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UNIVERSITÀ DEGLI STUDI DI ROMA “TOR VERGATA”
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Astract

Abstract

The brain is an incredible system with a computational power that goes further beyond those

of our standard computer. It consists of a network of 1011 neurons connected by about 1014

synapses: a massive parallel architecture that suggests that brain performs computation

according to completely new strategies which we are far from understanding.

To study the nervous system a reasonable starting point is to model its basic units,

neurons and synapses, extract the key features, and try to put them together in simple

controllable networks. The research group I have been working in focuses its attention on

the network dynamics and chooses to model neurons and synapses at a functional level: in

this work I consider network of integrate-and-fire neurons connected through synapses that

are plastic and bistable. A synapses is said to be plastic when, according to some kind of

internal dynamics, it is able to change the “strength”, the efficacy, of the connection between

the pre- and post-synaptic neuron. The adjective bistable refers to the number of stable

states of efficacy that a synapse can have; we consider synapses with two stable states:

potentiated (high efficacy) or depressed (low efficacy). The considered synaptic model is

also endowed with a new stop-learning mechanism particularly relevant when dealing with

highly correlated patterns.

The ability of this kind of systems of reproducing in simulation behaviors observed in

biological networks, give sense to an attempt of implementing in hardware the studied

network. This thesis situates at this point: the goal of this work is to design, control and

test hybrid analog-digital, biologically inspired, hardware systems that behave in agreement

with the theoretical and simulations predictions. This class of devices typically goes under

the name of neuromorphic VLSI (Very-Large-Scale Integration). Neuromorphic engineering

was born from the idea of designing bio-mimetic devices and represents a useful research

strategy that contributes to inspire new models, stimulates the theoretical research and that

proposes an effective way of implementing stand-alone power-efficient devices.

In this work I present two chips, a prototype and a larger device, that are a step towards

endowing VLSI, neuromorphic systems with autonomous learning capabilities adequate for

not too simple statistics of the stimuli to be learnt. The main novel features of these

chips are the implemented type of synaptic plasticity and the configurability of the synaptic

connectivity. The reported experimental results demonstrate that the circuits behave in

agreement with theoretical predictions and the advantages of the stop-learning synaptic

plasticity when highly correlated patterns have to be learnt. The high degree of flexibility

of these chips in the definition of the synaptic connectivity is relevant in the perspective of

using such devices as building blocks of parallel, distributed multi-chip architectures that

will allow to scale up the network dimensions to systems with interesting computational

abilities capable to interact with real-world stimuli.
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Chapter 1

Introduction

Human brain is an incredible system, able to interact with the real world, solve problems,

take decisions, learn, think, invent, create new theories or write a PhD thesis. And trying to

understand it, its basic principles, its fundamental mechanisms is a fascinating challenge that

moves and gathers the interests of people from different research fields as neurophysiologists,

mathematicians, physicists or engineers.

The human brain works thanks to its 1011 neurons connected by about 1014 synapses,

packed in a volume of 1,7 liter [Williams and Herrup, 1988] [Pakkenberg and Gundersen,

1997] [Pakkenberg et al., 2003]. Its architecture and its way of performing computation are

profoundly different from those of a computer. The brain processes information on a network

of tons of simple and densely inter-connected analog elements instead of exploiting one or

few complex digital elaboration units. In terms of energy consumption Sarpeshkar [1998]

estimates the efficiency of the brain as about 3 · 1014 operations per Joule. On the other

hand the supercomputer BlueGene/L, constituted of 131072 digital processors designed by

IBM [Gara et al., 2005], can reach a theoretical peak of 367 · 1015 floating point operations

per second with a power consumption of about 106W. This corresponds to a performance

of 109 operations per Joule, still 5 orders of magnitude lower than the brain efficiency.

Furthermore, the inner ear by itself carries out at least the equivalent of a billion of floating-

point operations per second, about the workload of a typical game console [Sarpeshkar,

2006]. The inner ear together with the brain can distinguish sounds that have intensities

ranging over 120 decibels, from the roar of a jet engine to the rustle of a leaf, and it can pick

out one conversation from among dozens in a crowded room. The truly amazing thing is

that the game console consumes about 50W whereas the inner ear uses just 14 microwatts

[Sarpeshkar, 2006]. How is this possible, or better, which is the computational strategy used

by the brain is one of the engines of this kind of research.

To study the nervous system a reasonable starting point is to model its basic units,

neurons and synapses, extract the key features, and try to put them together in simple

controllable networks. It is somehow an attempt to rebuild a small piece of nervous tissue

putting in only the known, and hopefully relevant, elements. Different levels of description

can be adopted ranging from detailed to functional models. Detailed models try to describe

how a system operates on the basis of known anatomy, physiology and circuitry; an example

is the model of neuron proposed in 1952 by two British physiologists and biophysicists

Hodgkin and Huxley [1952] who won the 1963 Nobel Prize in Physiology or Medicine for their

work on the basis of nerve action potential, the electrical impulse that enables communication
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among neurons. They modeled the biochemical reactions that took place on the neuron

membrane and provide a mathematical formulation of the phenomena. A detailed model

that successfully reproduced the single neuron behavior. To study the nervous system at

another level, that of neuronal circuits or networks, some details related to the anatomy or

the physiology of the nervous tissue have to be discarded, if a certain degree of analytical

control is desired. Theoretical analysis of the dynamics of a network requires significant

simplification in the description of the original neuron. An example of functional model is the

integrate-and-fire neuron originally proposed by Lapique in 1907 [Lapique, 1907]. The model

captures the essence of the non-linear process performed by a neuron: the cell integrates

the inputs and when a threshold is crossed, an action potential, a spike, is generated. The

alternative choice of maintaining detailed models of neurons and synapses and build with

them a simulation of a large networks results in an incredible workload: in 2005 the Blue

Brain Project has been launched [Markram, 2006], they planned to simulate a network of

up to 105 highly complex, detailed neurons, to this aim they will use the Blue Gene IBM

supercomputer. Chosen the models and built the network, it is possible to start studying

the system dynamics and the emerging properties. Ultimately, the model to use is chosen

according to research goals, and will be the ability of models of reproducing the experimental

data (at the desired level of description) to legitimate the choice of that particular model.

The research group I have been working in focuses its attention on the level of description

of the network dynamics and consequently neurons and synapses are modeled at a functional

level: in particular in this thesis work I considered network of integrate-and-fire neurons

connected through synapses that are plastic and bistable. A synapses is said to be plastic

when, according to some kind of internal dynamics, it is able to change the “strength”,

the efficacy, of the connection between the pre- and post-synaptic neuron. The adjective

bistable refers to the number of stable states of efficacy that a synapse can have; we consider

synapses with two stable states: potentiated (high efficacy) or depressed (low efficacy).

Network of integrate-and-fire neurons connected through plastic synapses demonstrated to

have interesting learning abilities [Amit and Fusi, 1994], and to be able to reproduce some

neurophysiological experimental results [Giudice et al., 2003].

Even if we are far from a comprehensive knowledge of the brain, or better, we are just

at the beginning of a fascinating way, the results obtained in simulation give sense to an

attempt of reproducing in hardware the studied network. This thesis situates at this point:

the goal of this work is to design, control and test hybrid analog-digital, biologically inspired,

hardware systems that behave in agreement with the theoretical and simulations predictions.

This class of devices typically goes under the name of neuromorphic VLSI.

The neuromorphic design philosophy was originally proposed by Mead in 1989 [Mead,

1989]. Neuromorphic VLSI refers to those devices that directly embody, in the physics of

their components, analogues of the physical processes that underlie the computation of a

neural system. Neuromorphic VLSI is something different from a mathematical description

or from a PC-based numerical simulation. Such research methods, essentially math and

software, live on abstract worlds of equations or of boolean algebra. Neuromorphic VLSI

stresses the character of the computation as a physical process pushing the parallelism

between the biological and artificial systems to a lower plane, on which the attempt is

to map the biochemical processes going on in the biological neuron and synapses in the

physics of transistors that constitute VLSI devices [Mead, 1990]. The parallelism between

biology and VLSI, inspires also the architectural level of this hardware: parallel asynchronous

hybrid systems are preferred to those serial and digital architecture typical in commercial
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microprocessors.

In this work I present the hardware implementation of two neuromorphic chip imple-

menting configurable neural networks; two VLSI devices whose hybrid analog-digital circuits

reproduce mathematical models of neurons and synapses. The first device has been thought

as a test chip of 32 neurons and 64x32 synapses; it has been extensively and successfully

tested. A second, larger chip has then been designed, improved under various technical

aspects, it hosts a network of 128 neurons with 128 synapses for each neuron.

Does it make sense to spend energy, resources and time on custom VLSI devices when

much larger networks can be simulated on standard personal computers in real-time? In

the present stage of development VLSI devices are difficult to tune, unstable, absolutely

unable to compete with PC-based simulations and expensive too. If just a few years ago

having neural networks in hardware was the only feasible way to “simulate” them, today

computers development has completely overturned the situation. Using Perseo, for instance,

a simulation software written by Mattia and Del Giudice [Mattia and Giudice, 2000], it is

possible to simulate on a standard personal computer, in real time, networks of few thousands

of neurons connected through plastic synapses. As far as I know, custom analog VLSI devices

implementing networks of analogous dimensions are still not available.

The question now is: why should you design such expensive toys? A simple answer

is that if you do not start, you will never arrive; designing hardware neural networks has

a meaning in perspective. If one assumes a continuous progress in the comprehension of

the nervous system, in a future it will become desirable having a new class of “neural”

VLSI microprocessors able to perform computation as the brain does today. Neuromorphic

VLSI remains a useful research strategy, complementary to theoretical speculations to evolve

towards a better comprehension of the mechanism at the basis of neural computation. A

real device is a test-bench for the models, to verify how much robust they are in front of

problems not foreseen in the theoretical models. And, in the other direction, testing the

hardware should suggest new ideas and solutions to improve the models. Thus theory and

hardware should grow in parallel to gather benefits from each other. The theory tries to

describe something real, the brain, composed of biological tissues; having something real,

even if of other kind, on which is possible to map the models, run experiments and analyze

results, can help refining the theory, at least in addressing those aspects that represent strict

constrains only for real devices as the power consumption of neurons and synapses or as the

issue of making a huge amount of cells asynchronously communicate each other; problems to

which biology found solutions that artificial systems try to reproduce. The chips described

in this thesis represent the result of such a mutual interaction between the implementation

and the theoretical levels. One example of this process is the chosen model of a plastic

bistable synapse. Material implementations of a synapse introduced various constraints

as for instance a limited maximum number of analog states stable over long time periods

[Amit and Fusi, 1994]. This limit drove the theoretical research towards a synaptic model

able to turn into advantage such a constrain. The result is the bistable synapse able of

stochastic learning [Fusi, 2001] implemented in the chip described in this thesis. Summing

up, advances of the theory and a growing experience in designing neuromorphic chips lead to

models explicitly thought to be implemented in hardware, and to a hardware that correctly

reproduces the models. The problem of dealing with small networks seems not, right now,

a big issue. The point is that there is not yet a theory, except for particular cases, able to

exploit the computational power that derives from a neuronal architecture, whatever the

dimensions of the network are.
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Besides being a research strategy in neuroscience and a source of inspiration for the

theory, neuromorphic devices are low-power compact portable systems that process infor-

mation in a way similar to biological nervous tissues. Progress in this area could eventually

lead to specific-task application in the brain-machine interface or prosthetic fields where

ad hoc neuromorphic structures can maximize computational power and could be naturally

interfaced to biological nervous systems.
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Chapter 2

Models for a compact VLSI

implementation

One of the main goal of physicists is to extract from complex systems relevant features to

create controllable models. The brain is one of those systems terribly complex and terribly

interesting at the same time. A reasonable strategy to study the brain starts from the

identification of the key features of its basilar components, neurons and synapses, from

which to build functional models of simplified network. Many of such models, both at

biological and functional level have been developed. Here we will focus on those interesting

for VLSI implementations of a neural networks.

2.1 Neurons

Neurons are highly specialized for generating electrical signals in response to chemical and

other inputs, and transmitting them to other cells. Many different types of neurons exist in

the human brain and endless variations in neuron types of other species. Beside the cellular

body, the soma, it is possible to discern two other important morphological specializations

in neurons (see figure 2.1): the dendrites that receive the inputs from other neurons and

the axon that carries the neuronal output to other cells. Neurons receive a large number

of inputs from thousands to hundreds of thousands, as in the cerebellar Purkinje cell. On

the output side axons from single neurons can traverse large fractions of the brain or in

some cases, of the entire body. The soma is the ‘central process unit’ and it performs an

important non-linear processing step: if the total input exceeds a certain threshold, then an

output signal, the action potential, is generated.

The electrical relevant signal for the nervous system is the potential difference across the

soma membrane. Under resting conditions the potential inside the cell membrane is about

-70mV relative to that of the surrounding bath, conventionally defined to be 0mV, and the

cell is said to be depolarized. To maintain such a potential difference a current has to flow.

This is the activity of the ion pumps located in the cell membrane which transport ions

to maintain ionic concentration gradients. Predominantly Sodium, Potassium, Calcium and

Chloride are the ionic species involved. For example the Na+ concentration is higher outside

than inside a neuron while, on the contrary, K+ is more concentrated inside the cell than

in the extracellular medium. Ions flow according to their concentration gradient through
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Figure 2.1: Different kinds of neurons. In a neuron is possible to distinguish three parts:

the dendrites that receive the inputs, the cell body that perform a non-linear computation

emitting an action potential when the input level reaches a certain threshold, and the axon

which transmits the action potential.

a variety of ions channels which open and close in response to voltage changes as well as

to internal or external signals. Current flowing through open channels outside the cell,

makes the membrane potential more negative, a process called hyperpolarization. Inverse

current depolarizes the cell. If a neuron is sufficiently depolarized, i.e. the voltage across

the membrane passes a threshold, a positive feedback process is initiated and the neuron

generates an action potential. It roughly is a 100mV fluctuation of the membrane potential

lasting about 1ms. This signal propagates along the axon where is actively regenerated to

arrive to the synaptic bouton at the end of the axonal arborization. Generation of action

potentials also depends on the recent firing history of the cell. For few milliseconds after

an action potential has been fired, it may be virtually impossible to initiate another spike.
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This is called the absolute refractory period.

To get an idea of which compression level the evolution achieved in packing neurons

together, it is enough to say that in one mm3 there are about 105 neurons, 4 Km of axons

and 450m of dendrites; the human brain hosts a total of 1011 neurons and 1014 synapses.

2.1.1 Hodgkin and Huxley model

Hodgkin and Huxley won the 1963 Nobel Prize in Physiology or Medicine for their work on

the basis of nerve action potential. They proposed the first detailed neuronal model in 1952

[Hodgkin and Huxley, 1952]. Their paper summarizes the studies on the giant squid axon

and proposes an analytical model of ionic currents affecting the neuronal dynamics. They

showed how these currents account for important features of the neurons as the generation

of action potentials and the absolute refractory period or .

Figure 2.2: Electrical scheme for the conductance-based neuron model by Hodgkin and

Huxley redraw from [Hodgkin and Huxley, 1952]. The neuronal membrane is approximated

by a fixed capacitor Cm, at the outside terminal there is the voltage measured on the external

face of the neuron membrane, inside is inside the neuron membrane, synaptic contributions

are schematized by the current I, ionic currents through the membrane by INa, IK and by

a generic leakage current Il mainly due to Chloride ions. INa and IK flow through time and

voltage dependent conductances, Il through a fixed one. The three batteries account for the

reversal potential of the different ionic species.

The model they proposed is based on the electrical scheme of figure 2.2. From their

studies emerged that the membrane can be considered as a fix capacitor Cm affected by a

set of ion currents. In particular they considered three kind of currents, one given by Sodium

ions, one by Potassium ions and a third, leakage current, mainly due to Chloride ions. The

current flowing in the circuit of figure 2.2 is than given by

I(t) = Cm
dV

dt
+ INa + IK + Il (2.1)

Each ionic current depends on a “driving force” and on permeability coefficients which

vary according to the potential V (t) across the membrane capacitor. The time-course of

these coefficients affect the behaviors of the currents which in turn modify the membrane

potential V (t). Fitting their experimental data, Hodgkin and Huxley described analytically

the permeability coefficients behavior and they derived numerically the form of the action
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potential. The “driving force” is due to the differences of single ionic specie concentrations
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Figure 2.3: Asymptotic values (upper panel) and time constants of the Hodgkin and Huxley

gating variables (n, m and h) with respect to the membrane potential V . The asymptotic

values of variables n and m increase with V thus they are activation variables, while h is an

inactivation variables. n, m and h controls the channel conductances of the Hodgkin and

Huxley model. For the reduction to two-dimensional neuron models n0 is considered almost

equal to 1 − h0 and τm � τn,h so that the time course of m will be discarded.

inside and outside the semi-permeable neuron membrane. The ionic currents can be written

under the form of

Ik = gk(V )(V − Vk) (2.2)

where k stands for Na+, K+ and Cl−, gk are the conductances of the different ion channels,

and Vk the reversal (equilibrium) potentials of the various ionic species. gNa and gK are

modeled as time and voltage dependent conductances, while gl is a constant value. To

describe the behavior of gNa and gK , they introduced three gating variables m, n and h

accounting for the probability that a channel is open. The combined action of m and h

control the Na+ channels while n controls the K+ ones:
∑

k

Ik = gNam3h(V − VNa) + gKn4(V − VK) + gl(V − Vl) (2.3)

Combining equation 2.3 with 2.1

C
dV

dt
= −gNam3h(V − VNa) − gKn4(V − VK) − gl(V − Vl) + I(t) (2.4)
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A physical basis for the chosen Potassium conductance is given if one supposes that the

ionic specie can only cross the membrane “when four similar particles occupy a certain

region of the membrane”. Each, independently, will occupy its place with a probability

described by n, hence the total probability will be n4. The Sodium conductance is a little

bit more complicated: the physical basis can be given supposing the channel activated by

three identical independent events, each with a probability m, and blocked by another event

with a probability h. The gating variables evolve according to the following differential

equations:

ẋ = −
1

τx(V )
[x − x0(V )] (2.5)

where x stands for m, n or h. If V changes suddenly to a new value, x approaches the

asymptotic value x0(V ) with a time constant τx(V ). Hodgkin and Huxley were able to

fit x0(V ) and τx(V ) from experimental data obtained with the voltage-clamp technique,

which allows to measure the current needed to keep the membrane at the fixed clamp

potential. Figure 2.3 reports their results: as anticipated m and n are activating variable,

i.e. they increase with V , while h, having the opposite behavior, accounts for an inactivating

mechanism.

So, if an external input increases the membrane potential, the Sodium channels open,

Na+ ions enter the cell and induce a further raise of the voltage V . If this positive loop is

strong enough an action potential is initiated. For high values of V , h slowly approaches its

asymptote closing the Sodium channels. The positive difference τh − τm ensures the rise of

V . On a timescale similar to τh the Potassium current sets in and, since it is in the outward

direction, it lowers the membrane potential. The combined dynamics of the Sodium and

Potassium currents generate a short action potential followed by a negative overshoot.

The Hodgkin and Huxley model captures the basic mechanism of generating action po-

tentials in the giant squid axon. This mechanism is essentially preserved in higher organ-

isms. Cortical neurons in vertebrates exhibit a much richer repertoire of electro-physiological

properties due to a larger variety of different ion channels [Gerstner and Kistler, 2002]. The

Hodgkin and Huxley analytical description, however, remains the landmark to model more

detailed systems that will include a larger number of conductances and gating variables to

describe different kind of neurons.

2.1.2 A VLSI implementation of the Hodgkin and Huxley model

The Hodgkin and Huxley model has been the starting point for the implementation of a

series of neuromorphic neurons on silicon. The first authors to propose an analog VLSI

circuit approximating the conductance-based behavior described by Hodgkin and Huxley

were Mahowald and Douglas in 1991 [Mahowald and Douglas, 1991]. Their original idea

raises from the parallelism between the sigmoidal behavior of the ions conductances and the

current to voltage characteristic of the differential pair circuit [Mead, 1989] [Liu et al., 2002]

reported in figure 2.4. The diff-pair circuit is a sort of source follower where the bias current

Ib is shared by two MOSFETs m1 and m2. If all transistors operate below threshold and in

saturation, the current Iout has the form (see figure 2.4b)

Iout = Ib
eκV1

eκV1 + eκV2
. (2.6)

where κ is the subthreshold MOSFET factor [Mead, 1989]. The basic silicon neuron circuit
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Figure 2.4: Differential pair circuit (a) and Iout characteristic. All MOSFETs work in

subthreshold regime where they have an exponential current-to-voltage characteristic. Ib is

a bias current that can be tune via the voltage Vb. The sigmoidal shape of the Iout is used

to approximate the voltage-dependent steady state behavior of the gating variables n, m

and h reported in figure 2.3.

is the one proposed by Hodgkin and Huxley (see figure 2.2) where the ionic currents are

the output currents of differential pair circuits. Thus the dependence of the current steady

state on the voltage across the membrane capacitor follows the desired behavior. To add

a time dependence, the membrane potential controls the differential pair via a low-pass fil-

ter implemented with a simple transconductance amplifier (see figure 2.5) and a capacitor

[Mead, 1989]. Using these building blocks both activation and inactivation mechanisms can

be designed. In figure 2.6 is shown the part of the analog circuit for the generation of the

action potential as proposed in [Rasche and Douglas, 1999], which represents an improved

implementation of the original design described in [Mahowald and Douglas, 1991]: the dif-

ferential pairs were substituted by transconductance amplifier, a differential pair coupled

with a current mirror, so that the output current follows the hyperbolic behavior:

Iout = tanh
κ(V1 − V2)

2
(2.7)

The analog circuit includes the Sodium and Potassium conductances as well as the passive

leakage current. In the Hodgkin and Huxley model, the bell-shaped form of Sodium current

is obtained as the product of an activation variable m with the inactivation variable h. In

this particular silicon implementation an analogous voltage dependence is obtained summing

an activation current (Im) and a deactivation current (Ih). The circuit demonstrated its

ability to qualitatively reproduce the time-course of the action potential.

Rasche and Douglas went a little bit further. Their complete circuit comprises other two

blocks accounting for the Calcium current and for the Potassium conductance which depends

on the Calcium concentration and which controls the so-called AHP (After Hyperpolarizing

Potassium) current [Gerstner and Kistler, 2002]. The Calcium ions enter the cell via a

conductance with elevated threshold that activates during the action potential. When the

Ca concentration increases the AHP current starts flowing. It reduces the neuron firing rate

thus realizing a frequency adaptation mechanism. This detailed conductance-based circuit

has been proved to reproduce electrophysiological measurements. Such a result is obtained
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Figure 2.5: Transconductance amplifier schematic and symbol. The transistors work in

subthreshold regime. This amplifier results from the coupling of a differential pair circuit

and a current mirror. Ib is a bias current that can be tuned via the voltage Vb. Iout

characteristic is the hyperbolic tangent of the difference V1 −V2. Such a sigmoidal behavior

can be used to reproduce in silicon the voltage-dependent steady state behavior of the gating

variables n, m and h.

in a neuromorphic way, mapping the ionic current onto transistor currents with a biologically

plausible behavior.

The complete silicon neuron proposed consists of a series of analog blocks, each account-

ing for a particular conductance. Each block generates as output a current that summed

with the others is then injected into the membrane capacitance. This modular way of

designing conductance-based neuron gather the interests of various research groups that de-

veloped more and more detailed neuronal circuits. Simoni and his colleagues [Simoni et al.,

2004] [DeWeerth et al., 2007] have proposed a sophisticated module that can be tuned to

fit the biological dynamics of various conductances. Their accurate silicon neuron has been

successfully interfaced to in vitro biological cells [Simoni et al., 2000]. Analogous hybrid

biological-artificial system have been studied by Alvado and colleagues [Alvado et al., 2004].

They propose conductances designed using a custom library of analog circuits that reproduce

different analytical functions. The level of accuracy that these groups reach in the respective

implementation is impressive. The problem is the silicon area occupancy of those neurons:

their chips realize networks of no more than 15-20 neurons. An example of conductance-

based silicon neuron thought to reduce to minimum the required silicon area is reported

in [Hynna and Boahen, 2007]: 8 transistors and one capacitor are sufficient to replicate in

silicon the sigmoidal voltage dependence of activation or inactivation and the bell-shaped

voltage-dependence of the corresponding time constants. The elegant design proposed in

[Farquhar and Hasler, 2005] obtain similar results using even fewer MOSFETs.

2.1.3 Two-dimensional neuron models

The Hodgkin and Huxley model is defined by four coupled differential equations 2.4-2.5. The

behavior of such an high-dimensional non-linear system is difficult to visualize or analyze.
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Figure 2.6: Schematic view of the neuromorphic neuron proposed by Rasche and Douglas

[Rasche and Douglas, 1999]. The figure shows the part of the circuit responsible for the spike

generation. Iin, on the left, is the synaptic current coming from the dendritic tree. The

circuit reproduces on silicon the three conductances described by Hodgkin and Huxley: one

for the Sodium (gNa, upper part) consisting of an activation and a deactivation branch that

generate respectively the currents Im and Ih. The sum of these current is the Sodium current

INa that is injected into the membrane capacitor Cmem. The voltage Vout represents the

neuron membrane potential. Another silicon conductance gK is the one for the Potassium

(lower part) consisting in the activation branch which controls the current IK . The third

fixed conductance gleak is for the constant leakage current Ileak. The time-course of the

voltage dependent gating variables is obtained using a transconductance amplifier and a

capacitor connected in low-pass filter configuration. The 10 parameters are adjusted to fit

the behavior of the ionic currents.

Two-dimensional differential equations, however, can be studied by means of a phase plane

analysis. A reduction of the four-dimensional equation of Hodgkin and Huxley to a two-

variable neuron model is thus highly desirable.

The reduction is based on two qualitative observations. The first one regards the

timescale of the dynamics of the four variables: m is much faster than n,h or V . This sug-

gests to approximate the instantaneous value of m(t) with its steady state value m0[V (t)].

This goes under the name of the quasi steady state approximation. The second observation

is that h and n evolve according similar time constants whatever the voltage V (see figure

2.3 lower panel), and that n ≈ 1 − h. Thus the idea is to replace n and h with an effective

variable w. To keep the formalism a slightly more general we can write w = b − h ≈ an.
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Introducing these approximations in equation 2.4 we have:

C
dV

dt
= −gNa[m0(V )]3(b − w)(V − VNa) − gK(

w

a
)4(V − VK) − gl(V − Vl) + I (2.8)

or

C
dV

dt
=

1

τ
[F (V, w) + RI] (2.9)

with R = g−l 1, τ = RC and some function F . For what concerns the three equations 2.5,

the one for m simply disappears because m(t) → m0[V (t)] and the other two reduce to an

effective equation for w

C
dw

dt
=

1

τw
[G(V, w)] (2.10)

where τw is a parameter and G is a function that has to be specified. Equations 2.9 and 2.10

define a general two-dimensional neuron model. For an analytical justification of the chosen

approximation refer to [Gerstner and Kistler, 2002]. Two examples of two-dimensional

models are the Morris-Lecar and the FitzHugh-Nagumo neurons.

2.1.4 Morris-Lecar model

Morris and Lecar [Morris and Lecar, 1981] proposed to model the neuron behavior through

two equations: one for the evolution of the membrane potential V and one for a slow

“recovery” variable ŵ. In dimensionless variables the Morris-Lecar equations read

dV

dt
= −g1m̂0(V )(V − 1) − g2ŵ(V − V2) − gl(V − Vl) + I

dŵ

dt
= −

1

τ(V )
[ŵ − w0(V )]

(2.11)

The voltage has been scaled so that one of the reversal potentials is unity; time is measured

in units of τ = RC. Comparing these equations to those by Hodgkin and Huxley, we can

set ŵ = (w/a)4 and m̂0 = [m0(V )]3. The difference between equation 2.9 and 2.11 is the

absence in this second model of the “blocking” term (b−w). Morris and Lecar approximated

the equilibrium functions shown in figure 2.3 with:

m0(V ) =
1

2
[1 + tanh(

V − V1

V2
)]

w0(V ) =
1

2
[1 + tanh(

V − V3

V4
)]

(2.12)

where V1,...,V4 are parameters. The time constant is approximated by

τ(V ) =
τw

cosh(V −V3

V4
)

(2.13)

with a further parameter τw.

Morris-Lecar model 2.11-2.13 gives a phenomenological description of action potentials.
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2.1.5 FitzHugh-Nagumo model

FitzHugh and Nagumo were probably the first to propose that, for a discussion of action

potential generation, the four equations of Hodgkin and Huxley can be replaced by two of

the form of 2.9 and 2.10. They obtained sharp pulse-like oscillations reminiscent of trains

of spikes by defining the functions F (V, w) and G(V, w) as

F (V, w) = V −
1

3
V 3 − w (2.14)

G(V, w) = b0 + b1V − w (2.15)

where V is the membrane potential and w is a recovery variable [FitzHugh, 1961] [Nagumo

et al., 1962]. F and G are linear in w and the sole non-linearity is the cubic term in V .

2.1.6 IF model

The two-dimensional models described above still are not our models, typically too complex

[Patel and DeWeerth, 1997] [Linares-Barranco et al., 1991] for our goal of a compact VLSI

implementation. Starting again from the Hodgkin and Huxley model, (this process can be

easily adapted to other complex detailed models) further simplifications are, clearly, possible

and they lead to a one-dimensional integrate-and-fire model. The analytical tractability of

this effective description together with its simple Silicon implementation will make it the

favorite candidate to realize and study, both theoretically and experimentally, controllable

neural networks.

The reduction of the model is based on simplifications on the output and on the input

side of the Hodgkin and Huxley model.

On the output side the major consideration is that an Hodgkin and Huxley neuron will

typically emit a spike whenever its membrane potential reaches a threshold value of about

-55 to -50mV. The action potential produced is roughly always the same, independently from

the evolution of the input currents that have triggered the spike. The spike has a stereotyped

shape that seems not to convey important information, which will arise from the time of spike

occurrences. This suggests that the generation of the spike can be discorporated from the

equations and reduced to a pure boundary condition so that when the membrane potential

V (t) crosses a given threshold θV then V (t) undergoes a pulse-like excursion, the spike,

before returning to a resting value Vr . The costly numerical integration is then stopped

as soon as the spike is triggered and restarted after the downstroke of the spike about

1.5-2ms later. This interval of time corresponds to an absolute refractory period (τabs) of

the neuron. This reduction clearly simplifies the equations that have now to describe only

the subthreshold behavior of the potential and no more the delicate equilibrium among

conductances dynamics that account for the spike generation.

On the input side, we still have all the four variables V , n, m and h of the Hodgkin and

Huxley model. One can distinguish the variables into two classes, those that are either fast

as compared to V or slow. With a little bit of arrogance, one can replace the fast variables,

in our case m, by their steady state values m0[V (t)], as already done in the two-dimensional

models, and the slow variables, n and h by their averaged values nav and hav. Rewriting

equation 2.4 with these approximations we have

C
dV

dt
= −gNa[m0(V (t)]3hav(V − VNa) − gKn4

av(V − VK) − gl(V − Vl) + I(t) (2.16)
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or, dividing by C,

dV

dt
= F (V ) +

I(t)

C

If V (t) = θV , then V → Vr

(2.17)

Which is the generic formulation of the integrate-and-fire model. The basic IF model was

originally proposed by Lapique in 1907 [Lapique, 1907], long before the mechanisms that

generates the action potential were understood; an entire series of non-linear IF models

have been proposed to better reproduce the subthreshold behavior of particular classes of

neurons.

The function F (V ) could be further simplified and reduced for instance to a linear

function: these is possible discarding all the active conductances and maintaining only the

constant one gl of the leakage current. This means that the membrane potential is stimu-

lated only by the synapse contributions, and merely discharged through a fixed conductance.

This version of the model is called the passive or leaky integrate-and-fire (LIF) neuron. For

small fluctuations about the resting membrane potential, neuronal conductances are approxi-

mately constant [Dayan and Abbott, 2001]; the LIF model assumes that this constancy holds

over the entire subthreshold range. For some neurons this is a reasonable approximation,

and for others it is not. With these approximation the subthreshold behavior of the model

corresponds to that of the circuit in figure 2.7 consisting of a fixed capacitor in parallel with

a fixed resistor driven by a current I(t): a simple RC circuit. I(t) splits in two components,

q V

I(t)

Figure 2.7: Schematic view of the Leaky integrate-and-fire neuron: the RC model. In this

version of the one-dimensional integrate-and-fire model the membrane potential (the voltage

across the capacitor) is excited by synaptic current I(t) and merely discharges through a fixed

resistance. The RC circuit models the subthreshold behavior of the membrane potential,

the action potential is reduced to a boundary condition specified by equation 2.18. A spike

under the form of a digital pulse, is generated when the voltage across the capacitor, i.e.

the membrane potential, reaches the threshold ΘV .

one across the capacitor, one across the resistor, thus:

dV

dt
= −

V (t)

τ
+

I(t)

C
(2.18)

If V (t) = θV , then V → Vr (2.19)

where τ = RC.
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The LIF neuron represents a drastic simplification of the Hodgkin and Huxley model

reducing from four to one the number of equations involved. Intermediate solutions have

also been proposed, among which some reduce the dynamics to a two dimensional problem.

Among all these available models, the LIF neuron maintains its own appeal, both from a

theoretical point of view for its analytical tractability and from an electronic point of view

for its simple implementation.

If on one side, the discrete electronics implementation of the LIF model is very simple,

in CMOS technology a resistor is not a desiderate component. A linear resistor is usually

designed as a long and tight rectangle of a heavily doped polycrystalline Silicon, the so-called

polysilicon layer, folded as a snake to maintain it compact. The problem is that the resistance

coefficient of the polysilicon is low and to have a resistance of a reasonable value large Silicon

area should be used. Moreover VLSI designer do not like passive resistors because together

with their dimensions they bring a non negligible continuous power dissipation. Few CMOS

processes make available a “high” resistance layer, explicitly thought for resistors; their

layout become smaller but still they do not represent a practicable way to pack thousands

of neurons together in a single chip. Active components can be connected to act as resistors,

but their linear range is usually too small to be successfully used [Mead, 1989]. In short,

the resistor has to be removed to design a compact, power efficient neuron.

Gernstein and Mandelbrot [Gerstein and Mandelbrot, 1964] suggested that the neuronal

subthreshold activity could be described as a random walk based process towards an ab-

sorbing barrier [Ricciardi, 1977] . The depolarization dynamics then becomes:

dV

dt
=

I(t)

C

where the synaptic current I(t), the sum of excitatory and inhibitory synaptic contributions,

drives the random walk of the depolarization. This further simplification of the model ignores

the decay of the biological neuron, an important feature that reduces the memory of recent

interactions with the other neurons. The decay can be reintroduced as a constant leakage

term:

dV

dt
= −β + I(t) β ≥ 0 (2.20)

If V (t) = θ, then V → Vr (2.21)

If V (t) ≤ Vmin, then V → Vmin (2.22)

This model, endowed with a lower bound for the membrane potential, has been introduced

by Carver Mead in 1989 [Mead, 1989]; it is an ideal solution for what concerns the VLSI

implementation on Silicon. We will call this model VIF, VLSI integrate-and-fire neuron.

Despite the linear decay, the model has proved to reproduce a rich phenomenology similar

to that of the LIF, both at single unit and network level [Fusi and Mattia, 1999]. As

motivated in next sections, the synaptic current I(t) can be reduced to the form:

Isyn = Iexc + Iinh

Itype =

Ctype∑

j

Jj

∑

k

δ(t − tkj − δj). (2.23)

where J is the synaptic efficacy, type alternatively stands for excitatory or inhibitory, tk

is the time of arrival of the k-th presynaptic action potential (δ(x) stands for the Dirac’s
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delta function), δ is the synaptic delay that account for the time needed to a spike to travel

along the axon and reach the synaptic contact and C is the total number of synapses of one

kind belonging to the same dendritic tree. J is a fixed parameter, positive for excitatory

synapses and negative for the inhibitory ones. The membrane dynamics of the i-th neuron

in a network of N IF neurons is:

V̇i = −β +

Ci∑

j

Jij

∑

k

δ(t − tkj − δij)

i = 1, 2, . . .N .

2.1.7 IF model on Silicon

The simplest circuit implementing the VIF model, originally proposed by Mead, is reported

figure 2.8.
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Figure 2.8: Axon-Hillock circuit schematic (a) and characteristic of the non inverting ampli-

fier (b). This simple circuit, originally proposed by Mead [Mead, 1989] reproduces the VIF

model described by eq. 2.20. The feedback through the capacitive divider C1C2 is responsi-

ble for the generation of a fast rising of the output voltage Vout when the input Vin reaches

the level Vl shown in the right panel. For a complete action potential a resetting mechanism

has to be added : a detailed view of the complete Axon-Hillock circuit is reported in fig.

2.9.

From the detailed Hodgkin and Huxley model it maintains the idea of the positive feed-

back to generate the spike. As for the Sodium a membrane depolarization induces an increase

of the conductance, which, in turn further depolarize the membrane, here an augment in the

voltage at node Vin, due to the synaptic current Isyn, causes an increase in the output Vout of

the non inverting amplifier, and the positive feedback via the capacitor C2 induces a further

growth of Vin. A sudden raise of Vout is the result. The increase of Vout is reported in input

through the capacitive voltage divider C1C2. Assuming that the feedback is sufficiently fast

that a negligible amount of charge can flow into the capacitors, hence under the hypothesis

of conservation of charge, the variation in Vout is reported in input multiplied by a factor

C2/(C1 + C2):

∆Vin = A
C2

C1 + C2
∆Vout.
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Where A is the amplifier gain (see figure 2.8). Hence the positive feedback starts when Vin

Vdd Vdd

C1

C2

Vout

Ipl

Vb

Iin

m1

m2

Vmem

Figure 2.9: MOSFET level schematic of the Axon-Hillock circuit. The non-inverting ampli-

fier of figure 2.8 is composed of two simple inverters in serie; Iin is the synaptic current and

Vmem is the neuron membrane potential. The resetting mechanism is implemented with the

two transistors m1 and m2. The first one acts as a switch that activates when Vout goes

high, while m2 controls the maximum value of Ipl (according to the bias Vb) and hence the

duration of the spike pulse.

passes the voltage Vl for which A = (C1 + C2)/C2 so that the gain over the loop become

greater than one. The circuit makes a decision and goes for the generation of a spike, i.e.

the output rises till Vdd. To complete the pulse, and to bring back the circuit to the initial

situation, we need something to discharge the capacitors. Mead introduced a couple of

mosfet m1 and m2 (see figure 2.9). The former is turned on by the output raise, the latter

acts as a current controller and imposes the maximum amplitude of the current Ipl. When

Vout equals V dd, and hence the amplifier gain is null, the effect of Ipl starts to be important

and Vin discharges towards ground at a rate

dVin

dt
= −

Ipl

C1 + C2

When Vout passes Vh (see figure 2.9) the loop gain is again greater than one and a positive

feedback starts. But now the effect is in the opposite direction, thus bringing Vout and

Vin to ground. This reset mechanism has an effect analogous to the one induced by the

Potassium currents in the Hodgkin and Huxley model. Injecting a constant Isyn current,

the Axon-Hillock circuit will generate a regular train of spikes as in figure 2.10.

Starting from this circuit an entire generation of IF neurons were designed and success-

fully used in VLSI neural networks each one optimizing certain aspects or introducing new

features [van Schaik, 2001] [Culurciello et al., 2001] [Schultz and Jabri, 1995] [Badoni and

Annunziato, 1996].
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Vl
Vh

Vout

Vmem

Figure 2.10: Simulation of the Axon-Hillock circuit: injecting a constant current Iin the

circuit produces in output a regular spike train. The circuit performs an analog-to-digital

conversion: it integrates the analog synaptic current at the node Vmem (lower panel) and

when the threshold is reached it generates in output (Vout) a digital pulse. On the lower

panel are shown the points Vl and Vh where the feedback become positive.

2.2 Synapses

Interactions between neurons are mediated by small, specialized junctions termed synapses.

Their function is to control the conductance of the membrane separating the interior of the

postsynaptic cell from the extracellular fluid. This conductance is controlled by the potential

across the presynaptic membrane. The synapse ability of controlling current into or out of

one electrical node by the potential on another node is the key ingredient that makes all

information processing possible and, in this sense, a single synapse is the neural counterpart

of a transistor.

A first classification of synapses can be based on the type of the transmission that take

place, so that we have electrical and chemical synapses. The former type is represented by

communicating junctions which connect the cytoplasm of two adjacent cells allowing the

exchange of small molecules. They seem to recover a role in the synchronization of neurons

activity. More interesting are the chemical synapses where the interactions between the pre

and the postsynaptic cell is mediated by neurotransmitters. Triggered by the arrival of a

presynaptic spike, the action of a chemical synapse involves a series of steps that, extremely

simplified, reduce to this sequence (see figure 2.11): the influx of Ca++ ions into the pre-

synaptic terminal starts a series of reactions that bring to the fusion of a synaptic vesicle

with the plasma membrane; each vesicle contains a certain amount of transmitter molecules
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which, further to the vesicle fusion, diffuse across the narrow synaptic cleft separating the pre

and postsynaptic cell; the neurotransmitter acts on receptor molecules in the postsynaptic

membrane leading in some cases to direct gating of conductance at an ionotropic receptor.

This alters the corresponding ionic flux which, in turn, changes the postsynaptic membrane

potential. The transmitter molecule may also activate a metabotropic receptor linked to a

second-messenger pathway that modulates a membrane conductance or has other metabolic

effects. In any case the receptor activation results in the opening (or closing) of certain ion

channels and, thus, in an excitatory or inhibitory effect (EPSP of IPSP). The effect ends

when the concentration of the transmitter in the synaptic clef is reduced by enzyme-mediated

degradation and presynaptic uptake mechanism. We are, again, dealing with conductances

Figure 2.11: A chemical synapse at work. The arrival of a presynaptic spike triggers a

series of steps that, extremely simplified, reduces to this sequence: the influx of Ca++ ions

into the pre-synaptic terminal brings to the fusion of synaptic vesicles with the plasma

membrane; vesicles contains the neurotransmitter that diffuse across the synaptic cleft;

the neurotransmitter acts on receptor molecules in the postsynaptic membrane leading in

some cases to direct gating of conductances at an ionotropic receptor. This alters the

corresponding ionic flux which, in turn, changes the postsynaptic membrane potential.

and currents, and hence, as before

Isyn(t) = gsyn(t)(V − Vsyn)

where Vsyn is the reversal potential and the function gsyn(t) is used to characterize different

kind of synapses.

The major neurotransmitters in the brain are glutamate and γ-aminobutyric acid (GABA).

The former has an excitatory effect, i.e. it induces a depolarization of the postsynaptic

membrane; the latter is an inhibitory transmitter which causes an hyperpolarization of the

postsynaptic neuron. On the postsynaptic side the GABA receptors are associated with a

reversal potential around -75mV. The GABAA receptors control the Cl− conductance which

reacts on a timescale of 5ms, while GABAB receptors produce a longer effect on the K+

conductances which decays with a time constant of about 50 ms. For the glutamate there

are the so-called AMPA and NMDA receptors, both with reversal potential around 0mV.

The relevant difference between the two is the timescale on which they react: the AMPA
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receptors generate a very fast rising (τrise ' 0.1ms) and decaying current (τrise ' 0.1ms).

On the other side the NMDA receptors exhibit a slower but also richer behavior. Their state

does not depends only on the the transmitter concentration but also on the postsynaptic

membrane depolarization. Mg++ ions block the NMDA channels until the membrane po-

tential rises above -50mV. Once unblocked, in presence of glutamate the channels open and

stay open for 10-100 milliseconds. Hence the NMDA channels activate only when there is a

coincidence between the arrival of a presynaptic spike and the depolarization of the postsy-

naptic membrane. NMDA-controlled channels are permeable both to Sodium and Potassium

ions, but even more (five to tens times more) permeable to Calcium ions. Ca++ are known

to have a relevant role in the modulation of intracellular signalling and are involved in the

long-term modifications of synaptic efficacy.

Long- and short- term metabolic effects, in general, derive from the activation of second

messengers by either ionotropic or metabotropic receptors and they lead to changes in synap-

tic transmission efficacy. In this way the synapse results a plastic device which modulates

its influence on the postsynaptic cell according to its history of activity. The long sequence

of steps that take place in a synapse, lends itself to different modifications offering a number

of biochemical reactions on which various mechanisms can act. Short-term effects refers to

those phenomena that affect the synapse dynamics and last anywhere from milliseconds to

tens of seconds. The two principal types are the short-term depression and the short-term

facilitation which occur after a rapid sequence of presynaptic action potential. Long-term

plasticity are, on the other side, extremely persistent (hours and more): long-term poten-

tiation (LTP) and long-term depression (LTD) are the most prominent of these effects and

are studied as the basis of learning and memory.

The best known mechanism for synaptic LTP is related to NMDA-controlled channels

[Kauer and Malenka, 2007]: they are not selective channels and, as mentioned above, they

allow an influx of Calcium ions into the dendritic spines. The rise in postsynaptic Ca++

concentration is the crucial trigger for LTP. It activates complex intracellular signalling

that results in an increased number of AMPA receptors in the postsynaptic plastic mem-

brane. Furthermore there is a growing evidence that LTP is accompanied by observable

enlargements of dendritic spines. These structural changes may be essential to cement the

information-storage process. LTP may also be related to modifications on the presynap-

tic membrane. The activity-dependent increase of Calcium concentration in presynaptic

terminals starts a chain of reactions that leads to a persistent increase in the amount of glu-

tamate released upon the arrival of an action potential and, hence, potentiate the excitatory

synaptic transmission.

On the other side LTD can be induced by weak activations of NMDA receptors due, for

instance, to modest membrane depolarization or low stimulation frequencies. The smaller

rise of the Ca++ concentration triggers a set of Ca++-dependent intracellular signalling dif-

ferent from those required for LTP. The result is a removal of AMPA receptors and hence

a reduced effect of the excitatory transmission. The internalization of postsynaptic AMPA

receptors is also triggered by activation of metabotropic glutamate receptors. Another mech-

anism that in some cells leads to LTD, involves the synthesis of lipophilic molecules that

travel retrogradely across the synapse and, binding to particular receptors, depress neuro-

transmitter release. This process appears after a brief but strong influx of Calcium ions on

the postsynaptic membrane.

Besides those synapse specific LTP and LTD processes, other mechanisms appear to

regulate the strength of an elevated number of synapses. The widespread effects are thought
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to be homeostatic responses that maintain the neurons activity within some finite range.

They take place when the activity levels are changed for prolonged periods (hours or days).

Specifically, enduring decreases in activity globally increase the synaptic strength.

In short, synapses are plastic devices whose transmission efficacy can vary according to

their respective history of activity. The long-term effects last over hours and act in two

opposite directions: the reinforcement (LTP) or the depression (LTD) of the transmission

efficacy. They are thought to be responsible for learning and memory

2.2.1 Fixed synapses in a simple VLSI network

The synapse is such a complex biological system that designing a detailed electronic coun-

terpart seems not a practicable way. As for the neuron, the synapse could be reduced to

a circuit with voltage-controlled conductances, one of the most sophisticated example of a

VLSI implementation is reported in [Bartolozzi and Indiveri, 2007]. To realize a compact

circuit we chose to forsake the time-course description of some processes and retain only few

key features. To this end a first approximation consists in neglecting the detailed behavior of

the fast PSPs mediated by the AMPA and GABAA receptors and to consider them as point

effect occurring upon the arrival of a presynaptic spike. A second step is ignoring the slow

PSPs as those due to NMDA and GABAB receptors. The long-term changes in the synap-

tic efficacy will be reintroduced in a different manner. Under this conditions the synaptic

current is described by equation 2.23. This kind of transmission is based on simple digital

switches rather than on time-dependent analog voltages and can be easily implemented on

Silicon accepting that that the delay δ is the one that naturally comes with electronic ana-

log circuits. Thus, the type of synaptic transmission and stereotyped nature of the action

potentials suggest for spikes on Silicon the form of digital pulses.

Before reintroducing in the model the long-term plasticity, I would like to discuss a simple

implementation of a network of integrate and fire neurons connected by fixed synapses.

In [Fusi and Mattia, 1999] the authors studied such kind of networks and demonstrated

both analytically and in simulation that the system dynamics, even in the case of a purely

excitatory connectivity, has two stable fixed points, i.e. two state in which the activity is

self-sustained and maintained over long timescales, one at low and one at high frequencies.

On Silicon a synapse with a fixed efficacy that follows equation 2.23 is a simple device

composed of only two MOSFETs, one acting as a digital switch, the other as a current

regulator. In figure 2.12 the schematic view of a dendritic tree composed of four fixed

synapses connected to an Axon-Hillock circuit is reported. The first two synapses on the

left are inhibitory synapses, the others are excitatory ones. The inhibitory synapses are

made of n-type MOSFETs whose task is to suck current from the neuron capacitors upon

the arrival of a presynaptic spike. This have an inhibitory effect on the postsynaptic neuron

because it induces a decrease in the voltage Vmem moving it away from the spike emission

threshold. The MOSFET m1 acts as a switch; it is driven by the presynaptic spike spk2

coming under the form of a digital active high pulse. m1 enables current flowing from the

common node Vmem to ground for the period of time ∆T during which spk2 stays high.

The amplitude Iinh of the current is limited by m2 using a bias voltage so that the amount

of charge subtracted from the neuron capacitors is Iinh∆T and hence Vmem undergoes a

downward jump

∆V =
Iinh∆T

C1 + C2
(2.24)
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Figure 2.12: Schematic view of a simple dendritic tree composed of four fixed synapses and

one postsynaptic neuron. Each synapse consists of two transistors: one receive the spike

pulse (spk2,3,4,5 signals) of a presynaptic neuron and acts as a switch which closes during the

incoming spike, the second one acts as a current controller and limit the synaptic current

injected (or subtracted) into (or from) the postsynaptic neuron according to the bias Jexc

(Jinh). The first two synapses on the left are inhibitory, the other two are excitatory. The

neuron circuit is the Axon-Hillock one discussed in section 2.1.7. The neuron output is the

voltage node named spk1.

that represents the synaptic efficacy. Excitatory synapses work in an analogous way: when

they receive active-low spikes they inject current into the common node thus provoking

upward jumps for the membrane potential Vmem.

Packing together in a single chip many dendritic trees as the one in figure 2.12 and

connecting them together as shown in figure 2.13, a simple neural network of integrate-and-

fire neurons can be realized. It represents the basic idea for the VLSI networks described

in chapter 3 and 4. Actually it is both a very simple and compact scheme; it is completely

asynchronous and no intermediate structures are required to connect the various parts;

neurons emit spikes under the form of digital voltage pulses, synapses convert them into

analogical current contributions that sums together on the dendritic tree to stimulate the

postsynaptic neuron. All the circuits operate in parallel and, clearly, in real time.

I would like to underline that the network in figure 2.13, whatever its dimensions, does

not suffer from any communication problems as insufficient bandwidth or scant address space

that typically affect parallel architectures that exploit multiplexed channels to connect the

various units. Two factors make this possible 1) each neuron sends spikes over its own

communication channel, the axon, and 2) the various synaptic contributions are analog

current pulses that just sum together according to Kirchhoff’s law. It is the solution that

the biological evolution adopted for the nervous system. The choice is to spend energy and

space occupancy for tons of wires connecting cells together rather than developing incredibly

fast multiplexed serial link.

However the simple network in figure 2.13 has many limitations: first of all an additional
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Figure 2.13: Schematic view of a simple network of four full connected neurons designed

coupling together four dendritic branches as the one reported in fig. 2.12. The network

comprises 12 fixed synapses among which 6 inhibitory and 6 excitatory synapses. Networks

designed following this scheme, whatever the dimensions of the system, do not suffer of any

communication problems as insufficient bandwidth or scant address space that typical affect

parallel architectures that exploit multiplexed channels to connect the various units. Two

factors make this possible 1) each neuron sends spikes over its own communication channel,

the axon, and 2) the various synaptic contributions are analog current pulses that just sums

together according to Kirchhoff law.

interface for reading/writing input/output signals to it is required, second some parameters

are not tunable at all as for instance the firing threshold of the neurons, and some others

are coupled together as for example the spike duration ∆T , that represents the absolute

refractory period, takes part in the definition of the synaptic efficacy. From an experimental

point of view it would be better to have a larger number of independent tunable parameters.

Said that, this simple network has been successfully used as part of a larger system endowed

with a set of plastic synapses [Chicca et al., 2003]. Plastic synapses, much more complex

than the two-MOSFETs fixed ones, can modify their efficacy J according to some kind of
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so-called learning rule.

2.2.2 Plastic synapses

To learn a stimulus its presentation has to leave some kind of traces in the synaptic con-

nectivity. It has to modify the way the neurons interact among themselves, that is it has to

modify the synaptic efficacy. The neuronal correlate of learning is a process of adaptation of

the parameter J ; the procedure for adjusting the synaptic weight is referred to as a learning

rule. How does this mechanism work is one of the current major research topic. Tons of

models have been developed, accounting for different kind of synaptic plasticity based on

the mean firing neurons activity or on precise spike timing. Here we will focus on the model

implemented in the neuromorphic chip described in the next chapter; the synaptic model,

proposed in [Fusi et al., 2000a] is a bistable (only two values for J) Hebbian synapse with

stochastic learning endowed with a self-regulating mechanism [Brader et al., 2007]. The

various choices that lead to this model are described in what follows.

In 1949, in its ‘The Organization of Behavior’ Hebb stated a basic idea that is still today

an important benchmark:

“When an axon of a cell A is near enough to excite B or repeatedly or persistently takes

part in firing it, some growth process or metabolic change takes place in one or both cells

such that A’s efficiency, as one of the cell firing B, is increased.”

The class of synaptic changes that are driven by correlated activity of pre and postsy-

naptic neurons is usually called Hebbian learning: (Even though the concept of learning

through correlations was originally proposed by James in 1890.) Almost 60 years ago Hebb

formulated his principle as a pure postulate without any experimental evidence. He under-

stood that strengthening the coupling of two active neurons corresponds to the stabilization

of specific neuronal patterns of activity. In 1973 Bliss and Lømo [Bliss and Lømo, 1973]

experimentally proved Hebb’s hypothesis. Today, as described above, electrophysiological

experiments show that the NMDA controlled channels could play an important role in such

a correlation detection mechanism. In 1997 Markram and his colleagues [H et al., 1997]

documented, studying pyramidal neurons, the fact that the coincidence of postsynaptic ac-

tion potentials and excitatory postsynaptic potentials (EPSPs) induce changes in EPSPs

amplitude. Markram’s idea, profoundly different from the Hebbian rate-based hypothesis,

stated that if a postsynaptic action potential occurs 10ms before the EPSP, than the EPSP

amplitude is reduced; on the other side, if the postsynaptic spike occurs 10ms after the

onset of the EPSPs, than the synaptic efficacy is increased. This idea is usually named spike

timing dependent plasticity (STDP). Whether synaptic changes are driven by precise spike

timing or follow a Hebbian rule is still a matter of debate. In 2001 Sjostrom et al. [Sjöström

et al., 2001] combined rate-based and STDP ideas; they also introduced a dependence on

the instantaneous value of the postsynaptic depolarization and obtained a model able to

reproduce their experimental data. The ingredients of their model were:

1. STDP. If a presynaptic spike precedes a postsynaptic action potential within a given

temporal window, the synapse is potentiated, and the modification is stable on long

timescales in the absence of other stimulation. If the phase relation is reversed, the

synapse is depressed.
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2. Dependence on postsynaptic depolarization. The postsynaptic neuron needs to be

sufficiently depolarized for LTP to occur.

3. LTP dominance at high frequencies. When both pre and postsynaptic neurons fire

at elevated frequencies, LTP always dominates LTD regardless of the phase relation

between the pre and postsynaptic spikes.

The synaptic model we implemented in the chip, proposed in [Brader et al., 2007] and

detailed in the next section, includes the elements listed above plus an additional regulatory

mechanism that prevents undesired synaptic changes. The STDP behavior can be achieved

using a combination of depolarization dependence and an effective neuronal model as in

[Fusi et al., 2000a] and [Fusi, 2003]: when a presynaptic spike shortly precedes a postsy-

naptic action potential, it is likely that the depolarization of an integrate and fire neuron

is high, resulting in LTP. If the presynaptic spikes comes shortly after the postsynaptic

action potential, the postsynaptic integrate and fire neuron is likely to be recovering from

the reset following spike emission, and it is likely to be hyperpolarized, resulting in LTD.

Only one variable X(t) is necessary to model the synaptic dynamics, provided that X(t) is

modified on the basis of the postsynaptic depolarization V (t). This synaptic model displays

Hebbian behavior: LTP dominates at high postsynaptic firing rate and LTD dominates for

low postsynaptic firing rate [Brader et al., 2007].

During the presentation of each stimulus a pattern of activity is imposed onto the network

and each synaptic weight J is updated to encode the information carried by the pre and

postsynaptic neuron. The question now is the number of accessible values for J : can J

sweep a continuous analog range or should assume only a subset of discrete values? On

short timescales it may be reasonable to hypothesize that a synapse can modify its efficacy

in an analog way, while, on long timescales, if memory is to be maintained, it is more

likely that only a small set of stable states can be preserved. A discrete set of values for J

could have a biological basis in the quantal nature of the mechanism for neurotransmitter

release which is based upon the fusion of a discrete number of vesicles with the presynaptic

membrane. Pushing this reasoning to its extreme one can argue that only two different

synaptic weights are possible, the synapse becomes a bistable device [Amit and Fusi, 1994]

that will be potentiated if its efficacy is high, or depressed when its efficacy is low. On long

timescale synapses act as digital device able to store one bit of information.

If we assume that the information to be coded is redundant, there are no disadvantages

in using a discrete code. Let consider the current generated by the synapses as the relevant

variable. We assume that it is the linear sum of many input neuronal activities ai multiplied

by the corresponding weights Ji. Let IN be the current induced by N neurons that encode

the same information, i.e. that are activated in the same way by a generic stimulus (ai =

a for i = 1, ..., N):

IN =
1

N

N∑

i=1

Jiai =
a

N

N∑

i=1

Ji (2.25)

Starting from fully analog synaptic values and then clamping them to the closest stable

states, the error on IN goes as ∼ 1/(2
√

N). If N is large enough (the code is redundant)

the error become negligible and there is no relevant loss of information [Fusi, 2001].

The above constraints for the synapse severely reduce the storage capacity of the network

generating the palimpsest property. The interference of novel stimulations with already

acquired ‘memories’ may give rise to memory loss or irrelevant noisy inputs could modified
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the constituted connectivity matrix. The result is a memory limited to a sliding window

containing a certain number of stimuli; recent stimuli are best remembered, older stimuli

outside the window are completely forgotten. The window width depends on how many

synapses are changed following each presentation: if this number is large, the network learns

quickly, but the window could be so small to compromise the functioning of the system as an

associative network. On the other side slow learning means also slow forgetting and a more

equal distribution of synaptic resources [Giudice et al., 2003]. It is the stability-plasticity

dilemma: the memory should be stable for long periods and, at the same time, the internal

state should be rapidly modified to acquire the relevant information. This dilemma becomes

particularly arduous when dealing with real electronic devices that do not allow arbitrarily

large time constants or fine parameter tuning. [Fusi, 2001].

Over a long timescale the preservation of two well distinguished states appear easier

than the maintaining of exact analog values, so a bistable synapse intuitively helps mem-

ory retention but, on the other side, it seems not to be the smartest choice to solve the

stability-plasticity dilemma. To be learnt a stimulus has to leave a sign on the matrix of

connections, which means that it has to modify the state of a certain number of synapses.

If this mechanism is deterministic so that the probability that a synapse is modified is 1,

than all the synapses reacting to that stimulus will be used to store the information. If later

the same synapses are required to learn a novel stimulus the memory of the previous will be

completely disrupted.

Under the assumption that the information to be coded is redundant, i.e. a certain

number of synapses will store similar information, a possible escape is based on the fact

that only a subset of those synapses is necessary to retain the stimulus memory. In other

words, there is no need to modify all the synapses and, if the fraction of synapses that are

changed following each stimulus is small, it is possible to better redistribute the synaptic

resources among the different patterns and actually recover the optimal storage capacity

[Amit and Fusi, 1994]. To reduce the fraction of modified synapses, the idea is to pass from

a deterministic to a stochastic learning. And if the probability that a synapse, for instance,

passes from potentiated to depressed is much less than one, than only a small subset of

synapses would change their state to encode the novel information. The rest of the synapses

can be used to memorize other information.

The stochastic learning, under the hypothesis of a redundant code, reduces the problem

of interferences between new and old memories. The question now is how to design a simple

system capable of stochastic learning. Probably not by chance the required source of noise

can be find in the neuron spiking activity. The noise produced by a network of coupled

neurons has the great advantage to be available to each synapse which can easily detect the

activity of both the pre and postsynaptic neurons. It has been shown that, in VLSI device,

this noise is suitable to be the basis of a stochastic learning rule [Chicca and Fusi, 2001].

2.2.3 Effective model of a plastic bistable synapse

The model we adopted exploits the noisy neuronal spiking activity to generate low probabil-

ities for long-term synaptic changes (LTP or LTD) [Fusi et al., 2000a]. An internal synaptic

variable X(t) experiences a noisy time course that consists in a series of small upward and

downward jumps triggered by the arrival of a presynaptic spike. For this reason this kind

of synapse is called spike driven. The upward jumps occur when, upon the arrival of a

presynaptic spike the instantaneous value of the postsynaptic membrane potential Vpost(t)
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is found above a certain threshold θV , the downward jumps occur when Vpost(t) is found

below θV . The state of the synapse, and hence its efficacy, is dictated by the comparison

of X(t) with another threshold θX . If X(t) is above θX than the synapse is potentiated,

if below, the synapse is depressed. The time course of X(t) depends, in this way, on the

statistical properties of the activity of the two neurons. For instance, synaptic potentiation

will happen when the probability of having upward jumps Pup is sufficiently higher than

the probability of having downward jumps Pdw. Pup and Pdw depends on the distribution

probability of the postsynaptic membrane potential and on the the relative timing of the

pre an postsynaptic neurons activities. In short, the tendency of X(t) of moving towards

its upper or its lower bound, and consequently the transition probability, can be tuned con-

trolling the neuronal activity. In particular this synapse acts as a frequency meter of the

pre and postsynaptic neurons [Giudice and Mattia, 2001]. The choice of an upward or a

downward jump comes from the detection of a coincidence of two events, one related to the

presynaptic neuron (the emission of a spike) and one related to the postsynaptic neuron (its

depolarization). This mechanism guarantees the possibility of having very low transition

probabilities that are essential to achieve high memory capacity.

Between two presynaptic spikes a driving force attracts X(t) towards its upper or lower

bound depending on where the last jump left X(t) respectively above or below the threshold

θX . This refresh tends to maintain the synaptic state stable on long time period.

The complete synaptic dynamics can be summarized as:

upon the arrival of a pre-synaptic spike

X(t) → X(t) + Jup if Vpost(t) > θV

X(t) → X(t) − Jdw if Vpost(t) ≤ θV

(2.26)

in the absence of impinging spikes

X(t) > θX → J = J+ and Ẋ(t) = α

X(t) < θX → J = J− and Ẋ(t) = −β
(2.27)

where Jup and Jdw are respectively the upward and downward jumps amplitudes, J+ and

J− are the potentiated and depressed synaptic efficacy, α and β are the refresh rates.

Network of linear integrate-and-fire neurons and Hebbian plastic bistable synapses are

non trivial systems; they are able to reproduce the elevated spike rates observed during neu-

rophysiological experiments throughout the delay interval between successive visual stimuli

[Fusi and Mattia, 1999]. The prototypical experimental protocol to investigate delay activity

and working memory is the delayed match to sample (DMS) task (for reviews see [Miyashita

and Toshiro, 2000, Wang, 2001]): a trial starts with the presentation of one visual image;

after a delay period of several seconds another image is presented and the monkey has to

respond differently if the second stimulus is identical to the sample or not. The activity

during the delay is triggered by specific visual stimuli and it lasts for long periods after

the removal of the sensory stimulus. In the inferotemporal cortex the sustained activity is

stimulus specific, i.e. each visual stimulus evokes a particular pattern of activity.

The experimental findings of DMS experiments can be interpreted as an expression of

an attractor dynamics in the cortical module. A comprehensive picture which connects the

pattern of delay activities to the recall of memories into active states has been proposed

in [Amit, 1995]. The basic idea is that the sustained activity is not a single-cell property
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but rather a cooperative effect related to a self-maintaining feedback that results from the

structured synaptic connectivity. A learned stimulus leaves a synaptic engram of potentiated

excitatory synapses connecting the cells driven by the stimulus. A successive presentation of

the same stimulus re-activates this set of cells that cooperate to maintain elevated their firing

rates even after the stimulus removal. Since many cells cooperate the delay pattern of activity

is robust to stimulus error, i.e. even if few cells belonging to the self-maintaining group are

not activated by the stimulus or are driven at the “wrong” frequency, following the removal

of the stimulus, the network dynamics is attracted towards the “nearest” stable pattern of

activity, that is the attractor. All the stimuli leading to the same network response are said

to belong to the same basin of attraction. In [Giudice and Mattia, 2001, Giudice et al., 2003,

Fusi, 2002] the authors show that an initially unstructured network of integrate-and-fire

neurons and plastic Hebbian bistable synapses, under stimulation, autonomously develops

a synaptic structure supporting both spontaneous and stimulus-specific stable activities.

2.2.4 VLSI implementation of the effective synaptic model

The synaptic model described above results to have a spike-driven, rate-based, Hebbian

behavior suitable for stochastic learning and thought to be implemented in VLSI device.

The time course of X(t) can be thought as a random walk between the two stable states

[Ricciardi, 1977] [Holden, 1976] [Gerstein and Mandelbrot, 1964] [Brunel et al., 1998]. Such

a noisy behavior is the basis to implement, on real small electronic devices, the long time

constants needed for LTP and LTD: in [Fusi et al., 2000a] the authors designed a VLSI

circuit reproducing the theoretical model and successfully tested it in the range of plausible

biological timescales. The schematic view of their VLSI synapse is reported in figure 2.14.

The capacitor Csyn is the memory element of the synapse and the voltage across it is the

internal synaptic variable X(t).

Without descending in details (refer to [Fusi et al., 2000a]) three main blocks are visible:

the Hebbian block, the Refresh Term and the Dendrite. The Hebbian block, upon the arrival

of a presynaptic spike preSpk, induces the upwards or downwards jumps in X(t) through

the injection or subtraction of charges into or from the capacitor Csyn. The Refresh Block

compares X(t) with the threshold θX and forces X(t) towards V dd or towards ground.

The Dendrite, according to whether X(t) is above or below θX , excites the postsynaptic

neuron with a small current I1 or with a higher current I1 + I2. Compared to the fixed

synapses of the simple network in figure 2.13, this synapse is much more complex consisting

in 19 transistors in spite of two. This synapse can be seen as the juxtaposition of the two

MOSFETs fixed synapses (m2 and m3) with a much larger circuit whose final effect is just

deciding to activate or not, through the switch m4 another branch in the Dendrite Block.

This synapse has been used in a first small VLSI network of 21 linear integrate-and-fire

neurons connected by 60 excitatory plastic synapses and 35 inhibitory fixed ones [Fusi et al.,

2000b, Chicca and Fusi, 2001]. This hybrid analog/digital VLSI system (see figure 2.15)

has been named LANN21 where LANN stands for Learning Attractor Neural Network. In

[Chicca et al., 2003] the authors demonstrate that following a suitable stimulation protocol

the synaptic stochastic plasticity produces the expected pattern of potentiation and depres-

sion in the electronic network. The chip has been designed using a 0.6µm, three metal layers,

standard CMOS technology.
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Figure 2.14: Schematic of a plastic synapse as proposed in [Fusi et al., 2000a]. The capacitor

Csyn is the memory element of the synapse and the voltage across it is the internal synaptic

variable X(t). The three main blocks are the Hebbian block, the Refresh Term and the

Dendrite. X(t) evolves according to the current injected or subtracted into or from the

capacitor by the Hebbian block and by the refresh circuit. When X(t) < ΘX the synapse

is depressed, otherwise the synapse is potentiated. In the first case a current I2 will flow

to the postsynaptic neuron, in the second case a larger current I1 + I2 will influence the

postsynaptic neuron. For further details please refer to [Fusi et al., 2000a].

2.2.5 The Calcium self-regulating mechanism

In [Brader et al., 2007] the authors introduce a regulatory mechanism for the synapse whose

aim is to improve the distribution of synaptic resources for the various stimuli to learn. The

basic idea is that if a stimulus has already been learnt, no further synaptic modifications

are required. Which is the reason to name this mechanism a stop-learning mechanism.

Two issues come out: there should be something that 1) decides when the stimulus has

been learnt and 2) that blocks any further synaptic transitions. Let consider a simple feed-

forward architecture, a perceptron composed of an output neuron and its afferent synapses.

Stimuli presentation consists in a set of trains of spikes impinging onto the synapses; different

stimuli are coded in different mean firing rates assigned to the various spike trains. A simple

perceptron is able to classifies linearly separable patterns of activity, so that after learning

we expect that the firing rate of the output neuron will be, for instance, elevated when the

active stimulus is recognize belonging to a certain class and low when the current stimulus

is not belonging to that class. In this context a stimulus is learnt when the output neuron

of the perceptron reacts with a sufficiently high firing rate: the solution to point 1) is then

a measure of the postsynaptic neuron activity. To this end a new variable, called Calcium

variable C(t), has been introduced in the model:

τC
dC(t)

dt
= −C(t) + JC

∑

i

δ(t − ti) (2.28)

where the sum is over the postsynaptic spikes arriving at times ti. It can be shown that the

mean value of C(t) is a good measure of the mean firing rate of the output neuron. The
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Figure 2.15: LANN21 Learning Attractor Neural Network layout view and photo. The

chip has been designed using a 0.6µm, three metal layers, standard CMOS technology. It

implements a network of 21 integrate and fire neurons

value of C(t) enters in the synaptic learning rule in this way:

upon the arrival of a pre-synaptic spike

X(t) → X(t) + Jup if Vpost(t) > θV and K low
up < C(t) < Khigh

up

X(t) → X(t) − Jdw if Vpost(t) ≤ θV and K low
dw < C(t) < Khigh

dw

(2.29)

in the absence of impinging spikes

X(t) > θX → J = J+ and Ẋ(t) = α

X(t) < θX → J = J− and Ẋ(t) = −β
(2.30)

where Jup, Jdw, J+, J−, θV , α, β and the thresholds K are all positive constants. The

Kup define a range inside which the internal synaptic variable X(t) can undergo upward

jumps, while the Kdw define the range for the downward jumps. Upon the presentation of a

stimulus, if the number of potentiated synapse is enough to drive the postsynaptic neuron

at a sufficiently elevated rate, so that C(t) > Khigh
up , than potentiation of further synapses

is not necessary and upward jumps are blocked. The model is symmetric thus if the neuron

is already too inactive further synaptic depotentiations are inhibited.

The stop-learning mechanism has a regulatory effect that tend to maintain the mean

level of activity of a network in a given range. This synaptic model, together with integrate-

and-fire neurons, has been tested in simulation [Brader et al., 2007] and demonstrated to

improve the perceptron classification performances in particular when the stimuli to be learn

have a relevant overlap, i.e. when different stimuli, coded in a set of spike trains, share a

non-negligible subset of common trains. We carried on analogous experiments on a VLSI
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chip, CLANN (Configurable Learning Attractor Neural Network). A detailed description of

the chip and the obtained results are reported in the next chapter.

2.3 Conclusions

Summing up, the nervous system is a complex object, both at an architectural and at a single

unit level. Neurons and synapses behaviors are the results of many concatenated biochem-

ical reactions [Shepherd, 1998] [Kandel and Schwartz, 1985]. In trying to understand their

functioning, a great variety of models have been investigated from very detailed to very

abstract ones. Simple models of integrate-and-fire neurons and Hebbian plastic synapses

represent the building blocks of networks able to reproduce some biological behaviors as the

delayed activity observed in Delayed Match to Sample experiments [Amit, 1995]. The effec-

tive models described in this chapter have been thought for electronic VLSI implementation

[Mead, 1989] [Indiveri, 2003] [Giudice et al., 2003] [Fusi et al., 2000a] which imposes strict

limitations on the model complexity: limited range for the variables, small time constants,

a restricted set of stable analog values on long timescale, a small number of manageable

variables, noise limitations and so on. These constraints resulted as an additional drive

to develop simple and effective models. Networks of integrate and fire neurons and spike-

driven Hebbian plastic bistable synapses succeeded in demonstrating emerging properties

of learning and memory maintenance [Giudice et al., 2003] [Fusi, 2002]. This triggered the

interest towards VLSI devices implementing electronic recursive neural networks. With the

previously proposed LANN21 chip the designers obtained interesting results even for a very

small network [Chicca et al., 2003] [Fusi et al., 2000b]. In the next chapter a larger and

more sophisticated VLSI implementation of a neural network is reported, together with the

experimental results which prove that the chip behavior agrees with the theoretical models.
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Chapter 3

CLANN

In this chapter I present a first version of a silicon configurable learning attractor neural

network (CLANN). I describe the chip architecture and I provide a block-level description

of main circuits. Results from characterization tests and from a classification experiment

are also reported. Circuits details and layout choices are discussed in the apperndix.

3.1 Introduction: main ideas

CLANN stands for Configurable Learning Attractor Neural Network. It implements a net-

work of 32 IF neurons and 32x64 configurable plastic synapses endowed with a new stop-

learning mechanism.

Thought to be a small prototype chip to test new ideas and circuits, it has been designed

to be as much flexible as possible. It allows to study and characterize in details the behavior

of single circuits as well as to run network-level experiments on freely configurable archi-

tectures. Far from being competitive with PC-based simulations, at least for what concern

the number of involved neurons and synapses, it represents a necessary step toward the

development of stand alone neural network devices.

According to [Mead, 1989] we will use the term neuromorphic to refer to a class of aVLSI

chips that mimics the biological nervous system in its organization and behavior. These de-

vices typically have massive parallel architectures composed of highly interconnected analog

computational elements, neurons and synapses; they are completely asynchronous and they

exploits MOSFETs operating in subthreshold regime. These features make them compact,

low power devices.

CLANN is a semi-neuromorphic chip: the core (neurons and synapses) is analog and

asynchronous while some peripheral and “service” structures are based on standard digital

cells which represented the fastest way to put new ideas into circuits. The strategy consists

in testing new features using available and reliable pieces of hardware, leaving for a second

development step the custom optimization of the circuits. The reliability and testability

aspects rather than the Silicon occupancy and the power consumption were privileged.

The chip results a mixed signal analog-digital cross-talk free, device. Its Silicon occu-

pancy is 5.4 by 2.6 mm. It has 143 input/output pads and has been designed in CMOS

0.35µm technology.

Here the main ideas implemented in CLANN.
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Figure 3.1: CLANN (Configurable Learning Attractor Neural Network) top layout view. In

blue the array of 32 integrate-and-fire neurons is highlighted. The synaptic matrix is in red:

it is composed of two parts, one of 32x32 synapses for internal recursive connections and one

of 32x32 synapses accepting spikes from external devices, the so called AER (Address Event

Representation) synapses the name of the protocol adopted. To accept in input external

events a control logic and a decoder, left side in green, are required. The AER output

system, in green on the right, takes care of sending spikes to external devices.

The synaptic model. An innovative feature of CLANN is the new model of synaptic

plasticity implemented: the stop-learning synapse described in equations 2.29-2.30. The

synapse stops to “learn” when the post-synaptic neuron firing rate enters in a desired range.

A measure of the neuron activity is given by a Calcium variable whose dynamics approxi-

mates that described in eq. 2.28. Its generation and comparison with a set of thresholds as

prescribed by inequations 2.29 required new circuits that have been simulated and designed.

Thanks to standard digital circuits, the Calcium dynamics can be turned on or off at will

and the performances of the network with or without the stop-learning mechanism have

been compared.

Local and external connectivity On Silicon, one of the major issues of these massive

parallel devices is connecting neurons together. The brain solves this problem in the easiest

possible way: it spreads in three dimensions and it dedicates one communication channel,

the axon, to each neuron. On Silicon this would correspond to designing one wire for

each cell, which is the solution we adopted to create a local on-chip recurrent network.

Besides a recurrent configurable internal network, CLANN is also endowed with structures

to send and accept external connections. Unfortunately, the limited number of available

input/output pins do not permit to exploit the “one-wire-per-neuron” strategy also for

external connections (for more than 128 units). To bypass this constraint a solution is

to multiplex outgoing spikes onto a single communication bus. Traffic load and channel

capacity of this external bus become important characteristic to consider for designing large

and distributed networks. The choice of using Silicon space for internal connections is

motivated by the attempt to reduce the traffic on the external bus.

Configurability Each synaptic contact can be enabled or disabled and its excitatory

or inhibitory nature decided. The reconfigurability of the synaptic matrix is an innovative

feature of CLANN. This is valid for all synapses regardless they are devoted to internal or

external connectivity. The network architecture can be reconfigured at will during an initial
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setup phase loading a serial digital bitstream onto an on-chip shift-register: up to an all-to-all

internal recurrent connectivity is supported as well as pure feed-forward architectures.

Among the 64 synapses of each dendritic tree, 32 are devoted to on-chip local connections

and 32 to receive stimuli from external devices. By connecting multiple CLANN chips

together it is possible to create different kinds of larger networks: for instance 4 chips can

make a network of 128 neurons with uniform connectivity at 50% (i.e. each neuron is

connected to any other neuron in the network with a probability of the 50%), 8 chips a

network of 256 neurons uniformly connected at 25%. To make chips communicate among

each other it is not sufficient to connect the output of a sender chip to the input of the

receiver one. An external device working as a mapper is necessary. The mapper has to

establish the external connectivity routing the events it receives from the sender chip to the

right target synapses on the receiver chip.

AER compliant Connectivity from and towards external devices is performed through

the Address Event Representation (AER) protocol originally described in [Mahowald, 1992]

and later studied in [Boahen, 1998] [Boahen, 1999a] [Boahen, 1999b] [Culurciello and An-

dreou, 2003] [Dante et al., 2005]. This protocol, completely asynchronous, is now a standard

for this kind of neuromorphic chips and has demonstrated to be a good way to convey infor-

mation from one chip to another. The original idea is to multiplex a large number of axons

on a single, digital, AER channel: when a spike is emitted, a digital address identifying the

sending neuron is written on the bus. Being completely asynchronous the timing information

is implicit and each address on the bus represent an event for the network (AER).

If, on one side, the AER fits well the needs of an asynchronous network [Boahen, 1999a],

on the other side designers have to face problems related to asynchronous communication.

One of these problems is the data conflicts: neurons trying to access the bus at the same

time generate data conflicts on the AER bus. The typical neuromorphic choice to manage

the conflicts is to introduce an arbiter in charge of deciding which neuron can access the bus

and which neuron has to wait. This solution is optimal if the queues and the related delays

are small enough not to affect the network dynamics. In other words, the arbitration is a

good strategy until the traffic load is sufficiently smaller than the channel capacity [Boahen,

1999a].

CLANN is endowed with four AER structures: on the input side a C-element accepts

incoming AER spikes and a decoder routes them to the correct AER synapse, on the output

side an arbiter manage the bus accesses and an encoder write on the bus the correct digital

address. All these circuits were provided by the Institute of NeuroInformatics in Zurich.

On the output side of the chip the internal network and external bus activities have been

decoupled interposing a memory element (a FIFO with a depth of 1 bit) between neurons

and arbiter. This ensures that any delays experienced on the communication pipeline due

to traffic overloads or data transfer failures do not influence the internal neurons behavior.

The price to pay is a possible event loss in case of AER overload.

MUX Designed to be a test chip CLANN is endowed with a digital multiplexer to

sample the neurons output just before the spikes enter the memory element used as FIFO.

This allows monitoring the neurons activity without turning on the AER systems which is

useful during the setup debug phase. It also lets us record and compare the neurons activity

before and after the AER output circuits so that we can evaluate the communication system

reliability and performances under different conditions.

Designed and simulated with CADENCE In Designing the chip, Monte Carlo sim-

ulations have been performed to estimate the effects of mismatch. Due to mismatch analog
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circuits designed to be identical have, on chip, different behaviors; the characteristic of two

nominally identical MOSFETs can actually differ for more than the 50%: mismatch has

to be considered designing the chip. It derives from Silicon inhomogeneities and imperfec-

tions introduced during the manufactory stages. Choosing particular geometries, adequate

orientations and suitable dimensions for MOSFETs and capacitors it is possible to reduce

mismatches among circuits; CADENCE Monte Carlo simulations is a helpful tool to evaluate

designers choices.

3.2 Architecture

In Fig. 3.1 the top level layout of the chip is reported. This paragraph wants to be a guided

tour around the chip layout.

This chip has 32 IF neurons arranged in a column, highlighted in blue, on the right side

of Fig. 3.1. The dendritic tree of each neuron spreads horizontally, parallel to the blue

arrow. Each tree comprises 32 AER synapses, accepting external spikes, and 32 recurrent

synapses, for on-chip local connectivity. The Silicon occupancy of the complete synaptic

matrix is evidenced in red. The matrix is divided in two parts: on the right side there are

32x32 synapses for recurrent connectivity; on the left side 32x32 AER synapses for external

connectivity. The AER part is larger than the recursive one because next to each AER

synapse there is a pulse shaper circuit which gives to impinging AER spikes a suitable form

for successive processing. Synapses and neurons represent the core of the chip, the network.

All the other circuits exploit services necessary for the core to work and for communication.

The connectivity with external devices is ensured by the AER input and output systems

(in green). The AER input system, on the left side, consists of a control element and a

decoder. The former handles the asynchronous handshake with external devices required to

receive the AER data, the latter is in charge of routing the incoming spikes to the target

synapse. The AER output system, composed of a memory element, an arbiter and an

encoder, receives spikes emitted by neurons and manages the access to the external AER

output bus.

On the perimeter of the chip the padframe is visible: it is composed of 143 pads for

analog or digital signals, providing electrical connections with the external world.

The big amount of silicon space covered by the synaptic matrix is clearly visible in

Fig. 3.1. It occupies more than the 80% of the Silicon surface. Given a Silicon area, the

occupancy of a single synapse essentially imposes the dimensions of the network. Projecting

reliable and compact synapses is one of the designers main goal.

3.3 Signal flow

This paragraph gives a more detailed description of the signal flow through the various

blocks, from the arrival of an AER event to the emission of an outgoing spike (see Fig. 3.2).

A spike from an external device comes under the form of an AER event: a digital 10 bits

address identifying one of the 1024 AER synapses of CLANN. Communication on the AER

asynchronous bus uses a four-phase handshake between the sender and the receiver device

[Dante et al., 2005]. The C-element [M. Shams and Elmasry, 1998] handles this phase and

when data on the bus are valid it lets the decoder read the 10 bits address. The decoder,

consisting of a horizontal and a vertical arm, stimulates the target synapse selecting a row
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Figure 3.2: CLANN main signal flow. A spike from an external device, under the form of

an AER event, is accepted by the decoder which in turn stimulates the AER shaper (in

orange) next to the target synapse (yellow square). The shaper circuit extends the incoming

spike pulse to make it useful for the synaptic dynamics. Active synapses (those colored

in the figure) according to their nature, excite or inhibit the corresponding neurons (blue

circles) on the same horizontal line. Synapses on the same horizontal line belong to the same

dendritic tree, whatever they are AER or recursive synapses. A spike emitted by a neuron

is extended by a shaper circuit and sent to 1) all the recursive synapses on a given column,

2) to the AER output system via a memory element (in violet) and 3) to a digital standard

multiplexer (not shown) whose outputs can be directly probed.

and a column of the synaptic matrix using two identical digital pulses (XAER and YAER

signals). These pulses remain active till the end of the handshake. Hence their duration

depends not only on CLANN circuits, but also on the characteristics of external devices

as well as on the electrical implementation of the bus itself. In typical conditions, in our

experimental setup, the duration is about 200ns.

At each synaptic site an AND gate combines the XAER and YAER pulses. The AND

output signal is sent to the AER synapse through a pulse shaper circuit which extends the

duration of the pulse. The duration of this pulse is tunable via an analog bias supplied from

outside the chip. The shaper output is connected to the synapse that needs “long” signal to

work properly (see section 3.4). In typical conditions the pulse duration is tuned to about

10 µs.

The function of the shaper is 1) to equalize the duration of incoming spikes, 2) to define

a time window suitable for the short-term dynamics of the synapse and 3) to decouple the

AER handshake duration (about 200ns) from the length (about 10µs) of internal spike pulses

accepted by synapses. Decoder output signals act just as triggers for shaper circuits.

We chose to design one shaper next to each AER synapse: 1024 shapers in total, oc-

cupying a non-negligible percentage of Silicon area. The reason behind this choice is to

maintain the handshake phase as fast as possible, and hence to achieve high AER channel

capacity. Let me try to clarify this point. The option of having just one shaper for all

the AER synapses has been rejected because such a shaper would have represented a slow

stage in a fast serial chain: an incoming AER spike would have not been processed until the

previous one have been completely served. Considering 10µs per spike, the upper bound for

the channel capacity reduces to 100KHz. (This can be a too strict constrain if all the 1024

AER synapse are active: imaging a Poisson activity around 20Hz for all the 1024 connected

neurons, according to [Boahen, 1999a] the collision probability would result more than the
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30%). On the other side, with one shaper for each AER synapse, there would be a queue

(or an event loss) only if the inter spike interval between two spikes impinging on the same

AER synapse is less than 10µs. (For a comparison, in the same situation described above,

the collision probability reduces to less than 0.8%).

AER synapses implemented in CLANN are plastic bistable systems which evolve accord-

ing to equations 2.29. Their short-term dynamics is spike-driven and hence is affected by

the arrival of AER spikes. To update the value of the synaptic internal variable X(t) (see eq.

2.29), the synaptic circuit needs to know both the state of the post-synaptic neuron potential

and the state of the corresponding Calcium variable. These information are coded in two

digital bits that back-propagate from the post-synaptic neuron to the synapses (both recur-

sive and AER) belonging to the same dendritic tree. While updating X(t), during the time

window set by the shaper, the synapse also excites (or inhibits) the post-synaptic neuron.

This is achieved through an injection (or a subtraction) of current into (or from) the neuron

circuit. This current travels on an analog wire on which also the contributions from the

other synapses converge. The various current contributions simply sum together according

to Kirchoff law thus nor data conflicts, nor channel capacity neither complex communication

structures has to be taken into account. This is a great design simplification possible in the

analog domain. The number of synapses connected to the same dendritic tree is limited only

by considerations on signal to noise ratio. In short, the synapse receives digital signals and

produce analog output currents. A hybrid digital/analog circuit is necessary.

The IF neuron executes the opposite conversion: it receives analog signals and generates

digital spikes. Its internal dynamics is driven by the synaptic analog contributions and

by a tunable constant afferent current supplied from outside. Next to each neuron there

are circuits handling the dynamics of the Calcium variable. Their output are two digital

signals used by the synapses for their internal dynamics. The spike emitted by the neuron

has the form of a fast digital pulse, lasting no more than 40ns. Spikes emitted by local

neurons propagates along the neuron axon and reaches every synapse belonging to a column

of the recurrent matrix (dashed line in Fig. 3.3). To become useful for recurrent synapses

spike pulses have to be extended to 10µs pulses, as for AER spikes. To this end other pulse

shapers have been introduced (orange elements on the right side of Fig. 3.3). The differences

with the AER case, are that 1) the spike emitter is on-chip and 2) that each neuron has its

own axon. The spike extension is than performed at the output of the unique sender, the

neuron, instead that at the input of the various receivers, the synapses. Conflicts or queuing

issues as well as the design of communication structures are here bypassed thanks to the

“redundancy” of the communication channels: each neuron has its own axon.

Each column of the recurrent synaptic matrix is composed of 32 synapses, each one is

part of the dendritic tree of a different neuron. According to the loaded configuration some

of the synaptic contacts will be active (yellow synapses in Fig. 3.3) establishing in this way

an internal connection between two local neurons. Both the shaper and the synaptic circuits

remain the same in the recurrent and AER part of the chip. This ensures an homogeneous

behavior throughout the entire network.

Other chip designers prefer not to provide their chips with internal connections [Mitra

et al., 2006] [Indiveri et al., 2006], saving in this way Silicon space. The local connectivity

is obtained connecting the chip output with its input. This solution has as advantage a

significant reduction of silicon occupancy and as the major drawback an increase in the load

on the external bus. The external communication bus, in its current form, is one of the main

obstacles to large networks. The traffic load and the dimensions of the necessary address
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space grow with the square of the number of neurons and soon exceed the channel capacity.

Different approach to this problem can be chosen: one can improves the protocol, increases

the bus capacity, thinks to fast serial link or start moving the load elsewhere.

I would like to underline that this problem, the communication problem, is one of the

main issue limiting the growing in dimensions of the networks in HW. Diffent kind of so-

lutions have been investigated, from an improvement in the AER protocol [Boahen, 2004a]

[Boahen, 2004b] [Boahen, 2004c] [Merolla et al., 2006] to the usage of faster communication

channel as for instance the serial ATA protocol. The asynchronous AER bus has a bandwidth

of 10 MHz in its present stable implementation [Dante et al., 2005] [Chicca et al., 2007].

This channel capacity reduced to something about 500 KHz when one wants to monitor and

map the AER event in real time. The brain choice is different, in spite of multiplying the

channel capacity it multiplies the channels. This solution has as the “HW” advantage that

the malfunctioning of one channel does not compromises the entire network: the redundancy

increases the reliability of the system. Another advantage is the ability of transmitting a

large amount of simultaneous spikes, task that a serial channel suffers to complete without

introducing relevant delays.

The neuron output is connected not only to the shaper but also to a memory element

which represent the first stage of the AER output system. The memory element is a column

of 32 D-type flip-flops, one for each neuron, between the neurons and the arbiter. A flip-

flop is set when the corresponding neuron emits a spike. The output of an active flip-flop

represents a request to access the AER bus. The bus accesses are completely asynchronous

and two neurons could make their requests simultaneously. The arbiter solves these conflicts

according to the logic “the first wins”: it chooses the winner and sends it an acknowledge

signal that reset the flip-flop. Other spikes wait their turn to be served. Hence, in case of

conflicts, the formation of a queue is possible and the information that a spike have been

emitted has to be retained somewhere. We chose to maintain this information in the memory

element which essentially is, for each neuron, a FIFO with a depth of 1 bit. In this way

the neuron can be reset as soon as the flip-flop is set, regardless the state of the AER bus.

Once the spike is transmitted the flip-flop is reset. This solution completely decouples the

internal activity from the external AER ones. Delays or blackouts on the AER channels do

not influence the network dynamics. As already said, the price to pay is that a spike is lost if

the spike previously emitted by the same neuron has not been served yet. The acknowledge

given by the arbiter to a chosen neuron, represent a “go” signal for the encoder that put a

5 bits code on the AER output bus. This code identifies the emitting neuron.

The AER output bus is physically different from the AER input bus. The output bus

carries a 5 bits information identifying the emitter, the input bus a 10 bits address identifying

the receiver. To connect the output of one CLANN chip to the input of another CLANN

chip an external mapper is needed. It has to retain the information on the connectivity and

to map the incoming neuron addresses onto the corresponding target synapse addresses.

The channel bandwidth and the available address space are critical issues for the input bus

where both the number of synapses to identify and the traffic load scale with the square of

the number of neurons in the network. On the output bus these quantities scale linearly

with the number of neurons.

A digital multiplexer (MUX) 32to2 has been implemented to monitor the output of the

neurons during the setup debug phase. The MUX receives extended spikes and routes them

to dedicated test pins. Other test pins give direct access to 2 neurons and 2 synapses and

allow to continuously monitor the circuits behavior.
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The signal flow can be summarized in this way: an AER spike is routed to the target

synapse by the decoder. The spike passes through a pulse shaper before arriving on the

synapse. The synapse translates the extended pulse in a current that affects the neuron

dynamics. When the neuron emits a spike it is sent, via pulse shaper, to recursive synapses

and, in parallel outside the chip via a memory element, an arbiter and an encoder.

In addition an extra signal path is present on the chip: it allows to load the synaptic

configuration in order to set individually each synaptic contact as an active/inactive exci-

tatory/inhibitory one. During an initial phase a serial bitstream is fed into a shift register

composed of 4096 flip-flops: each synapse hosts two of the 4096 D-type flip-flops. By con-

necting the two flip-flops within each synapse in series and then connecting them in series

with the flip-flops belonging to contiguous synapses, it is possible to create a unique shift

register that, as a snake, extends over the entire chip touching all the synapses. The two

flip-flops per synapse store two configuration bits that decide the activation/inactivation of

the contact and its inhibitory or excitatory nature. The serial method was chosen because

only two pins are necessary: one for the data, one for the clock. This is the only part of

the chip that necessitates a clock. It is designed with standard AMS (Austria Micro Sys-

tems) cells: D-type flip-flops and clock buffers. Once the configuration is loaded the clock

is stopped, the logical gates stop switching and the neural activity can start.

The signal paths described above includes digital and analog circuits. Spikes from exter-

nal devices come into the form of digital 10 bits addresses, pass the AER input system and

are then converted into packets of analog charges by the synapses. The neurons execute the

opposite conversion: they receive analog contributions and emit spikes under the form of

digital pulses. Fast switching digital signals and slow analog ones cohabits in the chip. To

realize on silicon such a pathway a number of problems related to noise has been considered.

In such kind of mixed digital-analog chip, a typical problem is the cross-talk effect between

fast-switching digital wire and slow analog wire. The effect is induced by parasitic capaci-

tances coupling the wires together. What happens is that when a digital circuit switches it

creates a step signal on its output net. The fast components of this signal pass the parasitic

capacitors and generate a peak in the voltage of the coupled line. If this second line drives

digital circuits usually the noise induced is negligible compared to the large difference be-

tween the analog voltages coding for a digital 1 (3.3V) or a 0 (0V). On the other hand, if the

influenced line is carrying a precise analog voltage level, the noise can become a problem. A

typical situation where this could happen in CLANN is between the axons and the dendritic

trees. The axons carry a fast digital pulse representing the spike, while each dendritic tree

has an analog net on which the synaptic contributions sums together. As shown in Fig. 3.13

each axon crosses all the dendritic trees: in the worst, but possible, scenario the cross-talk

could become important compared to the synaptic contributions, and the network dynamics

completely corrupted.

Cross-talk, circuit coupling through the bulk, power bounces can cause the complete chip

malfunctioning. To avoid or at least reduce this kind of effects circuits placement, signal

and power routing, constrains on MOSFET geometries, separation of analog and digital

power, distances between analog and digital blocks and noise barriers should be considered

planning the architecture of the chip.

Building a mixed signal chip of this kind, is not just connecting pieces together. A top-

down design strategy was adopted. The architecture of the chip is important as much as

the single circuits. A rough version of the top level layout of CLANN has been designed

before the implementation of the various blocks. Clearly, building the chip, the original idea
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evolved to fit the needs of single circuits. This approach let us design a system composed of

parts that, in the end, work nicely together.

3.4 Neuron and Synapse, block level

The core part of the signal path, described in the previous section, involves neurons and

synapses. A block level description of these circuits is given in the next paragraphs, together

with the description of the Calcium circuit. Figure 3.3 reports the a diagram of the circuits.
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X(t)

short-term

dynamics
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Synapse Neuron Calcium
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Figure 3.3: Synapse neuron and calcium circuits, block level diagram. The incoming spike,

is received by the Hebbian and by the Post-Synaptic Potential (PSP) blocks. The Hebbian

block is the entry point for the synaptic dynamics. It collects information from the Calcium

circuit and when triggered by the incoming spike it injects (subtracts) a current into (from)

the X(t) block where the internal analog synaptic variable X(t) is updated and maintained.

The output of the X(t) block is a digital flag accounting for the synaptic state: potentiated or

depressed. The PSP block generates the synaptic current contribution for the postsynaptic

neuron according to the synaptic state and to two bits stored in the configuration element.

Each synapse can be configured as excitatory, inhibitory or inactive. The synaptic output

current charges or discharges the neural membrane capacitance included in block tagged

V (t) in the neuron circuit. When the voltage V (t) across the membrane capacitance reaches

a threshold the Spike block generates an action potential and activates a feedback loop that

brings V (t) back to a reset potential as imposed by the theoretical model (see eq. 2.20).

Integration of incoming synaptic contributions restarts only after a refractory period. The

Calcium circuit reads the emitted spikes and manages the Calcium variable (C(t) block).

The system of comparators generates two signals to be back-propagated to synapses for

implementing the learning rule of eq. 2.29.

The synapse On the the left the synapse is divided into four blocks: the Hebbian

circuit elaborates the input for the X module, the core of the synapse. According to the

internal state of the X module, and to the Configuration Element, the PSP block generates

the the correct stimuli for the postsynaptic neuron.

The internal synaptic variable X is a voltage across a capacitor placed in the X module.

As described in the previous chapter, the variable X is made eligible for an upward or

a downward jump whenever a pre-synaptic spike arrives. The Hebbian circuit receives the

presynaptic spike and two digital signals, UP and DOWN , coding the output of inequalities

2.29. If UP is active, the Hebbian circuit injects a current into the capacitor inducing an

upward jump; if DOWN is active a subtraction of current from the capacitor generates



46 CHAPTER 3. CLANN

a downward jump. If both digital signals are disabled, no jumps are triggered. UP and

DOWN signals back-propagate from the Calcium circuit connected to the postsynaptic

neuron to all the synapses belonging to the dendritic tree of the neuron.

The jumps, triggered by spikes, represent the short-term dynamics (on the timescale of

few microseconds) of the internal synaptic variable. In the absence of impinging spikes X is

forced towards its upper or lower bound according to where the last jump left it, respectively

above or below a given threshold θX . This refresh mechanism tends to maintain an “high”

or a “low” value for X . On time scale of the order of hundreds of milliseconds, the slow

internal refresh and the fast spike-induced jumps, give X the tendency to increase or decrease

its value according to the statistical properties of the neural spiking activities. This is the

long-term dynamics of the synapse which can comports a change in the synaptic state: the

synapse is potentiated if X(t) > θX , depressed if X(t) < θX . The output of the X module

is a digital flag that encodes the synaptic state.

PSP (post-synaptic potential) block stimulates the postsynaptic neuron either injecting

or subtracting current during the time-window set by the impinging spike. These currents

induce upward or downward jumps in the postsynaptic neuron potential. In this block,

digital signals control the output analog currents. In input there are four digital signals: the

flag from the X module, two bits from the Configuration Element and the presynaptic spike

pulse. In output, instead, the PSP block communicates over an analog channel which is a

node shared by all the synapses belonging to the same dendritic tree directly connected to

the capacitor representing the postsynaptic neuron soma. The effect on the post-synaptic

neuron potential, depends on how the synapse has been configured, excitatory, inhibitory

or disconnected. If excitatory the PSP block injects current into the output node inducing

an upward jump; the amplitude of the current is determined by the digital flag coding the

synaptic state: the current is low (small jump) if the synapse is depressed, higher (bigger

jump) if the synapse is potentiated. If inhibitory, the current is sucked from the analog node

(downward jump) and its amplitude is fixed independently from the value of the digital flag.

If disconnected no current is produced. The Configuration Element retains, in two flip-flops,

memory of the two configuration bits loaded during an initial phase. Each bit enables the

excitatory or the inhibitory part of the PSP block.

The spike duration is determined by the shaper, and typically is set to 10µs. In this

interval of time, both the jumps of the synaptic variable X and those on the postsynaptic

neuron potential V (t) happen. The choice of few microseconds for the length of this time

window derives from the constraints that have to be satisfied. 1) From a theoretical point

of view, according to the models described in the previous chapter, the jumps on X and on

V (t) should take place in a negligible amount of time. For what concerns the synapse, the

term of comparison is the long-term dynamics timescale: few hundreds of milliseconds. For

the post-synaptic neuron potential the 10µs should be compared to the minimum expected

inter-spike interval which is of the order of few milliseconds. 2) From an hardware point of

view various factors concur to determine the spike length. The inferior limit is given by the

smaller time window that allows a fine tuning of the jumps amplitude. This is determined

by the amount of charge transferred to the capacitors, and hence by the product of the spike

length with the amplitude of the injected currents. Moreover to reduce noise generation,

the time interval should not be reduced too much so that the current steps produced on the

analog lines can be kept sufficiently small. On the other side, a synapse should be able to

process a spike before receiving the next one. And hence the maximum spike length is fixed

by the presynaptic neuron activity. The choice of working in the range of few microseconds
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satisfy all this constraints.

Neuron Figure 3.3 reports a simplified block diagram for the neuron circuit. The V (t)

module receives and integrates the PSP block contributions onto a capacitor. The voltage

across the capacitor represents the neuron membrane potential V (t). In addition to the

PSPs, the capacitor is charged by a constant afferent current and discharged by a constant

leakage current as dictated by the model described in the previous chapter. The voltage

V (t) evolves according to these stimuli and when it reaches a given threshold θV a spike

is emitted. In VLSI this means that an inverter, in the spike block, changes its digital

output. This activates a feedback loop that resets to zero the membrane potential causing

the inverter to switch again. In this way a digital pulse, the spike, is generated at the output

of the inverter. The refractory block, in the middle of the feedback loop, shortcut V (t) to

zero for a certain time interval, thus implementing a refractory period (τarp) during which

incoming PSPs and afferent current do not affect the capacitor. At the end of the refractory

period, V (t) is released and the integration starts again. The circuit used in CLANN is

the one described in [Indiveri et al., 2006] which is endowed also with frequency adaptation

capability thanks to another negative feedback loop, not shown in the figure.

The circuit, as detailed in the next section, is a real neuromorphic one. It is an hybrid

analog/digital, compact and low power circuit. This is the result of 17 years of evolution of

VLSI IF neurons. For other parts of the chip there has not been such evolution yet. And we

prefer to adopt standard circuit to test the ideas, leaving to future steps the improvement

of the design.

Calcium A variable that measures the recent neuron activity is necessary for the stop

learning mechanism. This information is used to stop a further synaptic potentiation or

depression if the post-synaptic neuron is already too active or too inactive. This information

is stored in an analog variable we will refer to as the Calcium variable: a voltage across a

capacitor (clearly). Every time a spike is emitted the variable is suddenly increased of a

certain amount; in absence of spikes the capacitor discharge linearly; thus, If the mean

firing rate of the neuron is above a certain threshold, the calcium variable tends to increase,

otherwise it tends to decrease. The Calcium block of figure 3.3 contains the circuits for the

generation of this variable and the comparators block which reads the Calcium variable C(t)

and the neuron potential V (t) and executes the comparisons described in inequalities 2.29.

Its output are the UP and DOWN digital signals that are broadcast to all the synapses

belonging to the dendritic tree. The comparators system can be configured, thanks to digital

standard cells, and it is possible to exclude the calcium dynamics from the comparison

process. This allow to implement the basic learning rule described by equations 2.26.

Figure 3.4 illustrates a typical behavior of the main analog variables involved in the net-

work dynamics. The traces, from top to bottom, represent the postsynaptic neuron potential

Vpost(t), the internal synaptic variable X(t), the Calcium variable C(t) and the presynaptic

neuron potential Vpre(t). An increase in the afferent current forces the postsynaptic neu-

ron to fire at increasing frequency. Consequently the Calcium variable raises and exits the

range set by the K thresholds. This activates the stop-learning mechanism and X(t) stops

undergoing upward or downward jumps and is than attracted towards ground by the refresh

circuit.

Previous paragraphs provide a description of CLANN main parts and explain how these

blocks communicate each other. Further details on circuits are furnished in the appendix of

this chapter where the schematics and layout are reported and technical choices concerning

mismatch and noise reduction are discussed.
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Figure 3.4: On the left (a) a typical scheme for Calcium thresholds (K low
up = K low

dw and

Khigh
up > Khigh

dw ): according to 2.29 downward jumps are allowed inside the region shaded

with horizontal lines, upward jumps inside the region shaded with oblique lines. On the right

(b) an illustrative example of the stop-learning mechanism ; top to bottom: post-synaptic

neuron potential Vpost, calcium variable C, internal synaptic variable X , presynaptic neuron

potential Vpre.

We performed extensive experiments to characterize single circuits behavior and col-

lective neurons dynamics. An ad-hoc experimental setup has been build to control input

signals and to monitor CLANN outputs. In input, 69 parameters, under the form of analog

voltages, should be tuned; an AER external infrastructure is necessary to stimulate the

network dynamics; 4 digital signals are required to configure the synaptic matrix, to enable

the memory element and to select the learning rule; and, at last, a 3-bit address is needed to

control the digital MUX. On the output side, the network activity can be monitored reading

the AER events produced by the chip; 13 test points give information on the dynamics of

two synapses and two neurons (see, for instance, traces in figure 3.4); and the MUX makes

available on two output pins the digital spike pulses produced by two selected neurons. The

experimental setup deals with all these signals: a PCB hosts DAC and trimmers to set

the biases and a micro-controller that takes care of the digital configuration signals. The

PCI-AER board [Dante et al., 2005] [Chicca et al., 2007] manages and monitor the AER

traffic both in input and output. Scope probes are, from time to time, connected to the

interesting test points. Another aspect that has become a necessity during the test sessions

is the control of the chip temperature. The entire setup absorbs less than 150 mA, and

CLANN contributes only to a small extent to this power consumption. Turning on CLANN

and bringing its internal activity to full regimes, cause an increase inferior to 1 degree in

the external temperature of the chip case. Problems related to temperature changes are not

caused by the chip power consumption but depend on the room conditions. Considering the

form of the sub-threshold mosfet characteristic [Mead, 1989] it has been necessary to build

a system to fix the chip temperature. A simple but efficient approach has been adopted: a

peltier cell, a heat sink and a thermostat ensure a temperature variation inferior to 1 degree,

sufficient for our aims.
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The lab technicians handled the implementation of the setup, I took part only to the

definition of the setup specifics and to the system debug phase.

The most interesting experiment run on CLANN is a classification task, in which the

chip, configured to have a perceptron-like architecture, learns to discriminate different over-

lapping patterns. The test has been carried out both with active and inactive stop-learning

mechanism; the results are described in what follows. To reach this goal, a non negligible

amount of time has been spent performing low-level tests, both on single circuits and on

the final architecture. Their aims were to characterize the circuits behavior, to measure

the effective values of parameters important for the network dynamics, to evaluate the mis-

match, to figure out if the high-level behavior agrees with the predictions of the theoretical

models despite the noise and the spurious effects unavoidable in a real VLSI device. For

this a chip-oriented simulation has been set up and the results compared with the experi-

mental measures. The next paragraphs shortly retrace the way from the low-level tests to

the classification task.

3.5 Measuring parameters

through neural and synaptic dynamics

Parameters setting is a non-trivial stage of setting up chip experiments, since mismatches

and other sources of variability induce wide distributions of relevant neural and synaptic

parameters. As most of them are not directly accessible, suitable stimulation protocols were

devised, in order to infer the on-chip parameter distributions corresponding to given external

settings.

As an example we describe here the protocol we use to measure the amplitude of Jdw and

the value of the refresh (α) toward the upper bound (Hs) of the synaptic internal variable

X(t). Using the same method we measure Jup and the refresh (β) toward the lower bound

(Hi). The stop-learning mechanism is switched off for this measurement.

The protocol consist of stimulating the AER synapses with external spike trains and

analyzing the chip response. We initialize X(t) to its upper bound Hs: to do this we set the

threshold θV on the post-synaptic neuron potential to 0, we choose a very high Jup and we

send a pre-synaptic AER spike which certainly brings X(t) above θX , such that it relaxes

to Hs. We then set the threshold θV to its upper bound, so that from then on X(t) will

undergo only downward jumps; the synaptic efficacy J+ for potentiated synapses is chosen

large enough to guarantee one post synaptic spike for each impinging pre-synaptic spike. For

depressed synapses the efficacy is set to zero. We send an AER spike train with a constant

frequency ν to the synapse. The post-synaptic neuron emits spikes till the time t∗ when the

synapse passes from potentiated to depressed. We calculate the number of jumps n = t∗ ν

necessary for a synaptic downward transition. We then repeat the measure decreasing the

synaptic threshold θX . In these particular conditions, according to the theoretical model

described before, the relationship between n and θX follows this behavior:

n(θX) =
Hs + α/ν

Jdn − α/ν
− θX

1

Jdn − α/ν
(3.1)

In this description we neglect the fact that, for the real circuit, the values of the jump

and of α show a moderate dependence on the value X(t): they decrease if X(t) is near Hs

or Hi. We obtain the value of α from the difference between the slopes measured for two
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different ν. To accumulate the statistics on this measure we repeat the entire procedure for

different pairs of frequencies.

The measures for each synapse are affected by a relative error less than 10%. The

distributions over the 31 synapses of the jumps (up and down) and of the refreshes (up

and down) are reported in figure 3.5; for the sake of simplicity we report in Table 3.1 only

the mean values of all the measured parameters used in the experiments and simulations

described in the following Sections.
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Figure 3.5: Distributions over the 31 synapses of the jumps Jup and Jdw (left panel) and of

the refreshes α and β (right panel) of the synaptic internal variable X(t).

We would like to stress that the above strategy for estimating relevant network parame-

ters is consistent with the electrophysiology on silicon approach advocated in the neuromor-

phic engineering, in which one takes the attitude that estimates have to be obtained from the

spiking activity the neurons on the chip as the only accessible observable, for the different

sets of parameters explored. More generally, the whole subject of testing the neuromorphic

chip should be viewed in this light as the setup of suited electrophysiology experiment such

that the expected network behavior is to be assessed through the emerging dynamics, typi-

cally in noisy conditions, as opposed to the usual situation, in which testing a chip amounts

essentially to checking the deterministic correspondence between the design specifications

and the observed behavior. In the following Section we check the statistical properties of

synaptic plasticity along these lines.

3.6 LTP/LTD probabilities: measurements vs chip-oriented

simulation

In this section we demonstrate the stop-learning stochastic mechanism for synaptic plasticity

by estimating long-term potentiation (LTP) and long-term depression (LTD) probabilities

as functions of the post-synaptic firing rate for a subset of synapses, and we compare the

results with chip-oriented simulations.

For each of 31 synapses sharing the same post-synaptic neuron, we generate a pre-

synaptic Poisson spike train at 70 Hz. The post synaptic neuron is forced to fire in turn a

Poisson spike train by applying the superposition of an external DC current, and a Poisson

distributed train of inhibitory spikes through AER. Setting to zero both the potentiated
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Table 3.1: Measured parameters are divided in three categories: Neuron, Synapse and

Calcium. In the column note we report if the parameters are measured with a suitable test

protocol or just with the oscilloscope (osc). The former are different for each synapse and

we report the distribution width σ.

distribution

parameter value error width note

σ

Neuron

βv -30.00 [V/s] ± 0.70 [V/s] / osc

θfire 0.90 [V] ± 0.05 [V] / osc

JInh 0.15 [V] ± 0.01 [V] / osc

JExc 0.10 [V] ± 0.04 [V] 0.03 [V] test

Hi 0.00 [V] ± 0.05 [V] / osc

Synapse

α 3.71 [V/s] ± 0.04 [V/s] 1.87 [V/s] test

β 3.63 [V/s] ± 0.04 [V/s] 2.07 [V/s] test

Jup 0.14 [V] ± 0.04 [V] 0.05 [V] test

Jdw 0.12 [V] ± 0.04 [V] 0.02 [V] test

θX 1.50 [V] ± 0.05 [V] / osc

θV 0.30 [V] ± 0.05 [V] / osc

HX
s 0.05 [V] ± 0.05 [V] / osc

HX
i 3.00 [V] ± 0.05 [V] / osc

Calcium

Khigh
up 2.30 [V] ± 0.05 [V] / osc

K low
up 0.05 [V] ± 0.05 [V] / osc

Khigh
dw 3.00 [V] ± 0.05 [V] / osc

K low
dw 0.05 [V] ± 0.05 [V] / osc

Cstart 0.40 [V] ± 0.05 [V] / osc

βCa 12.00 [V/s] ± 0.28 [V/s] / osc

JCa 0.17 [V] ± 0.05 [V] / osc

and depressed efficacies, the activity of the post-synaptic neuron can be easily tuned by

varying the amplitude of the DC current and the frequency of the inhibitory AER train.

We initialize the 31 (AER) synapses to be depressed (potentiated) with the same protocol

described in the previous section, and we monitor the post-synaptic neuron activity during

a stimulation trial lasting 0.5 seconds. At the end of the trial we read the synaptic state

using a suitable AER protocol. For each chosen value of the post-synaptic firing rate, we

evaluate the probability to find synapses in a potentiated (depressed) state after the trial,

repeating the test 50 times. The results reported in figure 3.6 (solid lines) represent the

average LTP and LTD probabilities per trial over the 31 synapses. Tests are performed
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both with active and inactive stop-learning mechanism. When stop-learning mechanism is

inactive, the LTP is monotonically increasing with the post-synaptic firing rate while, when

the calcium circuit is activated the LTP probability has a max for νpost around 80 Hz.

Identical tests are also run in simulation (dashed curves in figure 3.6). For the pur-

pose of a meaningful comparison with the chip behavior, we implement in the simulation

the previously estimated distribution of relevant parameters affecting neural and synaptic

dynamics.

Simulated and measured data are in qualitative agreement. The parameters we choose

for these text are the same as those used for the classification task described in the next

section.
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Figure 3.6: Transition probabilities. Black and gray lines with filled markers are LTP

probabilities with and without calcium stop-learning mechanism respectively. Black lines

with empty markers are LTD probabilities without stop-learning mechanism. The case LTD

with stop-learning mechanism is not shown. Error bars are standard deviations over the 50

trials

We emphasize that, despite the many sources of variability and inhomogeneity in the chip,

taking into account the uncertainty in a limited set of effective parameters directly mapped

onto the theoretical model is enough to account for the amount of variability observed in

the measurements. The agreement between measurements and simulations assures us that

there are not spuriuos effects in the chip which introduce systematic deviations from the

expected behaviour (e.g. correlated fluctuations in some of the parameters).

3.7 Learning overlapping patterns

We configure the synaptic matrix in order to have a subnetwork with a perceptron like

architecture with 1 output and 32 inputs (32 AER synapses). 31 synapses are set as plastic

excitatory ones, the 32nd is set as inhibitory and used to modulate the post-synpatic neuron
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activity.

Our aim is to teach the perceptron to classify two patterns Up and Down through a semi-

supervised learning strategy to be explained below. After learning we want the perceptron to

respond with high output frequency for pattern Up and with low output frequency for pattern

Down. The self regulating stop-learning mechanism is exploited to improve performances

when Up and Down patterns have a significant overlap. Learning is semi-supervised: for

each pattern a “teacher” input is sent to the output neuron, steering its activity to be high

or low, as desired. At the end of the learning period the “teacher” is turned off and the

perceptron output is driven only by the input stimuli: in this conditions its classification

ability is tested.

Analogous experiments on a similar device are described in [Mitra et al., 2007].

We present learning performances for input patterns with increasing overlap, and demon-

strate the effect of the stop learning mechanism (overlap ranging from 6 to 14). Together

with the overlap the coding level (i.e. the fraction of perceptron inputs affected by the

stimulus) also increases (from 0.5 to 0.7). This allows to use all the 31 AER synapses in all

the experiments.

Upon stimulation, active pre-synaptic inputs are Poisson distributed spike trains at 70

Hz, while inactive inputs are Poisson spike trains at 20 Hz. Each trial lasts half a second. Up

and Down patterns are randomly interleaved with equal probability. The teaching signal, a

combination of an excitatory constant current and of an inhibitory AER spike train, forces

the output firing rate either to 50 or to 0.5 Hz. One run includes 150 trials, which is sufficient

to stabilize the output frequencies. At the end of each trial we turn off the teaching signal,

freeze the synaptic dynamics by setting the refresh to a high value and read the state of

each synapse using a suitable AER protocol. In these conditions we perform a 5 seconds

test (“Checking Phase”) to measure the perceptron frequencies when pattern Up or pattern

Down are presented. Each experiment includes 50 runs. For each run we change: a) the

“definition” of patterns Up and Down: inputs activated by pattern Up and Down are chosen

randomly at the beginning of each run; b) the initial synaptic state, with the constraint that

only about 30 % of the synapses are potentiated; c) the stimulation sequence. Results are

described in figures 3.7 to 3.9.

We carry out learning experiments with different overlaps between the two patterns to

be learnt (ranging from 0 to 10), comparing the performance when the stop-learning mech-

anism is inactive/active. In the last case only the threshold Khigh
up is active (the threshold

above which jumps up are inhibited). The Calcium circuit parameters are such that the

Ca variable passes Khigh
up when the mean firing rate of the post-synaptic neuron is around

80 Hz. For orthogonal stimuli (zero overlap) the perceptron was able to correctly learn the

stimuli, and activating the stop-learning mechanism does not imply a qualitative difference

in performances (left column in figure 3.9).

We then studied the case of patterns with fixed overlap (10) with active and inactive

stop-learning mechanism.

In figure 3.7 we report the distributions of perceptron frequencies over 50 runs at four

different stages along the run for overlap 10 with inactive (upper panels) and active (lower

panels) stop-learning mechanism. In black the distributions corresponding to the perceptron

output frequencies when the Pattern Down is active, in grey the distributions corresponding

to pattern Up active. The frequencies have been monitored during the checking phases.

At the beginning of learning the grey and black distributions are completely overlapped,

regardless the stop-learning mechanism. The separation of the two distributions increases
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Figure 3.7: Distribution of perceptron output frequencies at four different stages of the

learning process. The number of inputs belonging to both patterns is 10.

towards the end of the run. The improvement due to the stop-learning mechanism is clearly

visible in the much better separation between the frequency distributions.

We show in figure 3.8 the distributions of the fraction of potentiated synapses over the 50

runs during the same experiment of figure 3.7. We divide synapses in three subgroups: Up

(grey) synapses with pre-synaptic input activated solely by the Up pattern, Down (black)

synapses with pre-synaptic inputs activated only by the Down pattern, and overlap (white)

synapses with pre-synaptic inputs activated by both patterns Up and Down. The state of

the synapses is probed and recorded after every learning step. Accumulating statistics over

the 50 runs we obtain the distributions reported in figure 3.8. The fraction of potentiated

synapses is calculated over the number of synapses belonging to each subgroup.

When the stop-learning mechanism is inactive, at the end of the experiment the white

distribution of overlap synapses is broad, while when the stop-learning mechanism is active

overlap synapses tend to be depotentiated. This is the “microscopic” effect of the stop-

learning mechanism since overlap synapses are pushed half of the times to the potentiated

state and half of the times to the depressed state, and it is more likely for the Up synapses

to reach earlier the potentiated state. When the stop-learning mechanism is active, once the

potentiated synapses are enough to drive the output neuron about 80 Hz, further potenti-

ation is inhibited for all synapses so that overlap synapses get depressed on average. This

happens for sufficiently small transition probabilities.

Final distributions of the output frequencies for increasing overlap is illustrated in figure

3.9 (stop-learning mechanism inactive in the upper panels, active for the lower panels).

The frequencies are recorded during the “checking phase”. In black the histograms of the

output frequency νdw for the Down pattern, in grey those for Up pattern νup. It is clear from
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Figure 3.8: Distributions of the fraction of potentiated synapses (w+) for three subgroups of

synapses. Synapses that receive active input only during the presentation of Pattern Up are

in the subgroups named Up. Synapses that receive active inputs only during Pattern Down

presentations are in Down group. Overlap synapses are those that receive active inputs

both during Pattern Up and Pattern Down presentation. The number of inputs belonging

to both patterns is 10.

the figure that the output frequency distributions remain well separated even for high overlap

when the stop-learning mechanism is active. The increase in the coding level together with

the increase in the overlap could in principle push the output frequencies towards higher or

lower values depending on the chosen parameters. In our conditions, as shown in figure 3.9,

we have a shift towards higher frequencies when the stop-learning mechanism is inactive.

The stop-learning mechanism is very effective in stabilizing the output rate distributions, as

shown by the histograms in the second row of figure 3.9.

To provide a quantitative measure of how the perceptron performances are affected by

the stop-learning mechanism, we report in Fig.3.10 the fraction of correct responses in the

two cases, for different values of the overlap between the Up and Down patterns. An Up

(Down) pattern is taken to be correctly classified if the perceptron’s output firing rate is

above (below) a pre-determined threshold. In order to choose an appropriate choice for the

threshold (for each value of the overlap) a reasonable criterion is to approximately equal-

ize the performances for the two patterns. The left panel in Fig.3.10 shows the resulting

performances, where the choice of the optimal threshold has been made separately for the

stop-learning-ON and the stop-learning-OFF cases. It is seen that, as expected, perfor-

mances worsen with increasing overlap. When the stop-learning mechanism is active, the

performance stays above 90% for all the values of the overlap explored, while performances

decrease quickly with increasing overlap when the stop-learning mechanism is switched off.
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Figure 3.9: Distributions of perceptron frequencies after learning two overlapped patterns.

Black bars refer to pattern Down stimulation, grey bars refers to pattern Up. Each panel

refers to a different overlap.

For the stop-learning-OFF case the threshold varies between 25 and 95 Hz, while for the

stop-learning-ON case it spans a much smaller range (40 - 45 Hz), consistently with the fact

that the stop-learning mechanism tempers the variability of the output rate distributions at

later stages of learning. Adopting an ad hoc mechanism for the optimization of the thresh-

old for each overlap might appear questionable in view of the operation of the network in

more “natural” conditions, in which the overlap between the patterns to be learnt is not

pre-determined, and can vary1. For this reason we also checked the performances of the

network for a fixed value (45 Hz) of the threshold (right panel in Fig.3.10). In this more

‘realistic’ case, as expected, a greater divergence between the two cases is seen, and the

benefit of the stop-learning mechanism shows up also for moderate overlap.

3.8 Summary and Discussion

In this chapter I presented the design and tests of a semi-neuromorphic chip implementing

a network of 32 integrate-and-fire neurons (see eq. 2.20) and 32x64 Hebbian plastic bistable

synapses capable of stochastic learning and endowed with a self-regulating mechanism (see

eq. 2.29 - 2.30). The synaptic matrix is completely reconfigurable: each synaptic contact

can be set as active or inactive and its excitatory/inhibitory nature can be decided during an

initial setup phase. The chip is endowed with structures that support AER-based (Address-

Event Representation) communication with external devices.

1Though one might imagine, for stationary statistics of the patterns to be classified, a ‘bootstrap’ stage
in which the network can self-tune its threshold to meet the given optimality requirement.
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Figure 3.10: Perceptron performances obtained for different values of the overlap between

the Up and Down patterns with stop-learning mechanism active (solid line) and inactive

(dashed line). (a): the threshold used is fixed at 45 Hz, see the text. (b): the threshold used

is optimized for each value of the overlap. The error bars refer to the measure over the 50

runs.

A custom hardware-software setup has been designed and debugged. It allows to control

the chip under repeatable conditions and to perform both low-level hardware tests and

network-level experiments. Single circuits have been characterized under various conditions.

Acquired data have been analyzed to extract parameters relevant for the network dynamics

as for instance the values of the synaptic efficacy or the amplitudes of synaptic jumps (see

tab. 3.1). Measures of synaptic transition probabilities were in agreement with results from

a chip-oriented simulation. This demonstrates that the hardware implementation behaves as

theoretical predictions despite all the unavoidable dissimilarities between analytical models

and behaviors of analog circuits. A classification experiment was then performed: the

network, configured as a simple perceptron-like architecture with 32 input and 1 output

units, learned to classify two different correlated patterns. The results summarized in Fig.

3.10 show an improvement in classification performances when the self-regulating synaptic

mechanism is activated, as theoretically predicted in [Brader et al., 2007].

The chip described in this chapter is only one of the hybrid analog-digital VLSI im-

plementations of neural networks that have been developed in these last few years, each

one optimized for a particular research goal. Some non-neuromorphic chips are thought

as stand-alone simulation tools (as the powerful implementation described in [J. Schemmel

and Ostendorf, 2007]) or as analog co-processors for numerical pc-based simulations [Alvado

et al., 2004]. Some VLSI systems implement detailed conductance-based neurons designed

to be easily interfaced with biological tissues [G. Le Masson and Bal, 2002] [Simoni et al.,

2000]; Neuromorphic chips range from sensory devices such as silicon retinas [P. Lichtsteiner

and Delbruck, 2006] [T. Y. W. Choi, 2005] and cochleas [van Schaik and Liu, 2007] to re-

configurable arrays of integrate-and-fire neurons [U. Mallick and Cauwenberghs, 2005] [Liu

and Douglas, 2004] [Merolla and Boahen, 2006], to learning chips implementing models of

spike-based synaptic plasticity as in [Indiveri et al., 2006] [Arthur and Boahen, 2006] [Riis

and Hafliger, 2007] [Petit and Murray, 2003] or as in our case. A VLSI system very similar

to CLANN has been described in [Mitra et al., 2006] and experimental results are reported

in [Mitra et al., 2007].
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One innovative characteristic of CLANN is its completely reconfigurable matrix of on-

chip recurrent connections. Some of the VLSI system cited above realize connections among

on-chip neurons via off-chip programmable channels [U. Mallick and Cauwenberghs, 2005]

[Indiveri et al., 2006] while other implementations are endowed with hardwired internal con-

nections [Liu and Douglas, 2004] [Merolla and Boahen, 2006] [E. Chicca and Douglas]. The

connectivity matrix of CLANN easily allows to create local and reconfigurable connections

without adding workload on external buses.

CLANN, whose capabilities have not been completely explored yet, has been conceived

as a flexible test chip; it proved to be a reliable piece of hardware behaving in agreement

with theoretical predictions; its circuits and architecture have been chosen as the starting

point for a larger and more sophisticated chip described in the next chapter.
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A p p e n d i x C

C.1 Circuits details and layout

C.1.1 Synapse

In figure 3.11 the synapse schematics is reported, it is arranged in the same blocks of figure

3.3. Both AER and recursive synapses follow this scheme.

VddVdd

Csyn

X(t)
vu

UP

DOWN

vd

Spike

Vdd

q
X

q
X

Jinh
VBis

b1

D J

b0
NSpike

NSpike

Spike

J -

Output

Data
in

Clockin

b0=Data
out

Clockout

NReset

b1

Bistability circuit

Clipping circuit

Memory element

PSP branchConfiguration element

Vp

Vn

Vb

wide

comp_p

A

B

Q

D Q

Q

D Q

Excitatory
branches

Inhibitory
branch

Hebbian circuit

X modulemp1

m
n1

DP

Iinh

I
DJ I

J_

flag

Figure 3.11: Synapse schematics. The block level diagram of the synapse is reported in

fig. 3.3. The Hebbian block receives the Spike signal from the presynaptic neuron. UP

and DOWN signals are two digital bits coming from the Calcium circuit measuring the

activity of the postsynaptic neuron. Vup and Vdown signals are two biases voltages to tune

the maximum current which influences the evolution of the synaptic variable X(t) (the

voltage across the synaptic capacitor Csyn). The Bistability Circuit compares X(t) with a

bias voltage ΘX and implements the refresh mechanism of eq. 2.30. The comparator named

Clipping Circuit generates in output the digital flag DPflag accounting for the the synaptic

state (potentiated or depressed). PSP (Post-Synaptic Potential) is activated by the Spike

signal and its negated version NSpike. J−, ∆J and Jinh are three analog biases. b0 and

b1 two digital bits stored in two flip-flops in the Configuration Element. Clock, DATA and

NReset digital lines controls the flip-flops.

The spike arrives on the terminal Spike of the Hebbian circuit under the form of an

“long” pulse coming from the shaper circuit. Its arrival closes the switches mn1 and, through

the inverter, also the switch mp1. This activates the output section of the Hebbian circuit

which is divided in two branches: a p one composed of three p-type MOSFETs and a

complementary n branch consisting in 3 n-type transistors. During the spike pulse, according

to the values of the digital signals UP (an active-low signal) and DOWN (an active-high

signal), either the p branch or the n branch is enabled. This respectively causes an injection
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or a subtraction of current into or from the capacitor Csyn (about 0.5pF) inducing an upward

(Jup) or a downward (Jdw) jump in the internal synaptic variable X(t), which is the voltage

across Csyn. The amplitude of the injected current, can be tuned with the bias vu, the

amplitude of the subtracted current with vd; both are typically in the order of few nA. The

digital signals UP and DOWN are the outputs of the comparators system described below.

Clearly, the MOSFETs used as switches occupy the minimum space allowed by the 0.35µm

technology; those used as current regulators are more than double in size. To implement the

refresh mechanism, Csyn, in the X module, is connected to a wide-range transconductance

amplifier [Liu et al., 2002] with positive feed-back. Its positive input is connected to X(t) and

the negative input is connected to the bias voltage θX . In this configuration if X(t) > θX the

amplifier injects a small current Ibis into Csyn, otherwise the current Ibis is sucked from the

capacitor: this forces X(t) to drift towards its upper bound (Hs) or towards its lower bound

(Hi). Low amplitudes of Ibis and corresponding slow dynamics of X(t) (about few Volts

per second) are obtained by keeping the MOSFETs of the amplifier in the weak-inversion

regime. The bias Vbis is used to tune the amplitude of Ibis in the range of pico-Ampere.

The Clipping circuit, a transconductance open-loop amplifier, compares the instantaneous

value of X(t) to θX . The output is a digital signal DPflag encoding the synaptic state:

potentiated (DPflag = 0) if X(t) > θX , or depressed (DPflag = 1) if X(t) < θX . The

excitatory or inhibitory nature of the synapse is determined by the configuration bits b0 and

b1 stored in two D-type flip-flops of the Configuration Element. If b0 = b1 = 1 than the

inhibitory branch (see figure 3.11) of the PSP block is enabled and a current Iinh flows from

the Output node to ground during the Spike pulse. The inhibitory branch is composed of

three n-type MOSFETs, two acting as switches and one as a current regulator (as in the

Hebbian circuit): Iinh amplitude can be adjusted with the bias Jinh. If b0 = b1 = 0 the

synapse is set excitatory and the excitatory branch, composed of five p-type transistors,

is active: during the pre-synaptic spike pulse, a current is injected into the Output node.

The amplitude of this current will be I− = IJ
−

if the synapse is depressed (DPflag = 1)

or I+ = IJ
−

+ I∆J if the synapse is potentiated (DPflag = 0). The amplitude of both IJ
−

and I∆J can be tuned using the biases J− and ∆J respectively. If b0 = 1 and b1 = 0 both

branches are disabled and the synaptic contact is inactive.

The two flip-flops of a Configuration Element are connected in series as well as the Con-

figuration Elements of different synapses: they globally constitute a 4032-bit shift register

into which the synaptic configuration is serially fed during an initial phase; only two signals

are required, a clock and a data line. The design of a symmetric clock distribution tree, for

the entire shift-register, seemed not to be an “economic” solution for the geometry of the

synaptic matrix. We decided to provide the flip-flops with the clock using an unique line

which runs along the whole shift-register. Relevant delays on this line, which is endowed

with one clock buffer for each flip-flop, could cause errors in the bit transfer. Specifically, er-

rors occur if the input-to-output clock buffer delay is similar to the input-to-output flip-flop

delay. In this condition a flip-flop could receive the clock rising edge after that the previous

flip-flop has changed its output state (and not before as it should be). To prevent this

problem data and clock signals propagate in opposite directions so that the first flip-flop to

be updated is the last one in the chain. This ensures that each element of the shift register

correctly updates its output before its input is changed by the previous flip-flop, which will

be updated on the following step.

In figure 3.12, the layout of the synapse is reported; all the four metal layer and two

polysilicon ones were used. More than one third of the space is occupied by AMS standard
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Figure 3.12: Synapse layout. The lower part is constituted by AMS (Austria Micro Systems)

standard cells: two flip-flops and two clock buffers form the Configuration Element of fig.

3.11. The upper part comprises the analog custom circuits: the Hebbian, X(t) and PSP

blocks. In green is clearly visible the capacitor (Csyn in fig. 3.11) shaped to shield sensitive

analog circuits from noisy digital ones. Blue horizontal paths on the top carry the UP ,

DOWN and Spike signals. White paths over the custom circuits are analog lines for input

bias voltages and output synaptic currents.

cells: flip-flops and clock buffers. The custom circuits of the Hebbian, X and PSP blocks are

visible in the upper part of the figure. The green area, is occupied by the capacitor realized

with the two available polysilicon layer. It is shaped to shield the sensitive analog circuits

from the noisy digital ones. As the capacitor, all the synaptic components have been placed,

shaped and connected with a particular care to cross-talk reduction. In the upper part three

horizontal blue nets are visible, they carry the UP and DOWN signals and the spike pulse.

They travel along a digital channel bordered by two guarding bars (only one of the two

guarding bars is visible, the other one is the ground net of the standard cell belonging to

the next synapse). Far from these digital nets the analog ones run, on the second metal

layer (white), above the custom cells. One of them is the analog Output node of the synapse

which is a really delicate net directly connected to the neuron capacitor. Noise on this line

strongly affects the entire network behavior; the other analog lines carry the bias voltages

for the synaptic circuits. As shown in figure 3.13, each digital net delivering the spike pulse,

coming from the neurons or from the decoder, crosses all the analog lines. This digital net

travel horizontally on metal one, in vertical on metal four (in green). This allow shielding

the analog lines with a power plane of metal three (not shown in figure 3.12) that covers the
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entire synapse. This become a sort of safe box inside which all the analog signals are kept.

The digital signals travel outside the boxes entering only when necessary. Thanks to this

architecture we did not experienced any cross-talk problems during the experimental tests.

Metal 1:

Digital spike line
Metal 2

Analog lines

Metal 3

power plane

shields analog

synaptic circuits

from digital signals

Synapse

site

Metal 4:

Digital spike line

Figure 3.13: Synaptic matrix paths: in blue (metal 1) and green (metal 4) the digital paths,

in white (metal 2) the analog ones. Metal 3 (yellow) constitutes power planes that shield

delicate analog lines and circuits from digital nets.

C.1.2 Neuron

The implemented neuron is the IF neuron proposed in [Indiveri et al., 2006] with constant

leakage term and a lower bound for the membrane potential V (t). The author of this

circuit specifically addresses the problem of power consumption, reducing it to less than

1.5µW for typical working conditions. The circuit schematics, in figure 3.14, is the results

of an evolution of IF neuron circuits started with the Axon-Hillock circuit proposed in

[Mead, 1989] in 1989. The neuron circuit is endowed with elements to implement spike

frequency adaptation, to set an arbitrary refractory period and to modulate the neural

threshold voltage. In what follows a short description of the circuit schematics is given (see

figure 3.14), for further details please refer to [Indiveri et al., 2006]. Four blocks can be

considered: the soma, the spike, the refractory period and the frequency adaptation block.

The first comprises the capacitor, the MOSFET m20 that explicitly implements the leakage

current and MOSFET m21 for the constant afferent current. Onto the common node of

these elements, synaptic contributions arrive inducing jumps in the “membrane” voltage

V (t) across the capacitor Cmem. When V (t), modulated by the source follower m1 − m2,

approaches the threshold of the inverter m4 −m5, it activates the spike emission process. A

positive feedback loop makes the inverter switch very rapidly, saving power; thus the node

V1 becomes 0 and node V2 suddenly switches to V dd. This closes m12 which shortcuts the
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capacitor Cmem to ground. This feedback loop brings V (t) back to its initial value. The

mosfet from m8 to m12 implements the absolute refractory period of the neuron. Once V (t)

is reset, the node V1 switches back to V dd and V2 is then discharged at the rate imposed by

Vrf and by the parasitic capacitance on node V2. At the end of this process, that implements

the refractory period, Cmem is released and the integration starts again. In the meanwhile,

the inverter m13−m14 reads in input the voltage V1 and produces at its output an active-high

digital pulse representing the spike. The spike frequency adaptation is implemented through

a current-mirror integrator (from m15 to m19) which dictates the amplitude of the current

Iadap subtracted from the capacitor. This system works thanks to the parasitic capacitance

at node Vca: a current set by Vadap charges the capacitance upon the emission of a spike,

while the dark current discharge the capacitance. The result is a current Iadap increasing

with the neuron firing rate (see [Indiveri et al., 2006] for further details). The original

schematics and layout, provided by the Institute of Neuroninformatics (INI) in Zurich, have

been slightly modified to optimize communication with the other circuits.

Vdd

I b I adapt

Vb

from synapses

Vadap

Vsf

Vc
m20 m19

m18

m17

m16

m15

Vdd

m6

m7

m12

I fb

Vdd

m1

m2

V in

Vdd

m5

m4

m3

V1

m14

m13
Vspk

Vdd

Vdd

m10

m9

m8

m11

V inJ

Vdd

C

V rf

V2
mem

m21

V(t)

Figure 3.14: Neuron schematics. V (t) is the neuron membrane potential. A series of analog

biases control the neurons parameters: Vinj tunes a constant afferent current charging the

capacitor Cmem, Vb controls the constant leakage current that discharge Cmem, Vadap regu-

lates the efficiency of the frequency adaptation mechanism, Vsf decides the firing threshold

and Vrf sets the duration of the refractory period. Vspk is the digital output where a pulse

is generated when V (t) crosses the firing threshold. The current Ifb activates during the

action potential and speeds up the increase of V (t) towards V dd during the raising phase.

C.1.3 Calcium

When a spike is generated, the signal NSpike (figure 3.15a) triggers a current tuned by the

vca i bias, which charges the capacitance Cca so that the voltage C(t) undergoes an upward

jump JCa. In the absence of spikes a constant current set by vca t linearly discharges Cca

so that C(t) decays towards ground. The instantaneous value of C(t), together with the
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post-synaptic neuron potential Vpost(t) are than compared to a set of threshold to generate

the UP and DOWN signals. Three kinds of comparators based on the two stages open-

loop transconductance amplifier are used in the comparators system shown on the right

side of figure 3.15. The digital output of the comparators is high or low depending on the

difference of voltages applied to the positive input A and negative input B. Comparators

tagged comp p are two stages open-loop p transconductance amplifier: if VA > VB the output

is high, otherwise the output is low. The comparator tagged comp p EN is a two stages

open-loop p transconductance amplifier accepting two enable input signals En 1 and En 2:

when both En 1 and En 2 are low than the comparator works as a normal p comparator,

otherwise the output is forced to be high. The comp n EN comparator is analogous to

the comp p EN one but designed with complementary mosfet. This system of comparators

implement the conditions described in (2.29).

qV

comp_p_EN

A

B

En1

En2

comp_n_EN

A

B

En1 En2

comp_p

A

B

comp_p

A

B

comp_p
A

B
Vpost

C(t)

C(t)

C(t)

C(t)

UP

DOWN

K up
low

C(t)

(t)

K up
high

K dw
high

K dw
low

K up
high

K up
low

K dw
low

K dw
high

Vdd

C(t)

Cca

NSpike

vca_i

vca_t

(a) (b)

Figure 3.15: Calcium circuit schematics: on the left the circuit that generates the Calcium

variable C(t), i.e. the voltage across the capacitor Cca. Nspike is the digital spike pulse

from the neuron. Vca i tunes the amplitude of the upward jumps that C(t) undergoes upon

the arriving of a spike. Vcat
sets the leakage current that discharges Cca. On the right side

the system of comparators implementing eq. 2.29. K and ΘV are analog voltages.

C.1.4 Shaper and other circuits

The shaper circuit used in CLANN, in figure 3.16, exploits a switch capacitor configuration

to transfer a certain amount of charge from C1 to C2 upon the arrival of a spike. Both the

AER and recursive shapers, the former placed next to each AER synapse, the latter soon

after each neuron, follow the same schematics; the only difference is that the AER one is

preceded by an AND gate combining the X and Y pulses generated by the decoder, while

the recursive circuit receives the trigger directly from the Vspk line of the neuron. When a

pulse on Vin opens the mosfet m1 and closes m2, the node Vs undergoes an upward jump

whose amplitude, given the initial conditions V1 = 0 and Vs = V dd, is ∆V = V dd · C2

C1+C2
.

The jump amplitude depends only on the capacitors values and on the initial conditions. A

sufficiently high jump makes the inverter m4 −m6 switch. Once Vin is released, C1, linearly

charges with a rate tuned by Vbias, V1 increases towards V dd and the inverter switches back.

An extended pulse of tunable amplitude is generated. To increase the slope of its edges, a

second inverter m7 −m9 is added. Both the inverter are limited in current to reduce power
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consumption. The circuits described above constitute the core of the chip, the network. To

Vdd Vdd Vdd Vdd

Vs

m1

m2

m3

m4

m5

m6

m7

m8

m9

Vin

Vout

C1

C2

limp

limn

Vtau

Figure 3.16: Pulse shaper schematics. m1 and m2 act as switches and create a switch

capacitor scheme with C1 and C2. This is the core of the circuit. Node Vin is a digital input

line which receives the incoming spike pulse. limn and limp are two analog voltages that

limits the currents flowing on the corresponding inverters.

make them work and communicate with external devices other few structures are required.

On the input side the C-element and the decoder, on the output side the memory element,

the encoder and the arbiter; moreover the padframe is necessary. The memory element

has been implemented using standard D-type flip-flops. The AER structures are built from

custom cells [Boahen, 1999b] using automatic ad-hoc compilers written by various people at

the INI [Bartolozzi, 2007] [Chicca, 2006]. On the input side the C-element follows the point-

to-point AER protocol, while on the output side the multi-sender protocol is implemented

[Dante et al., 2005]. The custom pads (from INI) were placed and connected to the core

by hands: no critical analog nets crosses noisy digital ones without being shielded by large

power lines.
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Chapter 4

FLANN

In this chapter a new chip named FLANN, the big brother of CLANN, is presented: it

implements a network of 128 integrate-and-fire neurons and 16384 spike-driven rate-based

Hebbian plastic bistable synapses. Directly derived from CLANN, FLANN is the Final

Learning Attractor Neural Network designed within the European ALAVLSI project and it is

the result of a growing experience accumulated designing and testing CLANN. Besides being

much larger, FLANN is endowed with a series of technical improvements aiming to increase

the reliability, the computational power and the testability of the system. The shaper

and calcium circuits have been completely redesigned, single synapses can be configured

as AER or recursive, can be initially set as potentiated or depressed and their internal

states monitored on-line without interfering with the network dynamics. FLANN has been

realized in 0.35 µm AMS CMOS technology, it occupies 68.9 mm2 and is hosted in a 256

PGA package. In figure 4.1 the layout of the chip and its id picture are shown.

4.1 Architecture

The main blocks of FLANN are the same of CLANN, there are the neurons array, the

synaptic matrix, the AER input and output systems. The first notable difference is in

the structure of the synaptic matrix. Here there is no more the differentiation between

an AER block hosting the synapses for external connections and a recursive part for those

synapses accepting spike from local neurons. Each synapse can be set as AER or recursive

through a configuration bit. In a large variety of architectures this degree of configurability

allow to reduce Silicon waste. If it is possible to exploit all the synapses, for instance in a

network composed of four CLANN chips with neurons uniformly connected at 50%, than

there are no advantages; but if, on the other side, the network architecture requires only

AER synapses, as the case of a set of externally controlled independent perceptrons, than,

half of the synapses of CLANN, the recursive ones, would do nothing else than occupy

precious Silicon area. A similar situation there would be if the chip is used as a pure

recursive block: the AER synapses, in this case, would be useless. The AER/recursive

configurability, represents a key feature to reduce the fraction of unused Silicon. Moreover,

besides improving the architecture flexibility, having only one kind of synapse throughout

the entire matrix greatly simplifies the layout design.

As visible in figure 4.1 the synaptic matrix is divided in four submatrixes. This comes
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Figure 4.1: FLANN, Final Learning Attractor Neural Network, top layout view. Visible

blocks are the array of 128 integrate-and-fire neurons, the synaptic matrix of 128x128 config-

urable AER/recursive, excitatory/inhibitory matrix, AER (Address Event Representation)

input and output systems. FLANN has been realized in 0.35 µm AMS CMOS technology,

it occupies 68.9 mm2 and is hosted in a 256 PGA package.

from the requirement of buffering digital signals to be transmitted along the entire length of

the chip 11mm long. The capacitive loads of the digital lines, as for instance those carrying

the spike pulses, have been considered non negligible; to maintain a decent slew rate of the

edges of the digital signals, we split the matrix in four smaller parts and we buffered the

digital signals in input to each block. The choice of having four submatrixes come form

quantitative analysis of the loads, considerations on noise produced by the buffers, and

criteria of layout simplicity. Moreover, to respond to experimental demands faced testing

CLANN chip, there are two independent sets of parameters, one for the submatrixes on the

left side, one for those on the right side. And in addition the first column of synapses on the

left has independent biases to tune the synaptic efficacy. Having different parameters for

different subset of synapses is useful when complex, non homogeneous architecture should

be tested; in particular the first column of synapses has been thought to be used as fixed

excitatory AER synapses when this is required to control from outside the behavior of the

neurons, as for instance to implement a spiking teaching signal.

The neuron array is highlighted in orange on the right side of figure 4.1. It consists of

128 integrate-and-fire neurons identical to those designed for CLANN. Next to each neuron

the new Calcium circuit comprises a differential pair integrator (DPI) configured to act as a

low pass filter, winner-take-all circuits, and current conveyors. The spikes generated by the

neurons are sent to the synapses configured as recursive, to the Calcium circuits and to the

AER output system (in yellow) composed as in CLANN of an array of memory elements,

an arbiter and an encoder.

The digital MUX is present too; it reads the 128 neurons output and report them on 8

digital output pins.

On the input side the AER system (in yellow), is composed of an element that handles the
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AER handshake and of an X-Y decoder. The entire system has been completely rethought

and the AER handshake streamlined for multi-chip systems. Standard digital cells have

been used and decoders have been designed exploiting automatic placement and routing

tools.

The configuration of the synaptic matrix is no more serially fed: each synapse can be

independently addressed using XY decoders placed next to the AER ones. Creating a giant

shift register composed of 32768 cells seemed not a great idea, at least from a reliability

point of view: it is sufficient a non-working cell to compromise the system configuration

ability. An XY strategy requires not only a decoder to address a specific synapse but also

a more complicated signal protocol that have to deal both with the configuration data and

with the synapse address data. We try to simplify as much as possible the system and

we decided to switch to this method also to introduce the possibility to read, through a

dedicated hardware, the state of a specific synapse. The configuration decoder, compared to

a serial scanner, allow to select more easily the synapses to monitor. Another configuration

novelty of FLANN is the possibility to set the initial state of each synapse at hardware level,

allowing a faster (no AER protocol and bias tuning required) and more reliable “download”

of the initial state of the connectivity weights.

The padframe of the chip is composed of 200 pads, derived from those of CLANN, they

were modified to reduce voltage drops on the power lines and noise generation on the input,

digital pads. In CLANN the padframe determines the chip area, in this chip, on the contrary,

the Silicon area necessary for the core imply such a long perimeter that roughly only half of

it is occupied by the padframe (see figure 4.1).

4.2 Signal flow

The signal flow is analogous to the one described in the previous chapter for CLANN.

In short: an external spike comes under the form of an AER event encoding the address

of the target synapse. This event is accepted by the new AER input logic element and

transformed by the decoders in a couple of X and Y pulses each lasting about 100. These

pulses simultaneously stimulate respectively the line and the column of the synaptic matrix

on which the target synapse resides. Next to each synapse, a shaper circuit receives the X-Y

signals and generates in output a single digital pulse lasting about 10us that triggers 1) jumps

on the synaptic internal variable X(t) and 2) jumps on the postsynaptic neuron potential

V (t) according to the models described in chapter 2. If the neuron membrane potential

reaches a given threshold θV , a spike is emitted and sent to those synapses connected to

the neuron axon and configured as recursive contacts. Differently from what happens in

CLANN, here the spike is not extended by a shaper placed next to the neuron but by the

shaper placed next to the target synapse. At each synaptic site the same shaper accepts AER

or recursive spikes: a digital MUX, according to a configuration bit, connects the shaper

either to external or local lines, making the synapse AER or recursive. As in CLANN

the local spike is sent not only to the synapses but also to 1) the Calcium circuit which

generates the UP and DOWN signals controlling the synaptic dynamics, 2) to the AER

output system that encodes the spike in an AER event then sent to external devices, and

3) to a digital MUX, useful during a debug phase, which directly reports the spike on an

output test pad. The AER output system is composed of a memory element that decouples

internal network activity from the external AER bus one: as in CLANN it is an array of

D-type flip-flops, 128 in this case, one for each neuron. A flip-flop is set by the neuron and
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reset by the arbiter. When a flip-flop is set, a request of accessing the AER bus is forward

to the arbiter which, if the bus is free, accepts the request and sends a “go” signal to the

encoder which in turn puts on the external bus the address corresponding to the neuron

that fired the spike. If the bus is busy the spike has to wait before being served: the neuron

anyhow resets immediately after the spike emission, while the flip-flop remains set as long

as the arbiter gives it an acknowledge signal once the spike has been transmitted.

4.3 Block level description
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circuit

X(t)

short -term

dynamics

PSP

long-term

dynamics

Synapse Neuron Calcium

Config.

Element

V(t) Spike DPI Current
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Circuit
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Figure 4.2: Synapse, neuron and calcium circuits: block level diagram. In red are highlighted

new or modified circuits compared to CLANN ones (see fig. 3.3). The synapse have the new

initialization circuit which is the active element that sets the initial state of the synapse.

The configuration element has been completely modified to accept the new protocol for

loading the synaptic configuration, to handle the new AER/Recursive configurability, and

to set/read the synaptic state. On the right side of the figure there is a completely new

current-mode Calcium circuit: the calcium variable in encoded in a current, and not in

a voltage as was in CLANN, generated by a linear integrator circuit; consequently a new

system of comparators has been designed and a current-to-voltage converter introduced in

the chain.

For the sake of clarity, to visualize where, at circuit level, the new features of FLANN

comport the introduction of new circuits and modifications of existing elements, in figure 4.2

is depicted a block level diagram of the synapse, neuron and calcium circuits: the new and

modified blocks are highlighted in red. The synapse have the new initialization circuit which

is the active element that sets the initial state of the synapse. The configuration element

has clearly been completely modified to accept the new protocol for loading the synaptic

configuration, to handle the new AER/Recursive configurability, and to set/read the synap-

tic state. On the right side of the figure there is a completely new current-mode Calcium

circuit: the calcium variable in encoded in a current generated by a linear integrator circuit;

consequently a new system of comparators has been designed implementing in currents the

inequalities 2.29. The synaptic internal variable X(t) then undergoes jumps according to

X(t) → X(t) + Jup if Vpost(t) > θV and I low
up < ICa < Ihigh

up

X(t) → X(t) − Jdw if Vpost(t) ≤ θV and I low
dw < ICa < Ihigh

dw

(4.1)
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where Jup, Jdw and the thresholds Iup,dw are all positive constants. The output of these

comparisons is encoded in two currents that the Current Conveyors block converts to voltages

to maintain the compatibility with the synapses.
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Figure 4.3: FLANN synapse at work: an illustrative example of the stop-learning mechanism;

top to bottom: postsynaptic neuron potential Vpost, calcium variable I = ICa

I0
, internal

synaptic variable X , presynaptic neuron potential Vpre. The chosen thresholds values for

the Calcium circuit allow only upward jumps. The synapse is initially set as depressed; at

t = 0, 16s a constant current induces a periodic firing activity for the postsynaptic neuron

and the calcium variable I undergoes upward jumps moving to a new asymptotic average

value. When I low
up < I < Ihigh

up , X(t) jumps are allowed

Figure 4.3 illustrates the behaviors of the main analog variable involved in the network

dynamics. The bottom trace is the presynaptic neuron potential: upon the arrival of one

spike, the internal synaptic variable X(t), second trace from bottom, updates its value

according to inequalities 4.1. The thresholds to be compared with the current Ica were set

to have only upward jumps: I low
dw = Ihigh

dw and I low
up < Ihigh

up . The synapse is initially set

depressed and then a constant current is injected into the postsynaptic neuron (top trace).

The neuron activity begins and the calcium variable ICa undergoes upward jumps moving

to a new asymptotic average value. The trace labeled I corresponds to ICa

I0
where I0 is a

constant value; it is derived from the measured VCa and computed as I = e(Vdd−κVCa)/UT ,

where κ is the subthreshold factor, taken equal 0.7, and UT is the thermal voltage which,

at room temperature, is equal to 25mV. When ICa is smaller than I low
up , transitions of X(t)

are disallowed. In the intermediate regime between I low
up and Ihigh

up , up jumps are allowed.

When ICa is larger than Ihigh
up , jumps of X are once again disallowed. Note that the refresh

mechanism attracts X(t) towards its upper bound when X(t) > θX (i.e. when t > 0.37s)

and towards its lower bound when X(t) < θX (t > 0.37s).
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4.4 Synapse and shaper: circuits and layout

In this section a detailed description of the new parts is provided
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Figure 4.4: FLANN synapse and shaper, schematic view. New or modified parts are high-

lighted in red (to compare to fig. 3.11). On the left the Initialization Circuit activates when

the write (wr) signal stays high: it shorts the synaptic internal variable X(t) to Vdd or to

ground accordingly to bit b2. This imposes the synaptic state: potentiated or depressed.

The write signal, from the modified Configuration Element, is high only when W̄R signal

is active and the synapse is selected using the Xconf and Yconf signals. When a synapse is

selected, the three-state buffer in the Configuration Element reports on an accessible pin the

digital state of the synapse. The modified Shaper accepts either recurrent or AER spikes

thanks to a standard digital MUX in input. The pulse extension is based on the slow charge

of capacitor Csh, charge that depends on the current flowing through m2 tuned by the analog

bias pls

.

4.4.1 Synapse

The schematic view of the synaptic circuit is reported in figure 4.4. The configuration

element have been designed using standard AMS digital cells, it consists of two flip-flops to

store the configuration bits b0 and b1, a three-state buffer for the synaptic state readout, and

four logic ports to combine the incoming digital signals. These signals comprise an horizontal

and a vertical selection line, Xconf and Yconf coming from the configuration decoder, a write

signal WR, and the bits to be memorized: bit b0 chooses between an AER or recursive

synapse, the output of the corresponding flip-flop is the signal sel that controls the digital

MUX in input to the shaper; bit b1 allows to configure the synaptic contact as excitatory

or inhibitory setting the value of the digital line conf which enables either the excitatory
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(conf = 0) or the inhibitory (conf = 1) branch of the PSP block. Another bit b2 is required

to set the initial state of the synapse. We chose not to allocate hardware resources to store

it: b2 directly impinges onto the synaptic initialization circuit which activates during the

write signal. if b2 = 0 the capacitor Csyn is shortcut to Vdd and hence the synapse is forced

to be potentiated; if b2 = 1 the synapse will be depressed. The three bits b1,2,3 together

with the WR signals are broadcast to all the synapses, the selection lines Xconf and Yconf

take care of enabling one synapse at time. Thus, to configure a synapse the protocol is the

following: 1) the data b1,2,3 lines are driven at the right values, 2) the address of the synapse

is presented to the decoders, 3) an active-high pulse on the write signal is sent: it triggers

the bits memorization on the flip-flops and the initialization of the synaptic state. Clearly

the write pulse has to start after the synaptic address has been completely processed by the

decoder, and has to last the time required by the initialization circuit to bring the voltage

X(t) to Vdd or ground.

To read the state of the synapse it is sufficient to select it: the three-state buffer, whose

input is connected to the state line, activates and drives an output digital pin, common

to all the synapses in the same submatrix, making available to external devices the digital

state of the synapse. In CLANN reading or setting the synaptic state involved parameters

tuning, AER spikes stimulation and an off-line analysis of the chip reaction. In FLANN

the introduction of three-state buffers let monitoring, on-line, the evolution of the synaptic

weights without affecting the network dynamics, scanning continuously the entire matrix or

just a chosen subset of synapses.

The initialization circuit consists of two n-type and two p-type MOSFETs; the transistors

driven by b2 simply form an inverter that is enabled when the signal wr and its negative

version wr close the switches m5 and m6 connecting the inverter to the power supply so that

the node X(t) is forced to ground or to Vdd.

4.4.2 Shaper

The analog part of the shaper is much simpler compared to the circuit used in CLANN.

There are only one capacitor C and four MOSFETs. When the output of the digital MUX

undergoes an active-high pulse, the capacitor is shortcut to ground through the transistor

m1. After the pulse duration ∆tin, the line is released and the capacitor is slowly recharged

by the current tuned by the analog bias pls flowing through the p-type MOSFET m2. The

inverter composed of m3 and m4 initially switches when the voltage across the capacitor Vsh

goes to zero, and switches back after an interval of time

∆tpls =
θinvC

Ipls
(4.2)

where θinv is the threshold of the inverter. On the output line tagged Spk, the pulse will last

∆tout = ∆tin + ∆tpls. In typical conditions ∆tout is set to about 10µs so that the difference

in the length between AER (∆tin = 100ns and recursive (∆tin = 20ns) spikes do not affect

the network dynamics: the amplitudes of the induced jumps differ for about the 1%, both

for the internal synaptic variable and for the postsynaptic neuron potential. To obtain a

10µs spike pulse.

The advantage of the circuit in CLANN is that the amplitude of the jump induced in the

voltage across the capacitor is less affected by the mismatch because in CLANN it depends

on the capacitance values and not on the current flowing through a MOSFET. The effect of
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this mismatch is relevant when two spikes with an ISI minor than ∆tout arrive on the shaper

so that the desired output pulse should double its length. To do this a fine control on the

jump amplitude is required and the mismatch could severely compromise this mechanism.

As already said ISI minor than 10µs are not typical in our network. In FLANN the MOSFET

m1 acts as a switch and ensures that the amplitude of the jump equals, in every shaper, V dd.

Thus the mismatch affecting the jump aplitude is not a problem. In FLANN the differences

in ∆tout are mostly due to mismatch on m2 which tune the Ipls current. To reduce this

problem m2 is three times larger than the minimum size MOSFET.

The digital MUX is a “huge” standard cell that, controlled by the sel signal coming

from the configuration element, selects the incoming signal: if sel = 0 the input digital pulse

comes from a local neuron, if sel = 1 the stimulus is the NAND composition of the Xaer

and Yaer signals generated by the AER decoders.

4.4.3 Synapse layout

Figure 4.5: Synapse and shaper, layout view. Standard cells are positioned in the upper

part, custom cells in the lower part. About the 40% of the area is occupied by standard

cells. The recurrent spike signal travels on the white path on the top of the figure, while

the “pseudo-digital” Vup and Vdw signals are brought to the synapse by the two blue paths

between the standard and custom circuits. In pink are visible the two capacitances, one

for the shaper and one for the synapse. They shield delicate analog MOSFETs, as that in

which flows the synaptic refresh current, from those transistors used as switches. The white

horizontal paths over the custom parts carry the analog biases.

The layout of the synapse and of the shaper are reported in figure 4.5. The block is

87µm long and 37µm high: 3219µm2, not much larger than the CLANN one (3011µm2).

About the 40% of the area is occupied by the standard cells. As in CLANN the analog

and digital parts are kept apart, standard cells are in the upper part, while full-custom

cells are in the lower part. Moreover the delicate analog transistors of full custom cells, as
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those of the refresh circuit, are on the right side of the capacitors, while the one used as

switches are on the left side. The white horizontal lines are made of metal two: those passing

over the custom cells carry nine analog biases, those on the standard cells carry six digital

signals. The node Vpost(t) shared by all the synapses belonging to the same dendritic tree is

another horizontal net on metal two in the middle of the full-custom section. The standard

and full-custom area are separated by a channel on which the pseudo-digital Vup and Vdw

signals travel. The spike from an on-chip neuron comes from the right side on the topmost

horizontal white line; this net goes through the matrix and connects with a vertical line on

metal four (in green), when it reaches its target column of synapses, in a scheme analogous

to that used in CLANN (see figure 3.13). The Yaer signal travels horizontally (it selects a

line) on metal two, while Xaer is on a vertical green line.

Three couples of power supplies are brought to each synapse, one for the digital standard

cell, one for digital custom transistors, one for analog custom MOSFETs. They all arrive

both on vertical (metal four) and on horizontal (metal one, in blue, and metal two) large

paths such that each of them is part of a network spreading all over the matrix. This makes

them low impedance and high capacitance nodes reducing voltage drops and ground bounces.

The supply tracks on metal three shield the analog blocks from the local and global digital

signals creating a sort of roof for the custom block. The synapse proved to work properly,

and no appreciable phenomenons related to noise or cross-talk were experienced during the

tests.

4.5 Calcium circuit

As shown in figure 4.2 three elements compose the Calcium block: the spikes impinge into

the differential pair integrator (DPI) circuit that generates the calcium variable under the

form of a current Ica(t). This current is compared, according to the theoretical model (eq.

4.1), with the thresholds Iup,low by the comparators system made of a voltage-mode and of

a current-mode part. The output of the comparison are two currents which are converted

into two voltages in the Current conveyor block.

4.5.1 Differential pair integrator

The DPI circuit designed for FLANN is the current-mode low pass filter proposed in [Bar-

tolozzi and Indiveri, 2007]. It acts as a linear RC circuit even if it is composed of MOSFETs

working in the subthreshold regime where the voltage-to-current characteristic is exponen-

tial. The circuit exactly implements the model described in the first chapter (see eq. 2.28).

For the p-type transistor mout we can write:

ICa = I0e
−

κ(VC −V dd)

UT (4.3)

where I0 is the leakage current, κ is the subthreshold slope factor, and UT is the thermal

voltage [Mead, 1989]. The current Id flowing in the right branch of the differential pair

formed by the m1-m4 MOSFETs can be expressed as:

Id = Iin
e

κVC
UT

e
κVC
UT + e

κVthr
UT

(4.4)
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Figure 4.6: Differential Pair Integrator (DPI) circuit configured as a current-mode low-pass

filter. The Calcium variable is the current ICa controlled by the voltage VC(t) across the

capacitor C. τ , Vthr and width are three analog bias controlling the behavior of the circuit

(see eq. 4.7). The pls signal is the digital input that receives the spike pulse.

assuming that the subthreshold slope factor κ is the same for n- and p-type MOSFETs. The

current Iin is limited by m3 and activated during the presence of the spike pulse which is

input to the gate terminal of m4. Multiplying numerator and denominator of equation 4.4

by e
−

κV dd
UT and considering equation 4.3, Id can be rewritten as:

Id =
Iin

1 + ( Iout

Ig
)

(4.5)

where the current Ig = I0e
−

(κVg−V dd)

UT represents a virtual p-type subthreshold current that

is not generated by any p-FET in the circuit. We can now differentiate the equation 4.3

with respect to VC and combine it with the equation for the capacitor C d
dtVC = −(Id − Iτ )

to obtain:

τ
d

dt
Iout = −Iout(1 −

Id

Iτ
) (4.6)

where τ = CUT

κIτ
. Replacing Id from equation 4.5 into equation 4.6 we obtain:

τ
d

dt
Iout + Iout = Iin

Iout/Iτ

1 + (Iout/Ig)
. (4.7)

This is a first-order non-linear differential equation. Its steady state can be easily derived

however:

Iout =
Ig

Iτ
(Iin − Iτ ). (4.8)

If the DC component of the input signal Iin is much grater than Iτ , then Iout � Ig and in

this conditions equation 4.7 reduces to

τ
d

dt
Iout + Iout = Iin

Ig

Iτ
(4.9)
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In the Laplace domain the DPI transfer function is therefore:

Iout

Iin
=

Ig

Iτ

1

1 + τs
(4.10)

which is the transfer function of a linear filter with a tunable gain Ig/Iτ .

This circuit, derived from the classical log-domain integrator described by Frey [Frey,

2000], has been proposed and studied in [Bartolozzi and Indiveri, 2007]. The mean value

of the output current is proportional to the mean firing rate of the neuron. This is the

advantage of using this circuit in spite of the one in CLANN. With a linear low-pass filter it

is possible to have a measure of the recent mean activity of the corresponding neuron, and

this is what we need. The typical behavior of the calcium current can be seen in figure 4.3.

4.5.2 Comparators

Circuits described in this section, first proposed in [Indiveri and Fusi, 2007], produce the

ILTP and ILTD signals that once converted in voltages back-propagate to all the synapses

belonging to the same dendritic tree.

The Calcium current ICa and the neuron potential Vpost are in input to the comparators

system composed of three winner-take-all (WTA) blocks and of a voltage comparator im-

plemented with an open loop transconductance amplifier. In figure 4.7 the schematic view

is reported. The voltage-mode comparison is between the postsynaptic membrane potential

Vpost(t) and the corresponding threshold θV . The result enables the right or the left branch

of the current comparators. Each WTA block of the current comparators, has in input the

current Ica and one of three current thresholds ITH1, ITH2 or ITH3: The threshold I low
up

and I low
up of equation 4.1 are fixed to equal values, a typical choice, and both correspond to

ITH1; ITH2 = Ihigh
dw and ITH3 = Ihigh

up . The output are the two currents ILTD and ILTP that

converted in voltages, are broadcast to the synapses.

The WTA circuit used in FLANN is the one originally proposed in [Lazzaro et al., 1988]

and reported in figure 4.8. Two current conveyors m1 −m2 and m3 −m4 receive two input

currents Iin1 and Iin2 and compete for the bias current Ibias via the common node Vc. If

the two input currents are equal the bias current is equally split between the two branches

and the two output currents are equal. When one of the two input currents, increases with

respect to the other, the two current conveyors begin to compete and the node receiving

the highest input suppresses the other. The output current of the winning cell, in the final

state, will equal Ibias while the output current of the loosing cell will be zero. The output

of the WTA can be then read as a binary variable encoding the output of the comparison

between Iin1 and Iin2.

The behavior of the WTA can be analyzed in two different regimes: when one input is

much greater than the other, or when the inputs differ of a small amount. In what follows

we will consider only the static response of the circuit; an extensive discussion of the circuit

static and dynamics can be found in [Bartolozzi, 2007]. The current of a MOSFET can be

divided into a forward component, If , and a reverse component, Ir: when the transistor

source voltage Vs is approximately equal to its drain voltage Vd, Ir becomes comparable

to If [Liu et al., 2002]. Let consider the case in which Iin1 � Iin2. If m1 is in saturation

(Vd1 > 4UT ), the dominant component of its drain current will be in the forward direction

and its gate voltage Vc will increase such that

Iin1 = If1 = I0e
κ Vc

UT . (4.11)
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Figure 4.7: Comparators system schematics: on the left an open-loop transconductance

amplifier compares the neuron potential Vpost with the analog threshold ΘV . The output

are two opposite signals which enable either the left or the right branch of the current-mode

system based on WTA (Winner-Take-All) circuits. This system compares the Calcium

current ICa with three threshold currents ITH1, ITH2 and ITH3 set by three corresponding

analog biases VTH1, VTH2 and VTH3. The bias current Ibias for the WTA circuits is tuned

by Vbias and set the maximum amplitude of ILTD and ILTP . The output current-to-voltage

conversion is performed by current conveyors shown in figure 4.9.

Although the two input currents are different, the two forward component of m1 and m2

are equal because the two transistors share the same gate voltage Vc and both their sources

are tied to ground, hence If1 = If2. The drain current Id2 of m2 is forced to equal Iin2 so

that:

If1 − Ir2 = Iin2 (4.12)

which, combined with equation 4.11, implies that

Ir2 = If1 − Iin2 = Iin1 − Iin2 � 0. (4.13)

This means that the reverse component of Id2 is significant, which is possible only if m2

operate in its ohmic region, i.e. Vd2 ≤ 4UT . In this case, the output transistor m4 is

effectively switched off, and Iout2 = 0. Consequently, m3 sources all the bias current and

Iout1 = Ibias.
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Vdd Vdd
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Iout2Iout1
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Vd1 Vd2

Iin1 Iin2

Ibias

Vc

Figure 4.8: Winner-Take-All (WTA), schematic view. Iin1 and Iin2 are two input currents

for two coupled current-conveyor m1 −m3 and m2 − m4 competing for the bias Ibias tuned

by the voltage Vbias. The dynamics of the circuit is such that if Iin1 > Iin2 then Iout1 =

Ibias and Iout2 = 0 otherwise if Iin1 < Iin2 then Iout1 = 0 and Iout2 = Ibias.

In the other case, when the two inputs differ by a small amount, we have to consider the

Early effect of the transistor operating in the saturation regime [Liu et al., 2002]:

Ids = Isat(1 +
Vds

Ve
) (4.14)

where Ve is the Early voltage. Assume the initial condition Iin1 = Iin2: the two transistors

m1 and m2 will operate in the saturation regime and the output currents will both be equal

to Ibias/2. If now one of the input current increases of a small amount δI , applying eq. 4.14

to M1, then the drain voltage Vd1 will increase by

δV =
δI

Isat
Ve. (4.15)

As Vd1 is also the gate voltage of m3, Iout1 will be amplified by an amount proportional to

eδV . Consequently Iout2 decreases by the same amount implying a reduction of δV in the

drain voltage of m4.

So, starting from two equals input currents and hence two equal output currents, if one

of the two input increases, the current of the losing branch initially decreases due to the

Early effect, then, for increasing difference, the input MOSFET of the losing part is brought

out of its saturation regime and the corresponding output transistor is shut off. Thus the

output current of the losing branch goes to zero, while the one of the winning branch equals

Ibias.
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4.5.3 Current conveyors

The two currents ILTP and ILTD are reported in voltages through two independent current

conveyors (see figure 4.9) of the type used in the WTA circuit.

Vdd Vdd

pBuf

ILTP

Vup

Vdd

Vdw

nBuf

m1

m3

ILTD

m2

m4

Figure 4.9: Current conveyor schematics. ILTP and ILTD are two input currents, Vup and

Vdw two output voltages, nBuf and pBuf two analog biases.

In this configuration the circuit decouples the output voltage from the input one. If

the input current ILTD (ILTP) assumes the value of Ibias than the output voltage for the

n-type current conveyor will be fixed at Vdw = UT

κ log Ibias

I0
(Vup = 1

κ (V dd − UT log Ibias

I0
).

If the input current is null, than the input transistor of the current conveyor will not be

in saturation anymore, i.e Vds < 4UT ; m1 (m2) would be shut off and the output voltages

would be attracted to the power supply by m3 (m4). The logarithm transduction generates

two digital signals whose dynamic range is less than the 3.3V given by the power supply

and is determined by the bias current of the WTA. The voltages Vup and Vdw are common

to all the synapses belonging to the same dendritic tree.

4.6 New AER input circuit

Testing CLANN we faced some problems due to its AER input system. Under certain condi-

tions the communication stop until all the AER signals involved in the handshake were forced

to reset from outside. We completely redesigned the circuits streamlining the handshake for

multi-chip architectures. Both the decoders and the circuit handling the handshake phase

(the AERin logic) have been implemented using standard cells. The relevant new features
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Figure 4.10: (a) AERin complete system. It consists of 1) a logic block (AERin logic) that

handles the four-phase handshake, 2) of an array of transparent latches for incoming address-

events and 3) of an XY decoder. ∆TcReq−cAck and ∆TpReq are two tunable parameters. (b)

Time courses of involved signals are shown.

are essentially two: 1) the chip-acknowledge signal (cAck) is released soon after the request

signal goes down [Dante et al., 2005], without waiting any pixel-acknowledge from the tar-

get synapse as happens in CLANN, and 2) the pixel-acknowledge signal path back from the

target synapse to the AERin logic block has been removed. Two tunable delays ensure that

the handshake phase, the AER address decoding and the stimulation of the synapses are

successfully performed. Essentially two circuital components have been added: an array of

14 latches to store the AER address data and a cell to delay the rising edge of a digital

pulse. The various blocks are organized as show in figure 4.10a. A zoom on the AERin logic

block is reported on the left side of figure 4.11, while on the right side of the same figure the

schematic view of the rising delay cell is shown.

The protocol implemented works as follows (see figure 4.10b):

1. An external device requests to communicate driving the chip request signal cReq high,

and pushing the address lines, directly connected to the latch buffers, to the desired

levels.

2. FLANN answers bringing high the chip-acknowledge signal cAck after a delay ∆Treq-ack

which gives time to the data lines to stabilize to the correct values and allows to store

the address bits on the latch buffers. When the cAck goes high the input of the

latches is closed (signal GN goes down) and their outputs will remain stable till the

next transaction.

3. The external device sees a rising edge on the acknowledge line and replies removing

the request.

4. FLANN immediately releases the cAck and triggers a pulse on the pixel-request pReq

line lasting ∆TpReq which enables the address decoding. At this point, even if the

address, stored in the latch has not been decoded yet, the bus is free and can be used

to deliver a new AER event to a different chip. ∆TpReq is adjusted so that the outputs

of the decoder, the Xaer Yaer pulses, have time to propagate and to correctly stimulate
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the target synapse. To avoid wrong decoding, a new request signal is processed only

after the end of the pReq digital pulse.

Vdd

Vdd

cReq

cAck

GN

pReq
D Q

Q

DQ

Q

rising

edge

delay

rising

edge

delay

(a)

Vdd Vdd

in out

Vdelay

(b)

Figure 4.11: (a) Schematic view of the AERin logic circuit. It consists of two D-Type flip-

flops, two AND and one NOT gates, and two rising edge delay custom cell. The circuit is

designed to have two loops, one controlling the cReq − cAck delay, and one for the pReq

pulse duration. Each loop comprises one rising edge delay cell (b) tunable via the Vdelay

bias.

Adjusting the two delays ∆Treq-ack and ∆TpReq to the right values, the AER communi-

cations system works fine, without the annoying problem faced during CLANN tests.

4.7 Preliminary characterization tests:

synaptic efficacy

In this section I present preliminary results obtained from characterization tests performed

on FLANN. Such tests aim to measure the synaptic efficacy under various working conditions

estimating the mean values of this relevant parameter as well as its relative dispersions due

to circuits mismatch and inhomogeneities in analog biases. Looking forward to create multi-

chip architectures, I present data accumulated testing different FLANN chips.

Consider a system composed of a pre-synaptic neuron, an excitatory synapse and a post-

synaptic neuron. Upon the arrival of a pre-synaptic spike, the excitatory synapse injects a

current Isyn (see eq. 2.23) into the post-synaptic neuron capacitor. The amplitude of this

current depends on the synaptic state: it will be small (I−syn) if the synapse is depressed,

larger (I+
syn) if the synapse is potentiated. This current remains active for the entire duration

of the spike pulse, duration set by the pulse shaper circuit (see section 4.4.2). The post-

synaptic neuron receives the synaptic current and consequently its potential V (t) undergoes

an upward jump. The synaptic efficacy is the amplitude of this jump and will be measured

as a fraction of the subthreshold dynamic range of V (t) i.e. as a fraction of the value Θ−Vr,

where Θ is the firing threshold, and Vr the reset potential (in our case Vr = Vmin, see

equation 2.20). A simple method to measure the synaptic efficacy consists in counting the

number of jumps that V (t) undergoes before a spike is emitted. The protocol I adopted

comprises the following steps:

1. the considered synapse is set depressed (potentiated) and the internal synaptic dy-

namics is turned off;
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2. the parameters of the post-synaptic neuron are tuned such that the constant leakage

current equals the constant afferent current; in this way they do not induce or inhibit

any firing activity; (see Fig. 3.14)

3. a regular AER spike train at 1KHz is sent to the post-synaptic neuron via the synapse

to be characterized; this stimulation lasts 1 second;

4. during the stimulation, the firing activity of the post-synaptic neuron is monitored;

5. the synaptic efficacy is evaluated as νpost/νpre, where νpre = 1KHz is the AER spike

train frequency and νpost is the mean firing rate of the post-synaptic neuron.

(a) (b)

Figure 4.12: Synaptic efficacy distributions over 128 synapses. The blue histograms are

obtained when synapses are set depressed, the red ones when synapses are set potentiated.

Blue histograms partially overlap the red ones. The level of overlap could be seen as an

estimate of the signal-to-noise ratio on the dendritic tree. Left and right panels refer to two

different choices of chip biases.

The second point of this protocol is an annoying fine tuning step that could be bypassed

implementing a more sophisticated method compensating for the neuron “spontaneous”

activity. Anyhow the chosen method guarantees relative errors inferior to 5%, a value

compatible with the aims of these measures. I repeated the test for all the 128 synapses

belonging to the dendritic tree of a neuron, results are shown in Fig. 4.12 composed of two

panels corresponding to two different choices of chip biases. Blue histograms refer to the

synaptic efficacy of the 128 synapses all set to be depressed, red histograms refer to the same

128 synapses all set to be potentiated.

Consider separately blue and red histograms: from such plots the mean values and the

standard deviations can be evaluated (see Fig. 4.12) and used for instance to reproduce

the network behavior with a numerical simulation as done for CLANN (see section 3.6).

Furthermore, these histograms are benchmarks for our future VLSI systems. CADENCE,

the software we use to design chips, provides a powerful tool for Monte Carlo simulations to

run on analog circuits schematics; adjusting the simulation parameters as the temperature

or the correlation level among MOSFETs, it will be possible to fit histograms obtained from

experimental data, to modify the circuits and check the improvements of new designs.
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Figure 4.13: Four distributions of the synaptic efficacy measured on depressed synapses.

Each distribution accounts for 128 synapses connected to a different neuron. The distribu-

tions are qualitatively similar. 128 synapses are a good statistical sample to represent 4 ·128

synapses.

In figure 4.12, left or right panel, blue histograms overlap the red ones. The level of

overlap depends on the distance between the mean values of the two distributions. Unfortu-

nately these mean values are not completely free to move, they should stay within a certain

range typically determined by the network architecture and by experimental requirements.

For instance it could be not desirable to have synapses with a zero or a huge efficacy; such

constraints together with the width of the distributions define the limits for the range of

the mean values. If the two histograms had been completely overlapped, learning would

have been impossible: indeed, for the post-synaptic neuron there would be no difference,

statistically, between a potentiated or a depressed synapse. The situation of figure 4.12 is

not so dramatic, but we still have some synapses whose depressed efficacy is equal or even

larger than the efficacy of some other potentiated synapses. Mismatch generates a certain

kind of noise in the synaptic communication; the level of overlap of the two distributions is

somehow a measure of the signal-to-noise ratio for the dendritic tree.

Looking forward to configure FLANN as a homogeneous recurrent network, a relevant

parameter to know is the value of the mean efficacy calculated over all the active synapses,

a value to use, for instance, in mean-field equations or numerical simulations. In the next

paragraphs I discuss measures concerning 512 synapses belonging to dendritic trees of four

different neurons. FLANN neurons are arranged in a vertical array as shown in figure 4.1,

those considered are placed one at the top, one at the bottom and two in the middle of the

array. In this way the 512 synapses of the four dendritic trees are placed in different regions

of the silicon surface.

In figure 4.13 are shown four different histograms, each accounting for the synaptic

efficacy distribution of synapses connected to one of the four neurons, for a typical choice of

chip biases. The four distributions are incredibly similar. The blue one is shifted a little bit

on the left, but this is due to a non perfect fine tuning of the neuron parameters as prescribed

by the second point of the test protocol described above. One possible reason behind this

similarity is that 128 synapses are a good statistical sample for the set of 512 synapses, i.e

all the effects of the mismatch are already evident in a subset of 128 elements. The four
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Figure 4.14: Synaptic efficacy surfaces, mean values and relative standard deviation. Upper

panel : lower graph reports mean values (µ) of the synaptic efficacy over 512 depressed

synapses. The upper surface shows mean efficacy values for potentiated synapses. The

amplitude of the synaptic efficacy depends on two biases Vpls (on the x-axis) and VJ (on

the y-axis). These parameters control respectively the duration of the spike pulse (∆Tspk)

and the amplitude of the synaptic current Isyn. In the Lower panel corresponding values of

the relative standard deviation σ/µ are reported. The surface accounts only for the case of

depressed synapses. Highlighted points correspond to data reported in figure 4.12.

subgroups of synapses have similar statistical characteristics, they form a homogeneous set

that will be considered as a whole from now on, discarding the information on which synapse
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is connected to which neuron. At this point it is reasonable also to affirm that 512 synapses

are representative of all the 16384 synapses in FLANN.

The synaptic efficacy depends on the amount of charge injected in the neuron capacitor;

this charge is the product of the amplitude of the synaptic current (Isyn) times the spike

pulse duration (∆Tspk). FLANN is endowed with three independent analog biases to tune

the synaptic efficacy (see Fig. 4.4): Vpls sets ∆Tspk; VJ adjusts I−syn; and V∆J controls a

current I∆J that activates when a synapse potentiates so that the current injected into the

neuron becomes I+
syn = I−syn + I∆J . In these tests V∆J = VJ so that, in theory, the efficacy

of potentiated synapses should double the efficacy of depressed synapses.

I performed the measurement of the synaptic efficacy for all the 512 synapses. For each

synapse, I repeated the test 49 times, each time choosing a different couple of values for Vpls

and VJ . For each of the 49 points of the (Vpls,VJ ) plane, I calculated the mean efficacy value

(µ) over the 512 synapses, and the corresponding relative standard deviation σ/µ. Results

are reported in figure 4.14.

Figure 4.15: Level of overlap between synaptic efficacy distributions obtained from poten-

tiated and depressed synapses. Considering the left side of the surface the overlap spans

within 2-5 percent. Highlighted points correspond to the data reported in figure 4.12

Unfortunately on the x and y axis I could report only the values in volt of the biases,

and not simply ∆Tspk and Isyn that are not directly accessible and would require dedicated

characterization tests. To read the graph is sufficient to know that, as expected, the mean

values of the synaptic efficacy is maximum when ∆Tspk and Isyn are at their maximum

values (on the left side of the graph); the synaptic efficacy is at its minimum (right side of

the graph) when ∆Tspk and Isyn assume their lowest values1. From the lower panel of figure

4.14 one can see that the dependence of σ/µ on Isyn variation is stronger than on ∆Tspk

1∆Tspk increases with Vpls and varies in the range of few microseconds (from a rough estimation, its
mean values over the 512 synapses are between 2 and 15 µs). Isyn is in the range of few nA and increases
when VJ decreases (see figure 4.4)
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variation. The minimum of σ/µ is in the corner next to the reader, i.e. at Vpls = VJ = 2.54V .

These are the values for which both the currents flowing in the MOSFETs (mpls and msyn)

controlled by Vpls and VJ reach a maximum. The σ/µ graph suggests to use small ∆Tspk

and high amplitudes of Isyn: the inferior limit of ∆Tspk and the upper limit of Isyn should

be chosen considering the amount of noise that the activation or deactivation of the currents

flowing in mpls and msyn generates in contiguous circuits.

Our next chip would be probably endowed with the configuration ability described in

[Mitra et al., 2006]: the ability to discard some neurons and connect their synapses to the

dendritic trees of other neurons. Thus it would be possible, for instance, to have one neuron

connected to 512 synapses. To get an idea of the amount of overlap that for various choices

of the biases we could have in this situation, I plotted the surface reported in figure 4.15.

For reasonable values of the parameters the overlap ranges from 2 to 5 percent.

Figure 4.16: Synaptic efficacy mean values for potentiated and depressed. This figure pro-

vides a qualitative idea of the situation. Data are obtained from three different chips to be

connected in a multi-chip network.

FLANN has been designed to be part of a multi-chip system. Imaging to configure

a system of 3 FLANN chips as a recurrent network with a uniform level of connectivity

at 30% (i.e. each neuron has a 0.3 probability of being connected to any other neuron

in the network), what would be the mean value of the synaptic efficacy over the entire

network? What I have done to answer this question was to substitute the FLANN chip

on the experimental setup with another FLANN chip, re-run the characterization tests and

analyze the results.

To get a qualitative idea of what kind of results I found, I report in figure 4.16 the surfaces

accounting for the mean efficacy values measured on three different chips when the synapses

are set depressed. Figure 4.16 was encouraging: for each case, potentiated/depressed

synapses, only two of the three surfaces are clearly visible, the third is only barely visi-

ble in some points. To obtain a system implementing a network as much homogeneous as
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(a) (b)

Figure 4.17: Relative standard deviation (σ/µ) of synaptic efficacy distributions obtained

from a set of 3 · 512 synapses placed on 3 different chips. Data refer to depressed synapses.

As expected, in comparison to distribution width of synapses on a single chip, the level of

dispersion is increased. Considering the left region of the surface it roughly stays between

30 and 50%. Highlighted points correspond to the data reported in the lower part of the

figure, data to be compared to histograms in figure 4.12.

possible, one should choose for each chip, a different point in the (Vpls,VJ ) plane, such that

the three mean efficacy values would match. This will correspond to an initial tuning phase
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of the multi-chip system. Found the various biases for the chips, I plotted the graph in figure

4.17 which reports the values of σ/µ for our “matched” multi-chip architecture. Given the

fact that biases do not changes too much from chip to chip it is reasonable to maintain on

the x and y axis the values of Vpls and VJ of one of the three devices. Comparing figure 4.17

with lower panel of figure 4.14 one can see a slight increase of the dispersions width that,

for typical choices of the parameters (left side of the surfaces), roughly increases only of

few percentage points. The histograms reported in the lower part of figure 4.17 corresponds

to histograms shown in figure 4.12. Relevant parameters to evaluate in this case are the

mean values and the dispersion of the synaptic efficacy of potentiated or depressed synapses

considered separately. Given the fact that the synapses do not belong to the same dendritic

tree and that they are placed on different chips, the level of overlap looses a part of the sense

that it has for graphs in figure 4.12. Anyhow it remains a useful parameter to evaluate the

dispersions characteristics.

The preliminary results reported in this section represent useful benchmarks for the de-

sign of future chips and are also encouraging looking forward to the realization of controllable

multi-chip systems.

4.8 Conclusions

The chip I presented in this chapter is a semi-neuromorphic implementation of a recon-

figurable network of 128 integrate-and-fire neurons and 128x128 Hebbian plastic bistable

synapses. FLANN is the big brother of CLANN; it has been designed starting from the cir-

cuits already tested in the previous chip and it has been endowed with a series of technical

improvements suggested by the experience accumulated designing and testing CLANN.

Improvements range from circuital to architectural modifications. The new current-mode

calcium circuit is capable of an exponential decay for the Calcium variable [Bartolozzi and

Indiveri, 2007] [Bartolozzi, 2007] [Indiveri and Fusi, 2007] so that it exactly reproduces the

theoretical model described in eq. 2.28. The new shaper circuit is a more compact one;

the pads have been modified to reduce voltage drops on power lines and noise production

at the input digital ports; the first column of synapses can now be tuned via dedicated

parameters, a useful feature when a teaching signal is required. A new initialization circuit

(see fig. 4.4) allows to set the initial state of the synaptic internal variable while three-state

buffers permit to directly monitor the synaptic state evolution, suitable AER protocols are

no longer required (see section 3.7). The possibility to set and monitor synaptic states

greatly simplify experimenters work especially during network-level tests. A completely

new AER input system has been designed and the communication handshake with external

devices has been streamlined for multi-chip systems. From an architectural point of view

two novelties have been introduced: 1) the new configuration system is based on an X-Y

selection of the various synapses and no more on a serial bit-stream as in CLANN and 2)

each synapse can be configured as AER or recursive one, a relevant feature for multi-chip

systems.

Connecting “simple” building blocks seem to be a reasonable way to create large modular

networks in hardware. Various communication strategies are being explored ranging from

the standard asynchronous parallel AER systems [Dante et al., 2005], to serial burst-mode

versions of the AER protocol [Boahen, 2004a] [Boahen, 2004b] and [Boahen, 2004c], to

time-stamped codes for fast serial links [J. Schemmel and Ostendorf, 2007]. Different multi-

chip systems have already been successfully tested: silicon retinas and networks of spiking
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neurons have been connected [Lin et al., 2006] to implement orientation hypercolumns [T. Y.

W. Choi, 2005]; in [U. Mallick and Cauwenberghs, 2005] the authors present a system of

four chips for a real-time general-purpose processing platform; a multi-layered AER vision

system is described in [et al., 2006] and a multi-chip system to model orientation selectivity

is reported in [Chicca et al., 2007]: it combines a neuromorphic retina and a winner-take-all

chip using the same external digital apparatus [Dante et al., 2005] exploited to test CLANN

and FLANN.

FLANN has been though to be a reconfigurable building block for a multi-chip sys-

tem. Its AER/recursive configuration ability adds a degree of freedom not present in other

neuromorphic implementations. The communication issue is today the major constraint

in designing networks of thousands of neurons. FLANN configurability appears as a rel-

evant feature to help solving the problem: given a suitable network to be mapped on a

multi-chip hardware, FLANN allows to choose the adequate fraction of synaptic resources

to dedicate to external connections. In this way the desired network can be implemented

in hardware reducing the AER workload (exploiting on-chip networks for local connections)

and minimizing the waste of precious silicon area (no unused synapses).
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Chapter 5

Conclusions

The goal of this PhD work was to implement and control hardware spiking neural networks.

My work consisted in designing and testing two neuromorphic VLSI systems hosting net-

works of integrate-and-fire neurons and Hebbian plastic bistable synapses. Both chips were

designed and tested in collaboration with the staff members of the Complex Systems Unit

of the Italian National Institute of Health in Rome and of the Institute of NeuroInformatics

in Zurich. My personal contribution to the work consisted in defining the architectures of

the chips and the top-level schematic and layout; I designed and simulated some circuits

and drew the layout of some structures. In the test phase I worked on the hardware setup,

realized by technical personnel, to characterize the chip. We brought the hardware-software

experimental setup to a high level of reliability, not a trivial task for such kind of full-custom

devices. In the end a good control of VLSI devices was reached, it was possible to work

under repeatable conditions and, hence, to run experiments and accumulate statistics. We

performed high level experiments on CLANN and the results demonstrated the chip works

in agreement with the theoretical models from which this adventure began; this motivated

the design of a larger chip named FLANN endowed with a series of technical improvements

that greatly facilitate the test phase. Preliminary results on FLANN proved the chip works

properly in all its parts.

These chips are a step forward towards endowing VLSI, neuromorphic devices with

autonomous learning capabilities adequate for not too simple statistics of the stimuli to be

learnt.

Learning chips implementing models of spike-based synaptic plasticity as been proposed

in [Indiveri et al., 2006] [Arthur and Boahen, 2006] [Riis and Hafliger, 2007] [Petit and Mur-

ray, 2003]. The main novel features of the chips presented in this work are the implemented

type of synaptic plasticity and the configurability of the synaptic connectivity. Experiments

performed on CLANN (see chapter 3) are meant primarily to demonstrate the first, while

a dedicated setup suited to host multiple chips is being completed and will be the stage

for fully illustrating the flexibility offered by the configuration features. For the CLANN

experiments we take advantage of the configuration features to choose a simple perceptron

architecture, and illustrate the chip working and the advantages of the stop-learning plas-

ticity rule when highly correlated patterns are to be learnt. A VLSI system with a similar

synaptic plasticity has been described in [Mitra et al., 2006] and relative experimental results

are reported in [Mitra et al., 2007].

CLANN and FLANN are interesting devices in the perspective of neuromorphic chips
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as building blocks of parallel, distributed systems with non-trivial computational abilities.

Indeed, in [Brader et al., 2007] a perceptron trained with the same learning rule was shown

in simulation to be able to correctly classify noise-corrupted LateX character, with perfor-

mances comparable to state-of-the-art methods. Though much larger than the one imple-

mented in FLANN, the network used in [Brader et al., 2007] is within reach of a multi-chip

system of affordable complexity, foreseen in the near future as an improved version of the

one presently under development. Distribute multi-chip networks of various kind have al-

ready been successfully tested: silicon retinas and networks of spiking neurons have been

connected [Lin et al., 2006] to implement orientation hypercolumns [T. Y. W. Choi, 2005];

in [U. Mallick and Cauwenberghs, 2005] the authors present a system of four chips for a real-

time general-purpose processing platform; a multi-layered AER vision system is described in

[et al., 2006] and a two-chips system to model orientation selectivity is reported in [Chicca

et al., 2007].

The value of the high degree of flexibility of CLANN and FLANN in the definition

of the synaptic connectivity will be best appreciated when such chips will be embedded

as components of complex, multi-chip architectures. Different architectures, such as the

implementation of a set of visual receptive fields or a homogeneous recurrent network, can

impose very different constraints on the relative number of excitatory and inhibitory synapses

and on the relative weight of recurrent vs external input for each chip. On this aspect

FLANN architecture represents an improvement in comparison with CLANN. In FLANN

each synapse can be configured as AER or recursive, thus it is possible to choose the fraction

of synaptic resources to dedicate to external inputs. Considering for instance a system of

four FLANN chips, to have a homogeneous network of 512 neurons with a uniform level of

connectivity at 25%, 3/4 of the synapses in each chip should be configured as AER. The

remaining synapses will form local connections. In this case 1/4 of the spike traffic remains

inside the chips and does not weights on the external communication system. This fraction

can greatly increase when the network to implement has structured topology suitable for

modular hardware systems. The AER/recursive configurability helps reducing the AER

workload and at the same time minimize the number of unused synapses saving precious

silicon area. Other recently proposed architectures offer alternative approaches to flexible

synaptic structure, differently trading off complexity of design and load on the AER bus

[Liu and Douglas, 2004] [Mitra et al., 2006] [Lin et al., 2006] [Chicca et al., 2007].

These VLSI networks are small, unfortunately not in term of Silicon occupancy, but in

term of the number of neurons and synapses they host. CLANN is composed of 32 neurons

and 2048 synapses, FLANN of 128 neurons and 16384 synapses. Such numbers are small

not only compared to biological networks with identified computational role [Pakkenberg

et al., 2003] [Williams and Herrup, 1988], but also in view of applications. Neuromorphic

VLSI will have to scale up significantly to face not only simplified and stereotyped tasks as

those proposed in our experiments, but also real-world problems.

Multi-chip architectures seem to be a reasonable step to take to reach large numbers of

neurons and synapses. Even considering the best technology nowadays available, the number

of transistors in a chip would not allows to design networks comparable to 1 mm3 of the

cerebral cortex which contains about 105 neurons. In these days the Intel is launching its new

series of microprocessors designed in 45nm technology, hosting 800 millions of transistors.

Both CLANN and FLANN have been designed in 0,35µm standard CMOS technology. Each

neurons consists of about 30 MOSFETs and each synapse needs, redesigning the digital

part, at least 50 transistors. Thus, in a rough estimate, with 800 millions of transistors we



CHAPTER 5. CONCLUSIONS 93

could design a network of 8000 neurons uniformly connected at about the 20%. A multi-

chip architecture, maybe a 3D stack of these chips, would constitute a non-trivial real-time

device.

Despite the small dimensions of hardware neural networks there are some reasons for

working with them. These small networks are good candidates to provide primitives for a

future biologically inspired computational paradigm. Designing this kind of asynchronous

hybrid analog-digital devices means to test new analog circuits as well as to research solutions

to a number of technical problems ranging from cross-talk effects between analog and digital

lines, to unavoidable circuits imperfections, to the issue of a massive asynchronous parallel

communication. Constraints that naturally come with real systems and that do not appear

as tight limits in the abstract world of analytical formulations or of numerical simulations.

Challenges we should meet if we expect to have, in a future, working and reliable pieces of

bio-mimetic hardware.

A number of commercial applications, loosely inspired to neural networks approach, has

already proven to be effective: applications span from credit card fraud detection to rail-

way maintenance, from space robot self-tuning, to pattern recognition [Polycarpou, 1997].

Advances in potential of this kind of applications is expected when a closer match between

commercial devices and theoretical models will be reached. Different techniques and meth-

ods are exploited to implement neural networks in hardware: it is possible to configure

an FPGA (Field-Programmable Gate Array), to program a DSP (Digital Signal Process-

ing), to design a digital ASIC (Application Specific Integrated Circuits) or a mixed syn-

chronous/asynchronous digital system, to use floating gates, CMOS technology or hybrid

analog-digital neuromorphic circuits [Polycarpou, 2003]. This last possibility is our choice.

The aims of neuromorphic engineering go beyond the production of hardware neural net-

works. Neuromorphic VLSI was born from the idea of designing biologically inspired circuits

that can represent a useful research strategy, inspire new models [Amit and Fusi, 1994], be

an engine for the theoretical research and a way of implementing stand-alone power-efficient

(useful) devices [Mead, 1990]. The present VLSI networks are just toys to experiment new

solutions and ideas, and they demonstrated to be functional to this goal. But even if we had

a huge VLSI system with all the desired neurons and synapses there is not, today, a theory

able to exploit the dynamics of the network to perform computation if not in a limited

number of simplified situations. On the other side, waiting for a complete comprehension of

the nervous system before beginning to design neuromorphic systems, would be senseless.

Weather or not the theory, and the neuromorphic VLSI will reach their maturity age, this

you should ask in a bit.

How Much Shall We Bet?

From Cosmicomics, by Italo Calvino.

Yes, but at the beginning nobody knew it, -Qfwfq explained- I mean, you could foretell

it perhaps, but instinctively, by ear, guessing. I don’t want to boast, but from the start I

was willing to bet that there was going to be a universe, and I hit the nail on the head; on

the question of its nature, too, I won plenty of bets, with old Dean (k)yK. When we started

betting there wasn’t anything yet that might lead you to foresee anything, except for a few

particles spinning around, some electrons scattered here and there at random, and protons

all more or less on their own. I started feeling a bit strange, as if there was going to be a

change of weather (in fact, it had grown slightly cold), and so I said: “You want to bet we’re
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heading for atoms today?” And Dean (k)yK said: “Oh, cut it out. Atoms! Nothing of the

sort, and I’ll bet you anything you say.” [...]

We were always betting, the Dean and I, because there was really nothing else to do, and

also because the only proof I existed was that I bet with him, and the only proof he existed

was that he bet with me. We bet on what events would or would not take place; the choice

was virtually unlimited, because up till then absolutely nothing had happened. But since

there wasn’t even a way to imagine how an event might be, we designated it in a kind of

code: Event A, Event B, Event C, and so on, just to distinguish one from the other. What

I mean is: since there were no alphabets in existence then or any other series of accepted

signs, first we bet on how a series of signs might be and then we matched these possible

signs with various possible events, in order to identify with sufficient precision matters that

we still didn’t know a thing about. [...]

And so, from the data I had at my disposal, I tried mentally to deduce other data, and

from them still others, until I succeeded in suggesting eventualities that had no apparent

connection with what we were arguing about. And I just let them fall, casually, into our

conversation. For example, we were making predictions about the curve of the galactic

spirals, and all of a sudden I came out with: “Now listen a minute, (k)yK, what do you

think? Will the Assyrians invade Mesopotamia?” He laughed, confused. “Meso- what?

When?” [...]

At the point we had reached, we needed reference libraries, subscriptions to specialized

magazines, as well as a complex of electronic computers for our calculations: everything, as

you know, was furnished us by a Research Foundation, to which, when we settled on this

planet, we appealed for funds to finance our research. [...]
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