the acquisition of two
or more noisy copies per image can be very expensive or
impractical, in particular in medical imaging where patients are
moving during the acquisition, or in videos with moving cars,
etc. Several authors have investigated learning techniques that
overcome this restriction [8, 36, 2, 15, 16]. The Frame2Frame
[8] developed by Ehret et al. fine-tunes a denoiser for blind
video denoising. The idea is to use optical flow to warp
one video frame to match its neighboring frame, and then
minimize the Noise2Noise loss (1) with (y, ŷ) being the pair
of matched frames. The work [27] generalizes the Noise2Noise
into the setting of a single noisy realization for each image. A
synthetic noise, that is drawn from the same distribution as the
underlying noise, is added to the noisy image y, and the new
noisy image is then used to replace the second observation ŷ
in the training loss (1). At test time, the raw output of the
network is post-processed to obtain the denoising results, by
computing a linear combination of the output and the input.
In this approach, the synthetic noise has to be of the same
noise type as the underlying noise, and the post-processing

can magnify the errors of the output of the network. Batson
et al. [2] show that a denoiser fθ(·), satisfying a so called
J -invariant property for a partition J of the image pixels,
can be trained without accessing a second observation of the
image if the noise is independent across different regions in
J . A function fθ(·) is said to be J -invariant if for each
subset of pixels J ∈ J , the pixel values of fθ(y) at J
can be calculated without knowing the values of y at J . By
additionally assuming that the noises of y at different elements
of J are independent and have zero mean, one minimizes the
loss ∑

y∈Y
‖fθ(y)− y‖2 =

∑
y∈Y

∑
J∈J
‖[fθ(y)]J − yJ‖2

=
∑
J∈J

∑
y∈Y
‖[fθ(y)]J − yJ‖2

(2)

where the subscript J in yJ denotes the restriction of the
image y to the pixel collection J . It should be noted that,
for a J -invariant function fθ(·) and any J ∈ J , the loss∑
y∈Y ‖[fθ(y)]J − yJ‖

2 can be interpreted as a variant of (1),
given the fact that the noise contained in yJ is independent
of [fθ(y)]J and has zero mean. This enables the training of
a model using a set of noisy images y only. However, as
the denoiser is a J -invariant function, the images can not
be perfectly reconstructed as the level of noise decreases to
zero, i.e., it can not learn the identity mapping which is
clearly not J -invariant. The unused information from y can
be further leveraged if the noise model is known or can be
estimated. Krull et al. [16] propose to combine y with the
network predictions, based on a probabilistic model for each
pixel and a Bayesian formulation, to obtain the minimal MSE
estimate. The integration of statistical inference effectively
removes the noise remained in the predictions. A downside
of this method is that it requires an explicit expression of the
posterior distribution of the noisy images beforehand, and it
is not end-to-end because the network outputs intermediate
results that are improved in the post-processing step.

III. THE PROPOSED METHOD

We consider image restoration problems of the form

y = Ax+ n (3)

in which x and n are random vectors of unknown distributions
representing the ground truth images and the noise respec-
tively, y is the noisy image from which we want to restore
x, and A is a linear forward operator determined by the data
acquisition process. In this paper, random vectors are always
denoted by boldface lower-case letters like x, y, z, etc. For
ease of presentation, in this section we first focus on denoising
problems, i.e., A := I defines an identity map. The more
general cases where A is not the identity will be discussed in
Subsection III-E.

For Problem (3), the only assumption we make on the noise
distribution is that it has zero mean conditioned on the image,
i.e.,

(A1). E(n | x) = 0.
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This assumption holds for various common types of noises
including Gaussian white noise, Poisson noise, as well as some
mixed noises. We underline that the noise n, however, are
not assumed to be independent of the image or pixel-wise
independent.

The central issue in image denoising is to find an operator,
denoted by R, that takes the noisy image y to the clean image
x or its approximations. In this work we are interested in a
class of denoisers that can be decomposed as

R(y) = g(x) + Ln+ e, (4)

where g is a (possibly nonlinear) function of the clean image
x, L := Lx is a linear operator and e := ex,n is a residual
term with small variance. In the rest of the paper, we omit
the subscripts of Lx and ex,n if there is no ambiguity.

Remark 1. For a given denoiser, the decomposition (4) always
exists, but in this work we only consider the setting of e
having small variance. Furthermore, the decomposition (4) is
not unique, given the fact that L can be an arbitrary linear
operator. However, in order to characterize the structure of
the denoiser, we assume E(e | x) = 0 and let L be chosen
such that E

(
‖e‖2 | x

)
is minimized. As n has zero mean, the

nonlinear term is then determined by g(x) = E(R(y) | x).
If R satisfies (4) with e of small variance, then we call R

a partially linear denoiser. The first term g(x), which can be
nonlinear, does not depend on realizations of the noise n. This
formulation implies that the non-linearity of the denoisers in
this class is mainly due to intrinsic image structures, and the
denoisers respond to the noise in a linear (encoded in Ln)
or less sensitive manner (encoded in the fact that e has small
variance). In fact, for any denoiser that can effectively remove
noise from images, its output has to be minimally dependent
on the changes of noise, and therefore when written in the
form (4), the noise dependent components on the right hand
side should be small in variance compared to the noise, which
implies that E(‖e‖2) is small.

The selection of a good denoiser R requires knowledge of
certain prior information about the target x, especially when
we want to find the fine details like edges from the corrupted
image. Many conventional analytical approaches aim to find
the reconstruction R(y) from a lower dimensional space that
the images lie in. This can be done, for example, by assuming
some sparseness properties in the gradient fields or the wavelet
domains.

In a data-driven setting, given the clean image x, one could
instead minimize the mean square error (MSE) defined as
J0(R) := E(‖R(y)− x‖2), where the expectation is taken
over x and n. The minimization of J0 leads to the conditional
mean R0(y) := E(x | y). Next, we will discuss how to
approximate R0 in the absence of the clean image x.

A. Auxiliary random vectors

The motivation for this paper comes from the fact that, in
practice the distribution of x is often unknown, and samples
of x (i.e., the ground truth images) or of the noise n are
not readily available. What can be easily accessed are noisy

observations y. With these alone, however, a direct evaluation
of the MSE is not possible. In this work, we circumvent the
need for x by introducing an auxiliary random vector and
replacing the MSE J0 by an approximation. First, let z be a
random vector satisfying assumptions

(A2) the conditional mean E(z | x) = 0,
(A3) z is independent of n,
(A4) the conditional covariance:

Cov(z, z | x) = Cov(n,n | x).
The auxiliary vector z does not necessarily need to follow the
same distribution as n. Samples of z, therefore, can be easily
generated from e.g., Gaussian distributions, once the variances
of z are known. Then, associated with z, we define{

n̂ := n+ αz

ŷ := y + αz,
(5)

where α is a real constant. The new random vector ŷ = x+n̂
can be regarded as a noisy version of image x with noise
vector n̂. In the following, the discussion will focus on
denoising ŷ rather than denoising y, but the objective remains
unchanged, i.e., getting the same clean image x. Specifically,
if one can obtain a high-quality solution x from ŷ, then there
exists an algorithm taking y to the clean image because ŷ
can be computed from y. Such an algorithm can be achieved,
for instance, by R(V (y)) where R is a denoiser for the ŷ
problem and V (y) := ŷ. It should be noted that the difficulty
of the denoising problem is raised because of the additional
uncertainty from the auxiliary random vector z encoded in the
observed data ŷ. However, one of the benefits of considering
ŷ is that the quantity z is known and can be leveraged for
constructing approximations to the MSE without knowing x
or n as we will show in the following.

For the ŷ denoising problem, the MSE associated with the
denoiser R is defined as

Jmse(R) := E
(
‖R(ŷ)− x‖2

)
(6)

where the expectation E is taken over random variables x, n
and z. This is connected to J0 via Jmse(R) = J0(R(V )).
Since V is known, it can be shown that minR J0(R) ≤
minR Jmse(R). Nevertheless, if α is close to zero, the noise
distributions of y and V (y) are close, so the minimum of J0
can be approximated by the minimum of Jmse which promises
similar denoising quality.

Now, using the auxiliary vector z, we define the following
objective function for our proposed partially linear denoiser

J (R) := E
(
‖R(ŷ)− (y − z/α)‖2

)
. (7)

for α 6= 0. Indeed, as we will see later in Subsections III-B
and III-C, if we consider the partially linear denoising model,
then J provides a good estimate of Jmse. More precisely,
according to the definition (4), we consider a set of denoisers
for ŷ that have the form

R(ŷ) = g(x) + Ln̂+ e (8)

where n̂ is defined in (5), and L and e are depending on x and
(x, n̂), respectively, and the residual e is of small variance.
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In the rest of this section, we show that for α 6= 0 and
partially linear denoiser R, the term J (R) in (7) approximates
the MSE Jmse(R) up to an additive constant. This implies that
an optimal denoiser of this class can be computed even if the
distribution of ground truth images x and the distribution of n
are not known. We then discuss unsupervised learning methods
based on our proposed objective J (R) for image restoration
tasks like denoising and deblurring.

B. Linear minimum mean square error estimator

To start with, we focus the discussion on the simplest case,
in which the denoiser R is linear. This is a subset of the set of
partially linear denoisers (8) with g = L and e = 0. The best
estimator in this setting is the linear minimum mean square
error (LMMSE) estimator, i.e., the minimizer of Jmse(R) in
(6) over all linear denoisers R. The following proposition
establishes the equivalence between the MSE loss and J (R)
in (7) over linear denoisers.

Proposition 1. If n and z satisfy Assumption (A1) - (A4) and
R is linear, then there is some constant c not depending on
R, such that

J (R) = E
(
‖Rŷ − x‖2

)
+ c. (9)

Proof. If R is linear, then from the definitions of y and ŷ,

Rŷ − (y − z/α) = (Rŷ − x)− (n− z/α),

and Rŷ − x = (Rx− x) + (Rn+ αRz). Let 〈·, ·〉 denote
the inner product operator. Then, using the above, (7) can be
rewritten as

J (R) =E
(
‖Rŷ − x‖2

)
+ E

(
‖n− z/α‖2

)
− 2E(〈Rx− x,n− z/α〉)
− 2E(〈Rn+ αRz,n− z/α〉).

(10)

Here the expectations are taken over x, n and z. We next
show that the last two terms on the right hand side of (10)
vanish.

First, since n has zero mean conditioned on x accord-
ing to Assumption (A1), it holds that E(〈Rx− x,n〉) =
E(E(〈Rx− x,n〉 | x)) = 0. The same property applies to
z by Assumption (A2), so E(〈Rx− x, z〉) = 0. With a linear
combination of these two equalities,

E(〈Rx− x,n− z/α〉) = 0. (11)

Second, given the fact that R is linear and both n and Rn
have zero mean conditioned on x, we have

E(〈Rn,n〉 | x) =tr(Cov(Rn,n | x))
=tr(R Cov(n,n | x))

in which tr(·) denotes the trace of the matrix. The same
equality holds for z, i.e.,

E(〈Rz, z〉 | x) = tr(R Cov(z, z | x))

Therefore, it follows from Assumption (A4) that
E(〈Rn,n〉 | x) = E(〈Rz, z〉 | x). This together with
Assumption (A3) gives

E(〈Rn+ αRz,n− z/α〉 | x)
=E(〈Rn,n〉 | x) + E(〈αRz,−z/α〉 | x) = 0.

(12)

Taking expectation with respect to x, we have

E(〈Rn+ αRz,n− z/α〉) = 0. (13)

Finally, let c := E
(
‖n− z/α‖2

)
, then Equation (10), (11)

and (13) imply (9) which completes the proof.

According to Proposition 1, for all linear denoisers, the
term J (R) in (7) differs from the MSE by a constant c not
depending on R. Therefore a minimization of J (R) over all
linear R also leads to the LMMSE estimator. We remark that
the objective function (7) is not defined based on the ground
truth image x, and the distribution of the random vector n
is not necessarily known or equal to that of z. In fact, the
denoising problem can be reformulated as follows. Given R,
the quantity Rŷ is known, and we want to decouple the term
Rŷ − x from

Rŷ − y = (Rŷ − x)− n. (14)

In the loss J (R), this is implemented by adding the scaled
auxiliary vector z/α to both sides of (14). The vector z/α
compensates the noise n in the sense that, when taking
the expectation of ‖Rŷ − y + z/α‖2 over n and z, the n-
related term E(〈Rn,n〉 | x) is canceled by the z-related term
E(〈Rz, z〉 | x) (i.e., the last equality in (12)), which leads to
(9).

C. Optimal partially linear denoiser

Though linear denoisers have nice properties that link (7) to
the MSE, they may not be the best denoisers for imaging data.
Nonlinearity is unavoidable in order to achieve good denoising
quality and preserve fine structures such as edges in the image.
To this end, we consider a more general class of denoisers that
are partially linear, as expressed in (8), where g is nonlinear
and e is not necessarily zero.

In a special case where the denoiser outputs exactly the
clean image, i.e. R(ŷ) := x, R is also partially linear with L
and e being both zero. However, such denoisers do not exist
in most settings. Nevertheless, for good denoisers one could
still expect the residual term e to be small.

The equivalence of the two objective functions stated in
Proposition 1 does not hold for nonzero e. It is therefore of
interest to know how well (7) approximates the MSE in this
general case. The next proposition quantifies the approxima-
tion error in the presence of a small nonzero residual term
e.

Proposition 2. If n and z satisfy Assumption (A1) - (A4) and
R satisfies (8), then there is some constant c not depending
on R, such that

J (R) = E
(
‖R(ŷ)− x‖2

)
− 2E(〈e,n− z/α〉) + c (15)
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Additionally, if the variance E
(
‖e‖2

)
≤ ε2 for ε > 0, then

the approximation error

Err :=
∣∣∣J (R)− E(‖R(ŷ)− x‖2)− c

∣∣∣
≤2ε

√
E(‖n− z/α‖2)

(16)

If furthermore the residual e(x, n̂) is Lipschitz continuous
with respect to n̂ i.e., ‖e(x, n̂1)− e(x, n̂2)‖ ≤ K‖n̂1− n̂2‖
for some constant K, then

Err ≤ 2ε

√
E(‖n‖2) + 2KE

(
‖z‖2

)
. (17)

Proof. By the decomposition of R in (8),

R(ŷ)− (y − z/α) =(g(x) + Ln̂+ e− x)

− (n− z/α),
(18)

where n̂ is defined in (5). For function g(·), from assumption
(A1) and (A2) it is clear that E(〈g(x),n− z/α〉 | x) = 0.
Therefore,

E(〈g(x)− x,n− z/α〉) = 0. (19)

Moreover, as L is linear, with a similar argument to the proof
of (13), we can show that

E(〈Ln̂,n− z/α〉) = 0. (20)

According to Equation (18), (19) and (20), if we let c :=
E
(
‖n− z/α‖2

)
, then Equation (15) holds.

Next, we consider the bound of E(〈e,n− z/α〉). Assuming
that E(‖e‖2) ≤ ε2, a straightforward application of Cauchy-
Schwarz inequalities leads to

|E(〈e,n− z/α〉)| ≤
√
E
(
‖e‖2

)√
E
(
‖n− z/α‖2

)
= ε

√
E
(
‖n− z/α‖2

)
,

(21)

and therefore Equation (16) holds.
Furthermore, assume that e := e(x,n+ αz) is Lipschitz

continues w.r.t. n̂ := n+αz with Lipschitz constant K. Since
z has zero mean conditioned on x and n, the conditional
expectation

E(〈e, z/α〉 | x,n) =E(〈e0, z/α〉 | x,n)
+ E(〈e− e0, z/α〉 | x,n)
≤0 + E(K〈z, z〉 | x,n),

where e0 := e(x,n+ 0). So E(〈e, z/α〉) ≤ KE
(
‖z‖2

)
, and

because of symmetry we have E(〈e, z/α〉) ≥ −KE
(
‖z‖2

)
.

Finally,

|E(〈e,n− z/α〉)| ≤ |E(〈e,n〉)|+ |E(〈e, z/α〉)|

≤ε
√
E
(
‖n‖2

)
+KE

(
‖z‖2

)
and the inequality (17) follows.

From the bounds given in Proposition 2, if the variance
of e is small, then the error (7) provides a good estimate to
the MSE. Note that making a Lipschitz continuity assumption

on e, the error bound in (16) can be further improved to
(17) which is independent of α (in contrast to (16) where the
bound has a 1/α factor). In practice, this Lipschitz continuity
assumption is not restrictive as we expect that the denoiser R
is stable with respect to small perturbations in ŷ and therefore
has a small Lipschitz constant K for e.

Remark 2 (Estimated noise variance). If Assumption (A4)
does not hold, then the bound (16) also depends on the
linear operator L. Consider for instance Cov(z, z | x) =
(1 + β)Cov(n,n | x) where β > −1. Then Equation (15)
becomes J (R) = E

(
‖R(ŷ)− x‖2

)
−2E(〈e,n− z/α〉)+c+

2βE(〈z, Lz〉), the proof of which is given in Appendix A. The
minimization of J(R) therefore favors denoisers with small
βE(〈z, Lz〉). Such a property can be used to construct criteria
for whether the noise variance is underestimated (β < 0)
or overestimated (β > 0), e.g., by checking the value of
E(〈z, Lz〉) for the minimizer of J . Examples will be given
in Section IV-B.

Next, we take a closer look at the errors of the proposed
denoisers. We first introduce the set Rε of partially linear
denoisers. Second, the distance between the minimizers of
J and Jmse over Rε is estimated. Then we verify the
convergence of the proposed denoisers to the best denoisers for
corrupted images generated from a single ground truth image.
Finally, focusing on a special subset of images that consists
of constant patches, we demonstrate the partial linearity of the
optimal denoisers with an example.

For ε > 0, let Rε be the set of denoiser satisfying (8) with
variance of e less than or equal to ε2, i.e.,

Rε := {R | ∃g, L, e, such that R(ŷ) = g(x) + Ln̂+ e,

L is linear, and E
(
‖e‖2

)
≤ ε2

}
.

Lemma 3 (Convexity). For any ε ≥ 0, Rε is a convex set.

Proof. If R1, R2 ∈ Rε, then there exist g1, g2, linear operators
L1, L2, and residual terms e1, e2, such that

Ri(ŷ) = gi(x) + Lin̂+ ei, E
(
‖ei‖2

)
≤ ε2, i ∈ {1, 2}.

For any λ1 ∈ [0, 1] and λ2 := 1− λ1,

λ1R1(ŷ) + λ2R2(ŷ) =

(
2∑
i=1

λigi

)
(x) +

(
2∑
i=1

λiLi

)
(n̂)

+

2∑
i=1

λiei.

It is easy to see that
∑2
i=1 λiLi is also linear and

E
(
‖∑2

i=1 λiei‖
)2
≤ ε2. Therefore λR1+λ2R2 ∈ Rε which

implies that Rε is convex.

We are interested in the best denoisers in Rε with as small
MSE as possible. More precisely, for small δ ≥ 0, we define
the MMSE denoiser, denoted by Rε,δ , as one of the denoisers
in Rε that satisfies

Jmse

(
Rε,δ

)
≤ inf
R∈Rε

Jmse(R) + δ, (22)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

where Jmse are defined in (6). Note that Rε,δ exists for arbi-
trarily small positive δ. Based on the approximation properties
stated in Proposition 2, we propose a denoiser R̂ε,δ ∈ Rε
satisfying

J
(
R̂ε,δ

)
≤ inf
R∈Rε

J (R) + δ (23)

as an alternative version of Rε,δ . In light of the theoretical
bound (16), the distance between Rε,δ and R̂ε,δ has an upper
bound described in the following proposition.

Proposition 4. Let the denoisers Rε,δ and R̂ε,δ be given by
(22) and (23) respectively. If n and z satisfy Assumption (A1)
- (A4) and 0 < δ < 1, it holds that

E
(∥∥∥Rε,δ(ŷ)− R̂ε,δ(ŷ)∥∥∥2)

≤ 2ε

1−
√
δ

√
E(‖n− z/α‖2) +

√
δ

1−
√
δ
,

where the expectation is taken over x, n and z.

The proof is given in Appendix A. The bound in Proposition

4 converges to 2ε

√
E(‖n− z/α‖2) as δ tends to 0, and it

converges to 0 as ε and δ converge to zero.
Building on Proposition 4, we further analyze the conver-

gence of the proposed solutions for a special case where all
realizations of the corrupted images ŷ are generated from
the same clean image. The next corollary shows that, in this
setting, the approximation error is at most of the same order as
ε2, regardless of the noise distributions or the noise variance.
The proof of this corollary is given in Appendix A.

Corollary 5. Assume that the conditions in Proposition 4
hold. If x follows a delta distribution, i.e., the probability
P (x = x) = 1 and P (x 6= x) = 0 for some image x, then

E
(∥∥∥Rε,δ(ŷ)− R̂ε,δ(ŷ)∥∥∥2) ≤ ε2 + 2

√
δ

1−
√
δ
. (24)

Proposition 4 and Corollary 5 illustrate that the minimizers
of J are good estimates of the best partially denoiser when
ε is small. In principle, e should be much smaller than the
noise itself, as this is a necessary condition for the denoiser
being robust to different realizations of n̂. We can provide
some more insight into the size of the residual term for high
quality denoisers when applied to a special subset of images.
Smooth regions are one of the most important components in
natural images, and they often account for a large fraction
of the pixels. Here we study the basic case with constant
images and pixelwise independent noise. We give an example
to demonstrate the scale of the residual term of the minimum
MSE denoiser for constant image patches.

Example (Constant patches). Assume that x models constant
patches of size 21×21 pixels. The pixel values are uniformly
distributed in [0, λ] where λ > 0 is a constant. The noise is
pixelwise independent conditioned on x. For pixel i, ŷi ∼
Pois(xi) where Pois is the Poisson distribution. The optimal
denoised images R0(ŷ), where R0 minimizes the cost Jmse(·),
are therefore constant images. In this example, given R0 and
x, the quantities g(x) and L (defined in (8)) are computed

using Remark 1. Consequently, g(x), Ln̂ and e are constant
images. The values of R0(ŷ) are plotted versus g(x) + Ln̂
(for different ground truth values and for different λ) on the
last two rows of Fig. 2, where the results are computed based
on a deep CNN approximation to R0. Each yellow dot in the
plot represents a realization of the noise, and the blue line
represents e = 0. The plots suggest that e has small variances
and hence the set Rε maintains good approximations to R0

for small ε.
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Fig. 2. Reconstructions for constant image patches corrupted by Poisson noise
with parameter λ = 1, 2 and 4 (i.e., the column (a)-(c) respectively). Top
row: samples of corrupted patches (the ground truth is x = 0.5λ). Second
and third rows: the optimal reconstructions R0(ŷ) plotted against g(x)+Ln̂
(represented by the yellow dots, each of which is generated with a realization
of noise n̂). The blue line represents e=0, i.e., (g(x) + Ln̂, g(x) + Ln̂).

D. Learning a denoiser from noisy samples.

For learning the denoiser we consider parametrized denois-
ing models Rθ, e.g., deep CNNs, that are parameterized by θ.
Suppose that a set {yi} of realizations of y, e.g., the set of
noisy images that one wants to denoise, is given. The noise
in these noisy images satisfies Assumption (A1). Associated
with each yi, we define zi as a realization of the auxiliary
random vector z that satisfies (A2) - (A4). In (A2) and (A4)
only the first two moments of z, rather than its distribution,
are specified. Therefore without loss of generality, one can
randomly generate zi from normal distributions. With the
auxiliary vector zi, the samples of ŷ, denoted by ŷi, are
computed according to Equation (5). Based on the objective
function (7), we minimize the empirical loss function

L(θ) :=
∑
i

‖Rθ(ŷi)− (yi − zi/α)‖2 (25)

under the condition that Rθ ∈ Rε. This condition can be
implemented with the partial linearity constraint described
below.

Partial linearity constraint. To preserve the partial linearity
during training, restriction on the variance of the residual term
e in (8) is required. Unfortunately, a direct evaluation of e is
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not feasible due to 1) the fact that the formulation of e depends
on g(x) and L which are unknown, and 2) the condition that
only one noisy observation for each image is given. However,
since g(x) and L depend only on the image x and L is linear,
we can remove these two terms by perturbing ŷ. One simple
way of implementing this is to find q1 and q2, two perturbed
versions of ŷ, satisfying ŷ = τq1+(1−τ)q2 where τ ∈ [0, 1].
Let the residual terms associated with R(q1) and R(q2) be
denoted by e1 and e2 respectively. Then, from Equation (8)
we have

R(ŷ)− τR(q1)− (1− τ)R(q2)
=e− τe1 − (1− τ)e2.

(26)

By the assumption that e, e1 and e2 are small, based on the
representation of the residual terms in (26), one can therefore
penalize ψ(R(ŷ)− τR(q1)− (1− τ)R(q2)) for some metric
ψ.

E. Learning image deblurring without ground truth images

The proposed partially linear denoisers can be generalized to
learning image reconstructors for other linear inverse problems
such as image deblurring, in particular when the ground truth
images are missing. We repeat the observation model (3) here

y = Ax+ n (27)

where A is a linear forward operator (such as the Radon
transform for CT reconstruction, a convolution operator for
image deblurring, etc), and n models the zero-mean noise. For
many inverse imaging problems, the naive reconstruction A†y,
is based on a direct inversion of the linear operator A given
by the pseudo-inverse operator A†. Due to ill-conditioning
of A such inversion is typically unstable and therefore not
accurate in the presence of noise. If A, however, has full
column rank, then the resulting artifacts in the reconstruction
could be remedied by denoising A†y. In fact, it is easy to see
that n† := A†y−x = A†n has zero mean. The covariance of
n† can be estimated as long as the covariance of n is known.
Therefore a straightforward application of the partially linear
denoisers to the noisy reconstruction A†y leads to an estimate
of x. Various approaches have been proposed for denoising
A†y in a data-driven post-processing setup (see e.g., [13, 11]).
These learned post-processing techniques require noisy-clean
image pairs as training data. Another class of methods, in
contrast, leverage denoisers to construct regularization for
(27). For instance, the Regularization by Denoising (RED)
methods [28, 12] minimize a variational objective function
with a regularization term derived from the denoisers. The
Plug-and-Play Prior framework [37, 33] is based on variable
splitting algorithms for the Maximum a Posteriori (MAP)
optimization problem with the proximal mapping associated
with the regularization term being replaced by the denoisers.
These denoiser-based regularization approaches require prede-
fined denoisers. However, our framework does not require any
noisy-clean pair or any predefined denoiser. In particular, our
proposed partially linear denoiser allows training an estimator
from noisy data alone.

Image deblurring is a special case of (27) where A rep-
resents a convolutional kernel. In practice, A is governed by

different imaging factors including motion and camera focus.
In the context of the proposed partial linear denoiser, one way
to solve the deblurring problem is to train a single model Rθ
that maps the measurement y directly to x. Here, knowledge
of A is indirectly encoded in Rθ. Assuming that the training
data contains noisy samples of ŷ and the blurring kernel A but
no ground truth images, then similar to (7) one can minimize
the loss function

E
(
‖ARθ(ŷ)− (y − z/α)‖2

)
, (28)

and in this case, ARθ acts as a partially linear denoiser. At test
time, the deblurred image can be directly computed as Rθ(ŷ)
without knowing the operator A. These considerations also
draw connections of the partial linear denoiser to the deep
image prior approach [35]. There, an implicit regularizer is
introduced, based on a convolutional neural network Rθ and
a sole data-fitting loss function is minimized in the training.
Early stopping is applied to prevent the estimator from over-
fitting to the noise. With the partial linearity structure, how-
ever, we establish a connection between the cost (28) and the
MSE of the noise free measurement Ax which aims to get
ARθ(ŷ) close to Ax rather than its noisy versions.

IV. EXPERIMENTS

In this section, we report experimental results to demon-
strate the efficiency of the proposed approach for different
denoising tasks and for deblurring1. Firstly, we start by com-
paring the partial linearity of classical denoisers including total
variation (TV) denoising [30], BM3D [6], as well as CNN
based denoisers (see Subsection IV-A for details). Secondly,
we evaluate our method on denoising problems with synthetic
noise (Subsection IV-B1, IV-B3) and analyse its robustness
towards errors in the estimate of the noise variance (Subsection
IV-B2). Thirdly, a numerical study on the stability of our
approach with respect to varying noise levels is given and
the importance of the partially linear constraint is investigated
(Subsection IV-C). Fourthly, the proposed approach is used
to denoise real microscopy images (Subsection IV-D). Finally,
we apply our approach to learn an image deblurring model,
using a set of single noisy and blurry observations of the
images as training data. The details of the learning methods
and the results for the deblurring experiment are presented in
Subsection IV-E.

A. Partial linearity of denoisers

In this test, we investigate the partial linearity of some exist-
ing standard denoising approaches, including the TV approach
[30], BM3D [6] and DnCNN [41]. For the convenience of
the readers, the formula of the partially linear denoiser (7) is
repeated here

R(ŷ) = g(x) + Ln̂+ e, (29)

where R is the underlying denoiser. In particular, the DnCNN
is trained by minimizing the standard empirical MSE loss (6)
with a training set of 400 images with ground truth [41].

1The code will be made available at https://github.com/RK621/Unsupervised-
Restoration-PLD.
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For a given image x, we compute the decomposition (29)
using Remark 1. Specifically, g(x) = E(R(ŷ) | x) and L =

minL0∈L E
(
‖R(ŷ)− g(x)− L0n̂‖2

)
where the expectation

is taken over n̂, and L denotes the set of linear operators. In
this example, we use a standard test image called parrot (cf. top
middle of Fig. 1) as the ground truth image, i.e., a realization
of x. The noise n̂ is i.i.d. Gaussian noise with zero mean and
standard deviation 25 (corresponding to 256 gray levels). The
expectations are evaluated using 20000 random realizations of
the pair (ŷ, R(ŷ)).

TABLE I
THE PSNR FOR R (FIRST ROW), THE VARIANCE OF e AVERAGED OVER

ALL PIXELS (SECOND ROW), AND THE PSNR FOR MODIFIED DENOISERS
R̂ := g(x) + Ln̂ (THIRD ROW) ON THE IMAGE PARROT.

Denoiser TV BM3D DnCNN
PSNR (dB) 27.62 28.87 29.47
ε2/m 8.751× 10−5 4.875× 10−5 4.281× 10−5

Modified PSNR (dB) 27.82 29.00 29.60

For the three denoisers, we report the variance of e averaged
over the image pixels of the parrot image (i.e., ε2/m where m
denotes the number of pixels in e) in Table I. A comparison of
the accuracy of the methods, measured in PSNR, is also given
in the table. All figures reported in the table are averaged
over 8000 independent runs with different realizations of ŷ.
Based on the table, the DnCNN achieves the best denoising
quality, and it outperforms BM3D by around 0.5 dB and the
TV approach by around 1.8 dB. All three methods have ε2/m
less than 10−4, and the value for the CNN denoiser is about
half of that of the TV method.
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Fig. 3. The partial linearity of three denoisers. Top row: denoised images
by TV method, BM3D, and DnCNN respectively. Bottom row: the values of
[R(y) − g(x)]i plotted against [Ln̂]i where i is the pixel indicated by the
red dot on the top row. Each plot contains 8000 dots associated with different
realizations of n̂.

Given a denoiser R, in order to study the partial linearity
we consider the pair

([Ln̂]i, [R(ŷ)− g(x)]i) (30)

where i denotes a fixed pixel (localized by the red dot on the
first row of Fig. 3). To visualize the linearity for the three
denoisers, the pair (30) is plotted on the second row of Fig.

3 under 8000 realizations of the noise n̂. Each point in the
plot corresponds to one realization. As shown in the figure,
all the denoisers have certain degrees of partial linearity at the
pixel i. For the TV denoiser, the residual e has a relatively
larger variance (also illustrated by Table I) and there are some
outliers for big |[Ln̂]i|.

B. Denoising experiments

We consider two types of synthetic noises (Gaussian noise
and Poisson noise), and the performance of our method is
compared with recent denoising methods that are not trained
on ground truth images, such as SURE [32], Noise2Self
[2] and Noisier2Noise [27], along with the classic BM3D
approach [6]. Throughout the denoising experiments, we use
the same network architecture DnCNN [41] for the fully
supervised baseline (we will call it DnCNN in the subsequent),
SURE, Noise2Self, Noisier2Noise and our approaches. The
experimental setups for the five methods are the same, except
that the clean images are used to train the DnCNN while they
are unseen by the latter four methods in the learning phase.
All models are trained on a benchmark denoising dataset [41]
consisting of 400 training images of size 180×180. In the
training phase, we feed the CNNs with image patches of size
40× 40 and set a batch size of 128. Augmentations such
as random flipping and random cropping are applied to the
patches. In the inference phase, the inputs to the networks
are the whole noisy images. In particular, in our approach
we do not include the auxiliary vector z at this stage, and
the denoised images are the outputs of the network without
any post-processing. We evaluate the denoising quality on two
different test image sets, namely the BSD68 (containing 68
images) [26] and the 12 wildly used images (Set12) [6].

Training. To train our denoising model, we minimize the
loss function (25) using the Adam optimizer [14]. The min-
imization process consists of two stages. In the first stage,
we fix α=1 and minimize the loss function (25) without con-
straints. In the second stage, we randomly choose α∈ [0.1, 0.5]
for each of the noisy samples, and additionally, in order to
control the variance of e defined in (8), we impose a partially
linear constraint (26). The implementation details of the latter
will be given in the next paragraph. Both stages contain 2×105
optimization steps with an initial learning rate 0.001, which
then drops to 0.0001 and 0.00005 at the 6×104th step and
1.2×105th step, respectively. Throughout the experiments, zi,
i.e., the samples of the auxiliary random vector z in (25), are
generated from Gaussian distributions.

Partially linear constraint. We implement the partially linear
constraint by perturbing the noisy images ŷi (i.e., samples
of the noisy image ŷ) and by following the formula (26).
Specifically, for each ŷi let β(1)

i and β(2)
i be random numbers

uniformly distributed in [1, 1.5], and let qi be a perturbation
vector randomly generated from the same distribution as
zi. With qi we construct two perturbed versions of ŷi as
q
(1)
i := ŷi − β(1)

i qi and q
(2)
i := ŷi + β

(2)
i qi respectively. Then

we have the linear relationship

ŷi = τ1q
(1)
i + τ2q

(2)
i
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where τ1 := β
(2)
i /

(
β
(1)
i + β

(2)
i

)
and τ2 := 1−τ1. In practice,

we let qi be independent of zi. Since the noise levels of q(1)i
and q(2)i depend on the pixel values of qi, we modify qi to be
sparse to avoid raising the noise level too much. To do this,
we randomly select 1/25 of the pixels, the pairwise distances
of which are at least 4 pixels. The remaining pixels of qi are
set to zero, i.e., no perturbations are applied to these pixels.
To avoid having outliers at some individual pixels caused by
the perturbations, we also clip qi such that the pixel values
q
(1)
i and q(2)i fit in the range [1.2a− 0.2b, 1.2b− 0.2a] where
a :=minj [ŷi]j and b :=maxj [ŷi]j . Having q(1)i and q(2)i , based
on Property (26) we add the following penalty term to the loss
function

Lc(θ) :=
∑
i

∥∥∥∥∥M
(
Rθ(ŷi)−

2∑
k=1

τkRθ

(
q
(k)
i

))∥∥∥∥∥
2

, (31)

where θ are the network parameters, M is a diagonal matrix.
The diagonal entries of M are set as

Mjj := 1/
[∣∣∣q(1)i − q(2)i ∣∣∣+ 0.1σ

]
j
,

if [qi]j 6= 0, otherwise Mjj := 0, where σ > 0 is the
square root of the largest pixel-wise variance of the noise n.
Note that having M in the loss (31) means that we penalize
the nonlinearity at the perturbed pixels only. The term 0.1σ
prevents division by very small numbers. In summary, the loss
function is L + γLc where L is defined in (25), and γ is a
hyperparameter which can be tuned based on the quality of
the denoised images.

1) Gaussian noise: In this experiment, we test the denoisers
for restoring images corrupted by Gaussian white noise. The
training sets for our unsupervised approach are the noisy
images. We consider two different levels of noise with standard
deviation σ = 25 and σ = 50 (corresponding to 256 gray
levels), respectively. Associated with the two noise levels,
two denoisers are trained using the proposed method, and the
ground truth images are unseen during the training phases. In
both cases, the parameter γ for the partially linear constraint
term (31) is set to 4.

The test results for BSD68 [26] are reported in Table II,
where we call our method DPLD (deep partially linear de-
noiser). The denoising quality is measured by the peak signal-
to-noise ratio (PSNR) and the structural similarity (SSIM)
index. We compare our denoiser with BM3D [6], the self-
supervised method Noise2Self [2], SURE [32], Noisier2Noise
[27] as well as the fully-supervised DnCNN [41]. It is worth
mentioning that the last denoiser DnCNN, in contrast to the
other five, requires the noisy-clean image pairs for training.

As shown in Table II, the fully supervised denoiser DnCNN
achieves the best accuracy. This is not surprising as it learns
from the ground truth images which are not provided for the
other ones. Our method is the best among the denoisers trained
without the ground truth. It outperforms the Noise2Self, SURE
and Noisier2Noise by 1.6 dB, 0.09 dB and 0.12 dB respec-
tively for noise level σ = 25, and outperforms them by 0.98
dB, 0.25 dB and 0.17 dB respectively in the σ = 50 case.
Compared to the DnCNN, the PSNR values of DPLD are

TABLE II
DENOISING QUALITY, MEASURED BY PSNR (DB) AND SSIM, FOR

BSD68 [26] CORRUPTED BY GAUSSIAN NOISE.

Noise Level σ = 25 σ = 50
Measure PSNR SSIM PSNR SSIM

BM3D[6] 28.58 0.8861 25.66 0.8041
Noise2Self[2] 27.48 0.8588 25.15 0.7818

SURE[32] 28.99 0.8961 25.88 0.8118
Noisier2Noise[27] 28.96 0.8951 25.96 0.8125

DPLD 29.08 0.8961 26.13 0.8196
DnCNN[41] 29.22 0.9017 26.24 0.8265

lower by 0.14 dB and 0.11 dB for noise levels σ = 25 and
σ=50 respectively.

The comparison of the denoisers on the 12 wildly used
images [6] is given in Table III. For noise level σ = 50, the
DPLD reaches the best PSNR for all images among the five
denoisers that do not consume ground truth data, except for the
images Parrot and Barbara. It is interesting to note that BM3D
performs better than the fully supervised method DnCNN on
the image Barbara. On average, for σ = 50 it outperforms
Noise2Self by 0.91 dB and SURE by 0.43 dB respectively,
and it falls behind the DnCNN by 0.14 dB.

Fig. 4 displays the denoising results for the image ”Boat”.
It can be seen that, though the Noise2Self, SURE, Nois-
ier2Noise, and DPLD do not see the clean images or have
any explicit smoothness constraints during the training stages,
they yield denoised images with smooth regions (Cf. the 2nd
to 5th columns of Fig. 4, respectively). The resulted image
from DPLD looks close to that of DnCNN visually. The output
of Noise2Self has some relatively blurry edges compared to
DPLD and DnCNN, e.g., at the letters displayed in the last
row of Fig. 4.

2) Training with estimated noise variance: We report ad-
ditional results for the scenarios where only an inaccurate
estimated noise variance (ENV) is available (for generating
z) during training. The results are obtained under the same
settings as Subsection IV-B1 except that an ENV is used.

- On the top row of Fig. 5, the PSNR values of the test
results on BSD68 [26], for both noise levels σ=25 and
σ=50, are plotted against the relative errors in the ENV
(1 + β)σ2 (where β=−16%,−8%, · · · , 16%). For both
noise levels, the errors in the ENV lead to a decrease in
PSNR. The reduction is less significant when the noise
variance is underestimated than when it is overestimated.
The drop in PSNR is small when the error in the ENV is
small (<0.1 dB for an ENV 4% less than its true value),
and our method maintains an accuracy significantly better
than Noise2Self [2] for small errors in the ENV.

- We observe a correlation between the errors in the ENV
and the term E(〈z, Lz〉) (see Fig. 5, bottom row). Here
L is computed based on Remark 1, with a constant
ground truth image x (pixel values: 0.5, size: 40×40)
and generated n following the same distribution as z
(variance: (1+β)σ2). In the plots, E(〈z, Lz〉) is a small
positive number when β = 0, and it increases (resp.
decreases) as the ENV decreases (resp. increases). The
is due to the extra term 2βE(〈z, Lz〉) in the objective
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TABLE III
DENOISING QUALITY (IN DB) FOR THE 12 WILDLY USED IMAGE [6] AND GAUSSIAN NOISE

Denoiser Average C. man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple

σ
=

2
5

BM3D 29.97 29.39 32.98 30.18 28.61 29.3 28.43 28.83 32.05 30.61 29.86 29.64 29.72
Noise2Self 28.81 27.95 32.22 29.51 28.12 28.64 26.7 27.58 31.52 26.41 29.06 29.04 28.94

SURE 30.12 29.75 32.65 30.51 29.15 30.08 28.97 29.32 32.08 29.28 29.93 29.94 29.82
Noisier2Noise 30.12 29.69 32.74 30.52 29.13 30.10 28.95 29.32 32.10 29.22 29.92 29.94 29.79

DPLD 30.28 29.84 33.04 30.69 29.26 30.21 28.97 29.30 32.33 29.66 30.10 30.02 29.97
DnCNN 30.44 30.08 33.13 30.8 29.44 30.39 29.12 29.48 32.43 29.96 30.21 30.12 30.12

σ
=

5
0

BM3D 26.71 26.36 29.75 26.69 24.99 25.9 25.22 25.74 28.84 26.98 26.76 26.84 26.49
Noise2Self 26.14 25.60 29.20 26.36 24.67 25.68 24.53 25.29 28.55 24.56 26.45 26.64 26.10

SURE 26.62 26.45 29.25 26.74 25.20 26.23 25.50 26.10 28.70 25.01 26.80 26.99 26.43
Noisier2Noise 26.79 26.61 29.65 26.98 25.25 26.49 25.62 26.21 28.94 25.13 26.92 27.08 26.56

DPLD 27.05 26.89 30.01 27.22 25.45 26.72 25.76 26.36 29.24 25.70 27.13 27.23 26.83
DnCNN 27.19 27.03 30.10 27.36 25.55 26.87 25.89 26.45 29.29 26.26 27.22 27.27 26.94

Noisy Noise2Self SURE Noisier2Noise DPLD DnCNN

Fig. 4. Denoised results for the image Boat (with Gaussian noise σ=25). The last two rows are enlarged views of the indicated regions.
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Fig. 5. The influence of inaccurate noise variance during training. Top row:
PSNR on the test set BSD68 [26]. The dotted horizontal lines indicate results
of Noise2Self [2]. Bottom row: the mean of 〈z, Lz〉 of the learned denoisers.

function J (·) as shown in Remark 2.
Overall, the performance is stable to small errors in ENV, and
importantly, by analyzing the structure of the learned denoiser
one could investigate the error in the noise variance. The
quantity E(〈z, Lz〉) is helpful for choosing a better denoising
model when the noise variance is unknown.

3) Poisson noise: We evaluate our method on three differ-
ent levels of Poisson noise, with parameter λ=60, λ=30 and
λ = 15 respectively. The training settings for the denoisers
are the same as the ones for Gaussian noise, except that the
variances of the auxiliary vector samples zi are computed dif-
ferently. As the noise n is image dependent and not identically
distributed for all image pixels, its variances are not known
without having the ground truth image. Note that however
our method does not require a precise model on the noise
distribution, but only an estimate of the noise variance. At
pixel k, the noisy value satisfies λ[y]k ∼ Pois(λ[x]k) where
λ is a known constant. So the noise variance var([nk] | [x]k)=
var([y]k | [x]k)= 1

λ [x]k=
1
λE([y]k | [x]k). This implies that the

sample value of 1
λ [y]k provides an unbiased estimate of the

noise variance. The entries of the auxiliary vector are then gen-
erated as [z]k=rk

√
[y]k/λ where rk is the standard Gaussian
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random variable, hence var([z]k | [x]k) = 1
λE([y]k | [x]k) =

var([n]k | [x]k). The partially linear constraint parameter γ
for (31) is tuned manually for the three noise levels. In this
subsection, unless specified otherwise, the results are obtained
by setting γ = 4, 16, 64 for λ = 60, 30, 15, respectively.

TABLE IV
DENOISING QUALITY, MEASURED BY PSNR (DB) AND SSIM, FOR

BSD68 [26] CORRUPTED BY POISSON NOISE.

Noise
Level

Noise2Self[2] DPLD DnCNN[41]
PSNR SSIM PSNR SSIM PSNR SSIM

λ = 60 27.78 0.8660 29.28 0.9018 29.43 0.9081
λ = 30 26.56 0.8285 27.65 0.8625 27.86 0.8743
λ = 15 25.42 0.7902 26.16 0.8210 26.39 0.8348

For comparison, we train denoisers with Noise2Self [2] and
DnCNN [41] on the same training set (whereas the ground
truth images are available only for DnCNN). The denoising
results on the test set BSD68 are reported in Table IV. Trained
on the ground truth images, the DnCNN has the highest
average PSNR for all three noise levels. The proposed method
DPLD outperforms Noise2Self by 1.5 dB, 1.09 dB and 0.74
dB for the cases with λ = 60, 30, 15 respectively. On the
other hand, it losses 0.15 dB, 0.21 dB and 0.23 dB when
compared to DnCNN. It should be noted that when the noise
level decreases, the PSNR gap between DPLD and DnCNN
gets smaller. In contrast, the gap between Noise2Self and
DnCNN becomes larger as the noise becomes smaller. This
may be due to the fact that the Noise2Self approach can not
learn identity mapping. For a given pixel, the denoiser can
not see its observed value and has to infer its value from the
information of its neighboring pixels. If knowledge about the
noise distribution is available, then the results can be improved
by reusing the noisy images in the inference phase [16]. Our
denoiser uses all information of the noisy image, and, as shown
in Proposition 2, the gap between the DPLD and the best
denoiser in Rε tends to zero as the noise goes to zero.

Table V lists the PSNR of denoising outputs for the 12
wildly used images [6]. Similar to the Gaussian noise cases,
the proposed DPLD has higher PSNR values than Noise2Self
on all images. The DPLD outperforms Noise2Self by more
than 0.7 dB in average PSNR, and falls behind DnCNN by
less than 0.3 dB.

Fig. 6 displays an example of the denoised images. This
example shows that Noise2Self, DPLD and DnCNN are ca-
pable of recovering the details of the image, though the first
two are not exposed to the detailed structures of the images
during training. Compared to DPLD and DnCNN, the denoised
image of Noise2Self is less smooth. Also, Noise2Self tends to
remove the sharp points of a jagged edge (Cf. the third row
of Fig. 6), since it relies on the data of surrounding pixels
when restoring the pixels at the sharp point and therefore may
encourage more regularized shapes of objects.

Finally, the residual term e (defined in (4)) of three different
methods, on the test image Starfish, are presented in Fig. 7.
For each method, in order to compute e we first compute
g(x) and L with Remark 1 and using its denoised outputs for
1,600,000 realizations of noisy image y. This experiment is
carried out under the setting of Poisson noise with λ = 30.

As can be seen from Fig. 7, the error (i.e., the difference
between the ground truth and the denoised image) is an order
of magnitude smaller than the noise, while the residual term
is an order of magnitude smaller than the error. The variance
of e of the proposed denoiser is slightly smaller than the fully
supervised denoiser DnCNN, and Noise2Self has a variance
of e about two times larger than the other two.

C. Stability with respect to the partial linear constraint and
noise levels

In this experiment we study the stability of the proposed
denoiser against two parameters, γ and the noise levels. Here
we consider Poisson noise with fixed λ=30 for training, under
the same experimental setting as Subsection IV-B3.

First we study the stability concerning γ. Fig. 8 shows the
PSNR and SSIM, evaluated on the test set BSD68, for different
choices of γ used during training. The horizontal lines in
Fig. 8 show the PSNR and SSIM of the other two methods
DnCNN and Noise2Self (N2S), which do not depend on γ.
According to the figure, the learned denoiser has very low
PSNR values, when γ is very small (e.g., 10−4, which means
that less important is put on the constraint). This implies that
the partial linearity is crucial for finding a high quality denoiser
when minimizing (25). As γ becomes larger, such constraint
starts to take effect and substantially improve the denoising
performance. The peak of PSNR is achieved at around 24. For
γ in [22, 28], we observe a variation of PSNR less than 0.2
dB, which is relatively small compared to the gap between
N2S and DnCNN, before the denoising quality degrades at
very large γ values (e.g., 214).

Fig. 9 compares the robustness of the learned denoisers in
terms of different noise levels. All denoisers are trained in
the Poisson noise setting (again with λ = 30), and in our
approach the optimal γ (i.e. 24) is applied. It can be seen
that all methods suffer from a degradation in the denoising
quality when λ in testing is below 30. This is reasonable
because in general smaller λ implies higher noise and more
difficulty. Besides, the DPLD and Noise2Self, which use only
noisy images in training, are more stable than DnCNN when
λ is around 20. The PSNR of DnCNN decreases quickly
as λ decreases from 30, and it is worse than DPLD when
λ ≤ 24. However, it is interesting to note that the DPLD
outperforms the (fully supervised) DnCNN in the lower noise
cases (corresponding to big λ), even though neither the ground
truth nor less noisy samples are provided for the training. This
suggests that auxiliary random vector approach together with
the partially linear constraint brings extra robustness compared
to its counterpart that learns from a set noisy-clean image pairs
with fixed noise levels.

D. Denoising real microscopy images

We apply the proposed method to denoising real microscopy
images. Neither the ground truth images nor their noise
variance is known. Specifically, we consider three datasets,
namely N2DH-GOWT1, C2DL-MSC, and TOMO110, which
are used in [15]. The first two are fluorescence microscopy
images of GFP transfected GOWT1 mouse stem cells and rat
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TABLE V
DENOISING QUALITY (IN DB) FOR THE 12 WILDLY USED IMAGES [6] AND POISSON NOISE

Denoiser Average C. man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple

λ
=

6
0 Noise2Self 29.15 28.32 32.13 29.79 27.94 28.99 26.63 27.98 31.74 28.60 29.34 29.20 29.18

DPLD 30.34 30.05 32.89 30.82 28.93 30.54 28.64 29.68 32.56 29.79 30.09 30.02 30.07
DnCNN 30.49 30.29 33.02 30.95 29.07 30.69 28.79 29.82 32.67 30.03 30.22 30.12 30.21

λ
=

3
0 Noise2Self 27.82 27.36 30.74 28.27 26.31 27.72 25.61 26.95 30.36 26.79 27.91 28.02 27.82

DPLD 28.68 28.43 31.44 29.06 27.08 28.74 26.96 28.14 31.00 27.74 28.48 28.59 28.47
DnCNN 28.87 28.79 31.67 29.23 27.16 28.89 27.11 28.30 31.14 28.20 28.60 28.71 28.67

λ
=

1
5 Noise2Self 26.26 26.01 28.81 26.60 24.62 25.99 24.23 25.58 28.69 24.94 26.48 26.78 26.36

DPLD 26.99 27.00 29.76 27.27 25.22 26.88 25.26 26.63 29.39 25.31 27.02 27.25 26.87
DnCNN 27.28 27.32 30.13 27.51 25.42 27.10 25.47 26.85 29.62 26.30 27.20 27.37 27.11

Noisy Noise2Self DPLD DnCNN Ground truth

Fig. 6. Quality comparison for different methods for Poisson noise (λ=30). The last two rows are enlarged views of the indicated regions.

Ground truth x DnCNN error Noise2Self error Ours error

Noise n DnCNN residual e Noise2Self residual e Ours residual e

Fig. 7. Residual terms of DnCNN, Noise2Self and our method. The error images displayed on the first row are computed by subtracting the ground truth
from the denoised images. The number on the top right corner of the images is the mean square of pixel values.

mesenchymal stem cells, respectively. The training sets contain
92 images of size 1024×1024 (N2DH-GOWT1) and 48 images

of size 992×832 (C2DL-MSC). The third one TOMO110 is
acquired by a Cryo-transmission electron microscope, and for
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Fig. 9. The Robustness of the denoisers with respect to the noise levels.

this one we use one image (size 7676×7420) for training.
For each of the datasets, we first estimate the noise variance.

1). For N2DH-GOWT1 and C2DL-MSC, we first obtain a
rough estimate via computing the average squared difference
of neighboring pixels at smooth regions. We then refine the
estimated noise variance using the correlation between the
linear component of the denoiser and the errors in the noise
variance. This is motivated by the observation in Remark 2
and the numerical study in Subsection IV-B2.
2). For TOMO110, since multiple frames/copies of the image
are available because of the dose-fractionated acquisition, we
estimate the variance by computing the variance of the frames
for which the noise is independent. Note that though several
frames of the image are available, our approach learns to
denoise the sum of all frames. In contrast, the Noise2Noise
method learns to denoise only one half of the frames, the noise
level for which is therefore higher.

The details of the noise estimation and training of the
networks are given in Appendix B. The denoising results are
displayed in Fig. 10 (with enlarged views for the regions
indicated by the blue/red boxes). We compare our method with
BM3D [6] and Noise2Void [15]. As shown in the figure, the
BM3D method has denoised images that are smooth, but also
contains artifacts (e.g., in the cells on the second row of Fig.
10). The Noise2Void method yields denoising outputs with
certain graininess effect at non-constant regions (Cf. the third
row and first column of the figure). The denoised images from
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N2DH-GOWT1 C2DL-MSC TOMO110

Fig. 10. Denoising results of three real microscopy datasets (on 3 columns).

our approach look smooth, yet it shows slightly more details
of the object structures (e.g. the regions highlighted by the red
boxes).

E. Image deblurring

Following [31] and [39], we consider the image deblurring
problem (27) where the operator A is a convolution operator
with a blur kernel arising from random motions. The datasets
for the image deblurring experiments are face images from the
Helen dataset [18] and CelebA dataset [24], and we use the
same training/validation split as in [39]. This results in a total
of 161, 800 images for training, 22, 000 images for validation,
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and 16, 000 images for testing. Throughout this experiment,
the noise n is Gaussian white noise with standard deviation
σ = 2. We compare our approach with the fully supervised
deblurring method, as well as an unsupervised method [39]
that uses a pair of noisy and blurry observations per image.
To facilitate the comparison, the same U-Net architecture in
[39] for the deblurring networks is used in all three methods.

We train the deblurring networks Rθ using the empirical
loss of (28), given the random noisy samples {yi} and the
operator A,

Lb :=
∑
i

‖ARθ(ŷi)− (yi − zi/α)‖2

where {zi} are the auxiliary vectors. As suggested in [39], we
also integrate a proxy loss defined as

Lprox :=
∑
i

‖Rθ(yproxi )− xproxi ‖2

in which xproxi := Rθ(yi), y
prox
i := Aproxxproxi + nproxi , and

Aprox, nproxi are randomly generated blur kernels and noise
respectively. In our setting nproxi is generated from the same
distribution as z. So this loss function is the MSE loss defined
on the synthetic training pair (xproxi , yproxi ) where xproxi , a
deblurred version of yi, is treated as the ground truth. The
proxy loss has been found useful in improving the deblurring
accuracy. Finally, we apply the partially linear constraint in
(31) with the denoiser being ARθ(yi) in this context. In
summary, the training loss function is Lb + γproxLprox + γLc
where γprox is a hyperparameter.

The deblurring model is trained using the Adam optimizer
[14] with a batch size of 128 and 360, 000 optimization steps,
starting from an initial learning rate of 10−3. The learning rate
is then decreased to 3×10−4, 10−4, 5×10−5 at the 310, 000th,
340, 000th, 350, 000th step, respectively. In the first 100, 000
optimization steps, we let γprox = 0 and γ = 0, and after
that, γprox = 1/16, γ = 1/16. In this experiment, we let α be
randomly selected from [0.1, 0.2] for each training sample.

TABLE VI
DEBLURRING RESULTS. FOR THE DATA USED IN THE TRAINING STEP, O
AND C STAND FOR OBSERVATIONS AND CLEAN IMAGES, RESPECTIVELY.

THE MARK † INDICATES TRAINING WITHOUT THE PROXY LOSS.

Method Data Helen [18] CelebA [24]
PSNR SSIM PSNR SSIM

Xu et al. [40] – 20.11 0.711 18.93 0.685
Zuo et al. [44] O/C Pairs 22.24 0.763 20.53 0.750
Tao et al. [34] O/C Pairs 22.86 0.762 24.11 0.862

Shen et al. [31] O/C Pairs 25.99 0.871 25.05 0.879
Kupyn et al. [17] O/C Pairs 23.63 0.781 22.45 0.729

Supervised baseline O/C Pairs 26.13 0.886 25.20 0.892
Xia et al. [39]† O/O Pairs 25.47 0.867 24.64 0.873

Ours† Unpaired O 25.65 0.867 24.78 0.873
Xia et al. [39] O/O Pairs 25.95 0.878 25.09 0.885

Ours Unpaired O 26.00 0.879 25.09 0.886

Table VI shows the PSNR and SSIM of the deblurring
results for test sets of Helen [18] and CelebA [24] respectively.
In the table, the supervised baseline is based on the same U-
net architecture as in our approach and trained on the (noisy)
observation/clean image pairs. It achieves the highest PSNR
and SSIM scores among the methods being compared. Our

method reaches competitive PSNR values of 25.65 dB (Helen)
and 24.78 dB (CelebA) without the proxy loss, and adding the
proxy loss results in a further improvement of 0.35 dB and
0.31 dB respectively. As an extension of the Noise2Noise [20],
the approach proposed by Xia et al. [39], in contrast, relies
on paired noisy observations for each image but without the
ground truth. For the results reported in the table, the operator
A is known during training for both our approach and the
method of Xia et al. [39]. However, our method requires only
unpaired observations, and it leads to a deblurring quality
comparable to Xia et al. [39] and not far away from the fully
supervised baseline (with a PSNR gap smaller than 0.15 dB).
Furthermore, our method outperforms the existing supervised
methods Zuo et al. [44], Tao et al. [34], Shen et al. [31], Kupyn
et al. [17], as well as the unsupervised approach Xu et al. [40].

A comparison of the deblurred images from different meth-
ods is shown in Fig. 11, where the ground truth and blurry
images are taken from the test sets of Helen. We underline
that no blur kernels are provided to these methods during test
time. Given no ground truth images for training, the deblurred
results of Xia et al. [39] (Cf. the 4th column in the figure) and
our approach (Cf. the 5th column) are able to capture most of
the details recovered by the fully supervised baseline (Cf. the
3rd column), though the latter gives slightly sharper images.
This demonstrates the capacity of the proposed partially linear
denoisers for solving the deblurring problem based on only one
corrupted observation per image. Though in this experiment
the unsupervised methods require knowledge about the blur
kernels during the training phase, they can be generalized to
the cases where the blur kernels are unknown for training.
This can be done, e.g., by jointly learning the clean images
and blur kernels [39].

V. CONCLUSION

In this paper, we propose a class of structured nonlinear
denoisers. We show that such denoisers, equipped with a
partial linearity property, can be trained when we do not have
access to any ground truth images, nor to the exact model
of the noise. In practice, one only needs to know the noise
variance conditioned on the images. Based on the partial
linearity structure, we proposed an auxiliary random vector
approach, which establishes a direct connection between our
loss function and the MSE, and allows end-to-end training of
the denoising models. The approach outperforms other ground-
truth-free denoising approaches such as the SURE based
learning method for denoising, having a denoising quality
close to that of the fully supervised baseline. The approach
also offers new opportunities for learning to solve other image
restoration tasks from single corrupted observations of the
images. The experimental results show that, when generalized
to an image deblurring problem, our approach achieves the
state of the art for unsupervised deblurring.

One disadvantage of our method is that it does not work
for non-zero mean noise, such as impulse noises for which the
corrupted pixels are replaced with random numbers. In such
cases, the auxiliary random vector approach no longer provides
good estimates to the MSE. Our method requires estimates of
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Ground truth Blurry image Fully supervised Xia et al. [39] Ours
Fig. 11. Face deblurring results. The images are taken from the test sets of Helen [18].

the noise variance. Various noise variance estimation methods
from noisy images exist (see e.g., [21, 9, 1, 23]). Alternatively,
in our future work, we are interested in learning-based or
automated noise variance extraction methods with the potential
of being integrated in the proposed denoiser within an end-to-
end framework.
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