18 research outputs found

    A Unifying Construction for Difference Sets

    Get PDF
    We present a recursive construction for difference sets which unifies the Hadamard, McFarland, and Spence parameter families and deals with all abelian groups known to contain such difference sets. The construction yields a new family of difference sets with parameters (v, k, λ,n)=(22d+4(22d+2−1)/3, 22d+1(22d+3+1)/3, 22d+1(22d+1+1)/3, 24d+2) for d⩾0. The construction establishes that a McFarland difference set exists in an abelian group of order 22d+3(22d+1+1)/3 if and only if the Sylow 2-subgroup has exponent at most 4. The results depend on a second recursive construction, for semi-regular relative difference sets with an elementary abelian forbidden subgroup of order pr. This second construction deals with all abelian groups known to contain such relative difference sets and significantly improves on previous results, particularly for r\u3e1. We show that the group order need not be a prime power when the forbidden subgroup has order 2. We also show that the group order can grow without bound while its Sylow p-subgroup has fixed rank and that this rank can be as small as 2r. Both of the recursive constructions generalise to nonabelian groups

    Strongly Regular Graphs with Parameters (4m4, 2m4 + m2, m4 + m2, m4 + m2) Exist for All m>1

    Get PDF
    Using results on Hadamard difference sets, we construct regular graphical Hadamard matrices of negative type of order 4m4 for every positive integer m. If m > 1, such a Hadamard matrix is equivalent to a strongly regular graph with parameters (4m4, 2m4 +m2,m4 +m2,m4 +m2). Strongly regular graphs with these parameters have been called max energy graphs, because they have maximal energy (as defined by Gutman) among all graphs on 4m4 vertices. For odd m>3 the strongly regular graphs seem to be new

    New Semiregular Divisible Difference Sets

    Get PDF
    We modify and generalize the construction by McFarland (1973) in two different ways to construct new semiregular divisible difference sets (DDSs) with λ1≠0. The parameters of the DDS fall into a family of parameters found in Jungnickel (1982), where his construction is for divisible designs. The final section uses the idea of a K-matrix to find DDSs with a nonelementary abelian forbidden subgroup

    New Families of Semi-Regular Relative Difference Sets

    Get PDF
    We give two constructions for semi-regular relative difference sets (RDSs) in groups whose order is not a prime power, where the order u of the forbidden subgroup is greater than 2. No such RDSs were previously known. We use examples from the first construction to produce semi-regular RDSs in groups whose order can contain more than two distinct prime factors. For u greater than 2 these are the first such RDSs, and for u = 2 we obtain new examples
    corecore