14 research outputs found

    Decentralised Control of Complex Systems

    Get PDF

    Electronic Trading Venue Peers

    Get PDF

    An Agent-Based Distributed Coordination Mechanism for Wireless Visual Sensor Nodes Using Dynamic Programming

    No full text
    The efficient management of the limited energy resources of a wireless visual sensor network is central to its successful operation. Within this context, this article focuses on the adaptive sampling, forwarding, and routing actions of each node in order to maximise the information value of the data collected. These actions are inter-related in a multi-hop routing scenario because each node’s energy consumption must be optimally allocated between sampling and transmitting its own data, receiving and forwarding the data of other nodes, and routing any data. Thus, we develop two optimal agent-based decentralised algorithms to solve this distributed constraint optimization problem. The first assumes that the route by which data is forwarded to the base station is fixed, and then calculates the optimal sampling, transmitting, and forwarding actions that each node should perform. The second assumes flexible routing, and makes optimal decisions regarding both the integration of actions that each node should choose, and also the route by which the data should be forwarded to the base station. The two algorithms represent a trade-off in optimality, communication cost, and processing time. In an empirical evaluation on sensor networks (whose underlying communication networks exhibit loops), we show that the algorithm with flexible routing is able to deliver approximately twice the quantity of information to the base station compared to the algorithm using fixed routing (where an arbitrary choice of route is made). However, this gain comes at a considerable communication and computational cost (increasing both by a factor of 100 times). Thus, while the algorithm with flexible routing is suitable for networks with a small numbers of nodes, it scales poorly, and as the size of the network increases, the algorithm with fixed routing is favoured

    Planning and Doing Things

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.I was interested in computers by the age of 15 and gave talks on them at school. I attended evening classes a couple of years later while still at school travelling on the bus for an hour in the evening to a college in Leeds to learn programming (in COBOL!). Computers at that time filled a room, you submitted your exercises on punched card and got the results the following day. I built my first AI planner over 35 years ago. I’d already been on an early AI course at Lancaster University where the language of choice for teaching a range of topics was POP-2 and wanted to do a Summer project to create a problem solver. With support from Donald Michie and his team at Edinburgh I tried to create a Graph Traverser along the lines they were working on. Boy, am I glad I got involved with Computers, AI and planning technology

    Adaptive monitoring: A systematic mapping

    Get PDF
    Context: Adaptive monitoring is a method used in a variety of domains for responding to changing conditions. It has been applied in different ways, from monitoring systems’ customization to re-composition, in different application domains. However, to the best of our knowledge, there are no studies analyzing how adaptive monitoring differs or resembles among the existing approaches. Objective: To characterize the current state of the art on adaptive monitoring, specifically to: (a) identify the main concepts in the adaptive monitoring topic; (b) determine the demographic characteristics of the studies published in this topic; (c) identify how adaptive monitoring is conducted and evaluated by the different approaches; (d) identify patterns in the approaches supporting adaptive monitoring. Method: We have conducted a systematic mapping study of adaptive monitoring approaches following recommended practices. We have applied automatic search and snowballing sampling on different sources and used rigorous selection criteria to retrieve the final set of papers. Moreover, we have used an existing qualitative analysis method for extracting relevant data from studies. Finally, we have applied data mining techniques for identifying patterns in the solutions. Results: We have evaluated 110 studies organized in 81 approaches that support adaptive monitoring. By analyzing them, we have: (1) surveyed related terms and definitions of adaptive monitoring and proposed a generic one; (2) visualized studies’ demographic data and arranged the studies into approaches; (3) characterized the main approaches’ contributions; (4) determined how approaches conduct the adaptation process and evaluate their solutions. Conclusions This cross-domain overview of the current state of the art on adaptive monitoring may be a solid and comprehensive baseline for researchers and practitioners in the field. Especially, it may help in identifying opportunities of research; for instance, the need of proposing generic and flexible software engineering solutions for supporting adaptive monitoring in a variety of systems.Peer ReviewedPostprint (author's final draft

    Dependability of Wireless Sensor Networks

    Get PDF
    As wireless sensor networks (WSNs) are becoming ever more prevalent, the runtime characteristics of these networks are becoming an increasing issue. Commonly, external sources of interference make WSNs behave in a different manner to that expected from within simplistic simulations, resulting in the need to use additional systems which monitor the state of the network. Despite dependability of WSNs being an increasingly important issue, there are still only a limited number of works within this specific field, with the majority of works focusing on ensuring that specific devices are operational, not the application as a whole. This work instead aims to look at the dependability of WSNs from an application-centric view, taking into account the possible ways in which the application may fail and using the application's requirements to focus on assuring dependability
    corecore