11,344 research outputs found

    A User-friendly Interface for a Lightweight Verification System

    Full text link
    User-friendly interfaces can play an important role in bringing the benefits of a machine-readable representation of formal arguments to a wider audience. The "aartifact" system is an easy-to-use lightweight verifier for formal arguments that involve logical and algebraic manipulations of common mathematical concepts. The system provides validation capabilities by utilizing a database of propositions governing common mathematical concepts. The "aartifact" system's multi-faceted interactive user interface combines several approaches to user-friendly interface design: (1) a familiar and natural syntax based on existing conventions in mathematical practice, (2) a real-time keyword-based lookup mechanism for interactive, context-sensitive discovery of the syntactic idioms and semantic concepts found in the system's database of propositions, and (3) immediate validation feedback in the form of reformatted raw input. The system's natural syntax and database of propositions allow it to meet a user's expectations in the formal reasoning scenarios for which it is intended. The real-time keyword-based lookup mechanism and validation feedback allow the system to teach the user about its capabilities and limitations in an immediate, interactive, and context-aware manner

    A User-friendly Interface for a Lightweight Verification System

    Full text link
    User-friendly interfaces can play an important role in bringing the benefits of a machine-readable representation of formal arguments to a wider audience. The "aartifact" system is an easy-to-use lightweight verifier for formal arguments that involve logical and algebraic manipulations of common mathematical concepts. The system provides validation capabilities by utilizing a database of propositions governing common mathematical concepts. The "aartifact" system's multi-faceted interactive user interface combines several approaches to user-friendly interface design: (1) a familiar and natural syntax based on existing conventions in mathematical practice, (2) a real-time keyword-based lookup mechanism for interactive, context-sensitive discovery of the syntactic idioms and semantic concepts found in the system's database of propositions, and (3) immediate validation feedback in the form of reformatted raw input. The system's natural syntax and database of propositions allow it to meet a user's expectations in the formal reasoning scenarios for which it is intended. The real-time keyword-based lookup mechanism and validation feedback allow the system to teach the user about its capabilities and limitations in an immediate, interactive, and context-aware manner

    User-friendly Support for Common Concepts in a Lightweight Verifier

    Full text link
    Machine verification of formal arguments can only increase our confidence in the correctness of those arguments, but the costs of employing machine verification still outweigh the benefits for some common kinds of formal reasoning activities. As a result, usability is becoming increasingly important in the design of formal verification tools. We describe the "aartifact" lightweight verification system, designed for processing formal arguments involving basic, ubiquitous mathematical concepts. The system is a prototype for investigating potential techniques for improving the usability of formal verification systems. It leverages techniques drawn both from existing work and from our own efforts. In addition to a parser for a familiar concrete syntax and a mechanism for automated syntax lookup, the system integrates (1) a basic logical inference algorithm, (2) a database of propositions governing common mathematical concepts, and (3) a data structure that computes congruence closures of expressions involving relations found in this database. Together, these components allow the system to better accommodate the expectations of users interested in verifying formal arguments involving algebraic and logical manipulations of numbers, sets, vectors, and related operators and predicates. We demonstrate the reasonable performance of this system on typical formal arguments and briefly discuss how the system's design contributed to its usability in two case studies

    Mocarts: a lightweight radiation transport simulator for easy handling of complex sensing geometries

    Get PDF
    In functional neuroimaging (fNIRS), elaborated sensing geometries pairing multiple light sources and detectors arranged over the tissue surface are needed. A variety of software tools for probing forward models of radiation transport in tissue exist, but their handling of sensing geometries and specification of complex tissue architectures is, most times, cumbersome. In this work, we introduce a lightweight simulator, Monte Carlo Radiation Transport Simulator (MOCARTS) that attends these demands for simplifying specification of tissue architectures and complex sensing geometries. An object-oriented architecture facilitates such goal. The simulator core is evolved from the Monte Carlo Multi-Layer (mcml) tool but extended to support multi-channel simulations. Verification against mcml yields negligible error (RMSE~4-10e-9) over a photon trajectory. Full simulations show concurrent validity of the proposed tool. Finally, the ability of the new software to simulate multi-channel sensing geometries and to define biological tissue models in an intuitive nested-hierarchy way are exemplified

    Process-oriented Enterprise Mashups

    Get PDF
    Mashups, a new Web 2.0 technology provide the ability for easy creation of Web-Based applications by end-users. The uses of the mashups are often consumer related. In this paper we explore how mashups can be used in the enterprise area and hat the criteria for enterprise mashups are. We provide categories for the classification of enterprise mashups, and based upon a motivating example we go further in depth on business process enterprise mashup

    Knowledge Organization Systems (KOS) in the Semantic Web: A Multi-Dimensional Review

    Full text link
    Since the Simple Knowledge Organization System (SKOS) specification and its SKOS eXtension for Labels (SKOS-XL) became formal W3C recommendations in 2009 a significant number of conventional knowledge organization systems (KOS) (including thesauri, classification schemes, name authorities, and lists of codes and terms, produced before the arrival of the ontology-wave) have made their journeys to join the Semantic Web mainstream. This paper uses "LOD KOS" as an umbrella term to refer to all of the value vocabularies and lightweight ontologies within the Semantic Web framework. The paper provides an overview of what the LOD KOS movement has brought to various communities and users. These are not limited to the colonies of the value vocabulary constructors and providers, nor the catalogers and indexers who have a long history of applying the vocabularies to their products. The LOD dataset producers and LOD service providers, the information architects and interface designers, and researchers in sciences and humanities, are also direct beneficiaries of LOD KOS. The paper examines a set of the collected cases (experimental or in real applications) and aims to find the usages of LOD KOS in order to share the practices and ideas among communities and users. Through the viewpoints of a number of different user groups, the functions of LOD KOS are examined from multiple dimensions. This paper focuses on the LOD dataset producers, vocabulary producers, and researchers (as end-users of KOS).Comment: 31 pages, 12 figures, accepted paper in International Journal on Digital Librarie

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    A Lightweight Privacy-Preserved Spatial and Temporal Aggregation of Energy Data

    Get PDF
    Smart grid provides fine-grained real time energy consumption, and it is able to improve the efficiency of energy management. It enables the collection of energy consumption data from consumer and hence has raised serious privacy concerns. Energy consumption data, a form of personal information that reveals behavioral patterns can be used to identify electrical appliances being used by the user through the electricity load signature, thus making it possible to further reveal the residency pattern of a consumer’s household or appliances usage habit. This paper proposes to enhance the privacy of energy con- sumption data by enabling the utility to retrieve the aggregated spatial and temporal consumption without revealing individual energy consumption. We use a lightweight cryptographic mech- anism to mask the energy consumption data by adding random noises to each energy reading and use Paillier’s additive homo- morphic encryption to protect the noises. When summing up the masked energy consumption data for both Spatial and Temporal aggregation, the noises cancel out each other, hence resulting in either the total sum of energy consumed in a neighbourhood at a particular time, or the total sum of energy consumed by a household in a day. No third party is able to derive the energy consumption pattern of a household in real time. A proof-of- concept was implemented to demonstrate the feasibility of the system, and the results show that the system can be efficiently deployed on a low-cost computing platform

    A trustworthy mobile agent infrastructure for network management

    Get PDF
    Despite several advantages inherent in mobile-agent-based approaches to network management as compared to traditional SNMP-based approaches, industry is reluctant to adopt the mobile agent paradigm as a replacement for the existing manager-agent model; the management community requires an evolutionary, rather than a revolutionary, use of mobile agents. Furthermore, security for distributed management is a major concern; agent-based management systems inherit the security risks of mobile agents. We have developed a Java-based mobile agent infrastructure for network management that enables the safe integration of mobile agents with the SNMP protocol. The security of the system has been evaluated under agent to agent-platform and agent to agent attacks and has proved trustworthy in the performance of network management tasks
    corecore