75 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    Adaptive motor control and learning in a spiking neural network realised on a mixed-signal neuromorphic processor

    Full text link
    Neuromorphic computing is a new paradigm for design of both the computing hardware and algorithms inspired by biological neural networks. The event-based nature and the inherent parallelism make neuromorphic computing a promising paradigm for building efficient neural network based architectures for control of fast and agile robots. In this paper, we present a spiking neural network architecture that uses sensory feedback to control rotational velocity of a robotic vehicle. When the velocity reaches the target value, the mapping from the target velocity of the vehicle to the correct motor command, both represented in the spiking neural network on the neuromorphic device, is autonomously stored on the device using on-chip plastic synaptic weights. We validate the controller using a wheel motor of a miniature mobile vehicle and inertia measurement unit as the sensory feedback and demonstrate online learning of a simple 'inverse model' in a two-layer spiking neural network on the neuromorphic chip. The prototype neuromorphic device that features 256 spiking neurons allows us to realise a simple proof of concept architecture for the purely neuromorphic motor control and learning. The architecture can be easily scaled-up if a larger neuromorphic device is available.Comment: 6+1 pages, 4 figures, will appear in one of the Robotics conference

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    The importance of space and time in neuromorphic cognitive agents

    Full text link
    Artificial neural networks and computational neuroscience models have made tremendous progress, allowing computers to achieve impressive results in artificial intelligence (AI) applications, such as image recognition, natural language processing, or autonomous driving. Despite this remarkable progress, biological neural systems consume orders of magnitude less energy than today's artificial neural networks and are much more agile and adaptive. This efficiency and adaptivity gap is partially explained by the computing substrate of biological neural processing systems that is fundamentally different from the way today's computers are built. Biological systems use in-memory computing elements operating in a massively parallel way rather than time-multiplexed computing units that are reused in a sequential fashion. Moreover, activity of biological neurons follows continuous-time dynamics in real, physical time, instead of operating on discrete temporal cycles abstracted away from real-time. Here, we present neuromorphic processing devices that emulate the biological style of processing by using parallel instances of mixed-signal analog/digital circuits that operate in real time. We argue that this approach brings significant advantages in efficiency of computation. We show examples of embodied neuromorphic agents that use such devices to interact with the environment and exhibit autonomous learning

    Networks of spiking neurons and plastic synapses: implementation and control

    Get PDF
    The brain is an incredible system with a computational power that goes further beyond those of our standard computer. It consists of a network of 1011 neurons connected by about 1014 synapses: a massive parallel architecture that suggests that brain performs computation according to completely new strategies which we are far from understanding. To study the nervous system a reasonable starting point is to model its basic units, neurons and synapses, extract the key features, and try to put them together in simple controllable networks. The research group I have been working in focuses its attention on the network dynamics and chooses to model neurons and synapses at a functional level: in this work I consider network of integrate-and-fire neurons connected through synapses that are plastic and bistable. A synapses is said to be plastic when, according to some kind of internal dynamics, it is able to change the “strength”, the efficacy, of the connection between the pre- and post-synaptic neuron. The adjective bistable refers to the number of stable states of efficacy that a synapse can have; we consider synapses with two stable states: potentiated (high efficacy) or depressed (low efficacy). The considered synaptic model is also endowed with a new stop-learning mechanism particularly relevant when dealing with highly correlated patterns. The ability of this kind of systems of reproducing in simulation behaviors observed in biological networks, give sense to an attempt of implementing in hardware the studied network. This thesis situates at this point: the goal of this work is to design, control and test hybrid analog-digital, biologically inspired, hardware systems that behave in agreement with the theoretical and simulations predictions. This class of devices typically goes under the name of neuromorphic VLSI (Very-Large-Scale Integration). Neuromorphic engineering was born from the idea of designing bio-mimetic devices and represents a useful research strategy that contributes to inspire new models, stimulates the theoretical research and that proposes an effective way of implementing stand-alone power-efficient devices. In this work I present two chips, a prototype and a larger device, that are a step towards endowing VLSI, neuromorphic systems with autonomous learning capabilities adequate for not too simple statistics of the stimuli to be learnt. The main novel features of these chips are the implemented type of synaptic plasticity and the configurability of the synaptic connectivity. The reported experimental results demonstrate that the circuits behave in agreement with theoretical predictions and the advantages of the stop-learning synaptic plasticity when highly correlated patterns have to be learnt. The high degree of flexibility of these chips in the definition of the synaptic connectivity is relevant in the perspective of using such devices as building blocks of parallel, distributed multi-chip architectures that will allow to scale up the network dimensions to systems with interesting computational abilities capable to interact with real-world stimuli

    Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems

    Get PDF
    Chicca E, Stefanini F, Bartolozzi C, Indiveri G. Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems. In: Proceedings of the IEEE. Proceedings of the IEEE. Vol 102. Piscataway, NJ: IEEE; 2014: 1367-1388.Several analog and digital brain-inspired electronic systems have been recently proposed as dedicated solutions for fast simulations of spiking neural networks. While these architectures are useful for exploring the computational properties of large-scale models of the nervous system, the challenge of building low-power compact physical artifacts that can behave intelligently in the real world and exhibit cognitive abilities still remains open. In this paper, we propose a set of neuromorphic engineering solutions to address this challenge. In particular, we review neuromorphic circuits for emulating neural and synaptic dynamics in real time and discuss the role of biophysically realistic temporal dynamics in hardware neural processing architectures; we review the challenges of realizing spike-based plasticity mechanisms in real physical systems and present examples of analog electronic circuits that implement them; we describe the computational properties of recurrent neural networks and show how neuromorphic winner-take-all circuits can implement working-memory and decision-making mechanisms. We validate the neuromorphic approach proposed with experimental results obtained from our own circuits and systems, and argue how the circuits and networks presented in this work represent a useful set of components for efficiently and elegantly implementing neuromorphic cognition

    Mixed signal VLSI circuit implementation of the cortical microcircuit models

    Get PDF
    This thesis proposes a novel set of generic and compact biologically plausible VLSI (Very Large Scale Integration) neural circuits, suitable for implementing a parallel VLSI network that closely resembles the function of a small-scale neocortical network. The proposed circuits include a cortical neuron, two different long-term plastic synapses and four different short-term plastic synapses. These circuits operate in accelerated-time, where the time scale of neural responses is approximately three to four orders of magnitude faster than the biological-time scale of the neuronal activities, providing higher computational throughput in computing neural dynamics. Further, a novel biological-time cortical neuron circuit with similar dynamics as of the accelerated-time neuron is proposed to demonstrate the feasibility of migrating accelerated-time circuits into biological-time circuits. The fabricated accelerated-time VLSI neuron circuit is capable of replicating distinct firing patterns such as regular spiking, fast spiking, chattering and intrinsic bursting, by tuning two external voltages. It reproduces biologically plausible action potentials. This neuron circuit is compact and enables implementation of many neurons in a single silicon chip. The circuit consumes extremely low energy per spike (8pJ). Incorporating this neuron circuit in a neural network facilitates diverse non-linear neuron responses, which is an important aspect in neural processing. Two of the proposed long term plastic synapse circuits include spike-time dependent plasticity (STDP) synapse, and dopamine modulated STDP synapse. The short-term plastic synapses include excitatory depressing, inhibitory facilitating, inhibitory depressing, and excitatory facilitating synapses. Many neural parameters of short- and long- term synapses can be modified independently using externally controlled tuning voltages to obtain distinct synaptic properties. Having diverse synaptic dynamics in a network facilitates richer network behaviours such as learning, memory, stability and dynamic gain control, inherent in a biological neural network. To prove the concept in VLSI, different combinations of these accelerated-time neural circuits are fabricated in three integrated circuits (ICs) using a standard 0.35 µm CMOS technology. Using first two ICs, functions of cortical neuron and STDP synapses have been experimentally verified. The third IC, the Cortical Neural Layer (CNL) Chip is designed and fabricated to facilitate cortical network emulations. This IC implements neural circuits with a similar composition to the cortical layer of the neocortex. The CNL chip comprises 120 cortical neurons and 7 560 synapses. Many of these CNL chips can be combined together to form a six-layered VLSI neocortical network to validate the network dynamics and to perform neural processing of small-scale cortical networks. The proposed neuromorphic systems can be used as a simulation acceleration platform to explore the processing principles of biological brains and also move towards realising low power, real-time intelligent computing devices and control systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore