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Abstract. We give two constructions for semi-regular relative difference sets (RDSs) in groups whose order is
not a prime power, where the ordepf the forbidden subgroup is greater than 2. No such RDSs were previously
known. We use examples from the first construction to produce semi-regular RDSs in groups whose order can
contain more than two distinct prime factors. Eogreater than 2 these are the first such RDSs, and fo2 we

obtain new examples.

Keywords: relative difference set, difference set, character theory, combinatorics

1. Introduction

A k-element subser of a finite multiplicative grougs of ordermu containing a normal
subgroupU of orderu is called a(m, u, k, ) relative difference set (RDS) in G relative
to U provided that the multiset of “dif'ference:f,i’lrz‘l | r1,r2 € R,ry # ry} contains
each element o \ U exactlyx times and contains no elementldf The subgroup) is
sometimes called thferbiddensubgroup. Am, u, k, ) RDS inG, relative to some normal
subgroupU, is equivalent to a square divisiblen, u, k, 1)-design whose automorphism
groupG acts regularly on points and blocks [6]. For a recent survey of RDSs see Pott [11].
The central problem is to determine, for each parametemsat, k, A), the groupsG of
ordermu and the normal subgroups$ of orderu for which G contains a RDS relative
to U with these parameters. (We have usédindu to represent the normal subgroup
and its order, rather than the conventional notatibandn, so as to avoid confusion with
the difference set parameteintroduced below.) By a counting argument the parameters
(m, u, k, ) of a RDS are related bly(k — 1) = ur(m — 1). If k = ux then the RDS is
calledsemi-regularand the parameters afex, u, Ui, ).

A k-element subsdd of a finite multiplicative grous of orderv is called av, k, A, n)-
difference set in Gorovided that the multise{dldg1 | di, d, € D, d; # dy} contains each
nonidentity element o6 exactly A times; we writen = k — A. A difference set can be
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considered as a RDS with= 1. For a recent survey of difference sets see Jungnickel [7];
for many new results on RDSs and difference sets see Davis and Jedwab [4].

In this paper we give two constructions for semi-regular RDSs in groups whose order is
not a prime power. These are the first such examples whichthave [11]. Using these
RDSs we construct further new types of semi-regular RDS via known methods. One of our
constructions combines the favourable properties of RDSs with those of certain difference
sets to produce new RDSs. This approach is similar to that used in [2] for the construction
of divisible difference sets.

Relative difference sets (and difference sets) are usually studied in the context of the group
ring Z[G] of the groupG over the ring of integer&. The definition of am, u, k, A) RDS
Rin G relative toU is equivalent to the equatioRR~Y = klg + A(G — U) in Z[G],
where by an abuse of notation we identify the SRfR—Y, G with the respective group
ring elementR =3 o1, RTY =3 r7', G =3 ;0 and & is the identity ofG.

If Risa(m,u,k, A) RDS inG relative toU andW is a normal subgroup df of order
w then thecontraction of R with respect to \((hamely, the image dR under the quotient
mapping fromG to G/W) is a(m, u/w, k, Aw) RDS inG/W relative toU /W [11].

Most computations in this paper involve character theory. In the case where the group
G is abelian, acharacterof G is a homomorphism fron® to the multiplicative group
of complex roots of unity. Under pointwise multiplication the &t of characters oz
forms a group isomorphic t&. The identity of this group is thprincipal characterthat
maps every element @ to 1. Thecharacter sunof a charactety over the group ring
elemenC is x(C) = ) _..c x(©). Itis well-known that the character sup(C) is 0 for all
nonprincipal characters of G if and only if C is a multiple ofG (regarded as a group ring
element). Given a charactgrof G and a subgroupl of G, we shall say thay is principal
on H (or nonprincipal on H when the restriction of to H is principal (or nonprincipal)
respectively.

The use of character sums to study difference sets in abelian groups was introduced by
Turyn [12] and subsequently extended to RDSs. The fundamental result is:

LEMMA 1.1

() The k-element subset R of an abelian group G of order mu containing a subgroup U
of order u is a(m, u, k, 1) RDS in G relative to U if and only if for every nonprincipal
charactery of G

vk if x nonprincipal on U

Ix (R = { VK—=ux if x principal on U.

(i) The k-element subset D of an abelian group G of ordés a (v, k, A, n)-difference
setin G if and only if x (D)| = /n for every nonprincipal charactey of G.

Lemma 1.1 (i) indicates the general strategy adopted here for constructing RDSs, namely
to choose a group subset for which all nonprincipal character sums have the correct modulus.
In these computations, we will require two useful facts about character sums. The first fact
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follows from the character sum property mentioned above. It is that the character sum over
a subgrouH is 0 if the character is nonprincipal dt, and the character sum is the order

of H if the character is principal ohl. The second fact is that fqr prime, the kernel of a
nonprincipal character of an elementary abeliagroup is an affine hyperplane. (For such

a group, the affine hyperplanes are the subgroups of codimepsiorhis is because the
character is a homomorphism onto th€ roots of unity, so the order of the kernel is the
order of the group divided bg. The character is principal on this subgroup of codimension

p and is nonprincipal on any other subgroup of codimenga@ny other hyperplane).
Therefore a nonprincipal character of an elementary abgligroup has character sum 0
over every hyperplane but one, over which its character sum is the order of the hyperplane.
We shall use hyperplanes of elementary abefiagroups as part of our first construction.

2. Two Examples

In this section we introduce the main concepts used in the RDS constructions by means of
two examples. Our strategy is to build the RDS a piece at a time and then show that the
character sums meet the appropriate conditions.

2.1. Example 1: (392, 8, 392, 49) RDS #% x Zj relative toZ3

We will build this RDS by starting with the groufy; x Z3 = (u | u” = 1) x (X, Y,z | X2 =
y? = 72 = 1). We will view the subgrougu) as being isomorphic to the multiplicative
group of GK8), generated by a primitive elemensatisfyinge® = o+ 1, and the subgroup
(X, Y, z) as being isomorphic to the additive group of @F We define an isomorphism
from the additive group of Gf) to (x,y,z) by 1 — X,a — Yy, ande?® — z. The
subgroupZ3 has seven subgroups isomorphicZip These subgroups are hyperplanes of
the affine geometry of dimension 3 over @, and because the characteristic of the field
is 2 we can consider these sets as projective hyperplanes simply by deleting the identity
element. Thus, ifl, x, y, xy} is a typical hyperplane in the affine geometry, tfeny, xy}
is the corresponding hyperplane in the projective geometry. In multiplicative notation, the
elements of this projective hyperplane dfeu, u®} (where 1 is now the identity of the
groupZy rather than of the grouf3). Viewed in this way, the projective hyperplane is a
(7, 3, 1, 2) Singer difference set ifi7, and every other projective hyperplane is a translate
in Z7 of this one [8]. Thus the list of projective hyperplanes{isu, u®}, {u, u?, u%},
{u?, ud, ud}, {ud, u?, ub}, {u*, ud, 1}, {u®, u®, u} and{u®, 1, u?}. Each of these projective
hyperplanes corresponds to exactly one affine hyperpla#g, ias described. We will use
this connection between the affine hyperplanes and the projective hyperplanes later.
We now define the s& = {(1, x), (u, y), (U?, 2), (U3, xy), (U, y2), (U®, xy2), (U5, x2)}
C Z7 x Zg. Note that the first component of a member®fs in (u) and the second
component is inx, y, z). For each member db, both components represent the same
nonzero element of GB) under the given isomorphism from the additive group ol &F
to (X, Y, 2).
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Let x be a character df; x Z3, so thaty(S) = x(X) + x(Wx(y) + x U x(2) +
x (U x(Xy) + xUHx (Y2 + x (U x(xy2d + x(Uu®x(x2). Consider the effect of the
restriction of x to Z3, and suppose firstly that is nonprincipal onZ3. Then half the
elements ofZ3 will be mapped to+1 and the other half will be mapped tel, since
the character sum of3 is 0. The four elements that get mappeditb form an affine
hyperplane, and after deletion of the identity element we find that the three elements of
the projective hyperplane are mappedtb and the other four nonidentity elements of the
group are mapped tel. Therefore ify (u) = 1, then there are three terms equahid
and four terms equal te-1, sox (S) = —1. Furthermore ify (u) # 1, then each term of
x (S) is plus or minus a seventh root of unity. The three terms whose character values are
positive seventh roots of unity form a projective hyperplan&af The sum of the four
terms which are negative seventh roots of unity is equal to the sum of the three terms which
are positive seventh roots of unity (because the total sum of all of the positive seventh roots
of unity is 0). Therefore the character symS) in this case is twice the sum of the three
terms which correspond to the projective hyperplane. Since this projective hyperplane is a
(7, 3, 1, 2)-difference set, by Lemma 1.1 (ii) we haye(S)| = 2/2.
Suppose instead that is principal onzg. Then if x(u) = 1 theny(S) = |§ = 7,
whereas ify (u) # 1 then we have a sum of all the seventh roots of unity, so)hdt = 0.
This completes the character sum calculationSon
We next embeds in the larger groufZ? x Z3 = (u,v | U’ = v/ = 1) x (X, Y,Z |
x? = y? = 7% = 1) as follows. The groufZ? contains eight distinct subgroups of order 7
(equivalently, eight affine hyperplanes). Call these hyperpl&nésr 1 < j < 8, and note
that each quotient grou{Z2/K;) x Z3 is isomorphic tdZ; x Z3. Therefore each quotient
group contains a subsgt of the form described above which can be “lifted” to aS’et:
g € Z3xZ3 | gK; € S}, the pre-image of under the quotient mapping frof$ x Z3 to
to (Z2/Kj) x Z3. This gives eight subset§, each containing 49 elements. For example,
if K1 = (v), thenS, = x(v) Uuy(v) Uu?z(v) Uudxy(v) Uutyz(v) Uudxyzv) Uubxz(v).
Finally, we embed the§ in the larger groufZs x Z3 = (u,v | U’ = v’ = 1) x
(a,b,c | a* = b* = ¢* = 1) by means of the injective homomorphispnfrom Z3 to
Z3 which mapsx to a2, y to b?, andz to 2. For exampleg(S)) = a%(v) U ulb?(v) U
u?c?(v) U ua?b?(v) U u*b?c?(v) U uda?b?c?(v) U uba?c?(v). We know [6] that the
group (a, b, ¢) contains an8, 8, 8, 1) RDS relative to(a?, b, ¢), say{ry,ro, ..., rg} =
{1 a b, c,ab’c? a’h’c®, a’b’c, ab’c}. We claim the setR = UP_irj¢(S) is a
(392 8,392 49) RDS inZ2 x Z3 relative toZ3. We shall prove this by combining the char-
acter computations for the s8tgiven above with Lemma 1.1 (i) applied to tf® 8, 8, 1)
RDS. Lety be a character of2 x Z3, and suppose firstly that is nonprincipal orZ?2.
Then x will be principal on one of the affine hyperplanesZ# and nonprincipal on all
the other seven hyperplanes. Consequently the character sum over sevef afithbe
0. For the remaining, x induces a character on (Z2/K;) x Z3 which is nonprincipal
on Z5/K; = Z, and the sum of over § is seven times the sum gf over§. If y is
principal onZ3 (the forbidden subgroup), then the sum o@ewill be 0, yielding a total
sum of 0. Ify is nonprincipal orZ3, then the sum ove§ has modulus 22, and when we

multiply this by 7 we get a character sum of modul¢i892 = 14./2.
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Suppose instead thatis principal onZ2. In this casey induces a charactef on each
quotient groupZ2/K;) x Z3, which is principal orZ2/K;. For eachj, the sum ofy over
§ is again seven times the sumipfover §. If ¢ is nonprincipal orZ3 then the sum over
§ in the quotient group is-1 in each case, so we get a sum-of for eachS. We now
take the sum over thg, which has modulus~22 because thg form a(8, 8, 8, 1) RDS.

The total sum therefore has modulusvi2l as desired. 1§ is principal onZ3 then the

sum of x over§ is 49 in each case, and since thdorm a RDS we obtain a total sum of

0. Therefore by Lemma 1.1 (i) we have established that this example is a RDS. Note that
the construction uses affine hyperplanes in two different affine spaces as well as projective
hyperplanes.

A useful modification of the construction involves taking the contraction of thg bgta
subgroup, in other words the image®tinder the mapping from the group to the quotient
group. For example, consider contraction by the subg(gup). The contraction o§ still
has seven elements but is contained in a group isomorpHig *dZ,. The contraction 08
has the same character sum$§dsased on whether the character is principal or nonprincipal
on the Sylow 7-subgroup and the Sylow 2-subgroup. The eight affine hyperplaiés of
provide eight quotient groups @? x Zy isomorphic tdZ; x Z, from which we can define
sets§ based on the contracted s&s We can then use an$, 2, 8, 4) RDS to provide
the coefficients of theS, where the forbidden subgroup (isomorphiczg) corresponds
to the Sylow 2-subgroup of the group on which the contractedSsetdefined. Since
any group of order 16 and exponent at most 8 contai(& 2, 8, 4) RDS relative to any
subgroup of order 2, provided the forbidden subgroup is contained in a subgroup isomorphic
to Z4 [9], we can therefore construct(@92, 2, 392, 196) RDS in the grou;ﬁ% X Zg X Lo
relative to a subgroup isomorphic %, for example. Note that this RDS could not be
constructed directly as a contraction of392 8, 392 49) RDS inZ3 x Z3 relative toZ3,
which demonstrates the advantage of contracting th& astdescribed prior to attaching
the RDS(r;}.

2.2. Example 2: (48, 3, 48, 16) RDS A3 x Z3 Relative toZs

We begin this example by listing the six cyclic subgroupxfy | x* = y* = 1) = 72 of
order 4. These subgroups can be writter{)ds (xy?), (y), (x2y), (xy), and(x3y). Any
character ofZZ of order 4 is principal on one of these subgroups and nonprincipal on the
rest. (These six subgroups are the kernels of the characters of order 4, and are analogous
to affine hyperplanes.) Furthermore, a character of order &pow) is principal on two
of the subgroups and nonprincipal on the other four. We therefore form these subgroups
into three pairs depending on their behaviour on the characters of order 2, to give the pairs:
(x), (xy2); (), (x2y); and(xy), (x3y). We will also use &3, 3, 3, 1) RDS in(g, h) = 72
relative to(h) = Zs, for example{h?, g, g?}.

We now demonstrate by means of Lemma 1.1 (i) that the set represented by the group
ring elementx) (h + h?y?) + (xy?)(h?y + y%) + (y)(g + gh*x®) + (x?y) (ghx+ gx°) +
(xy) (g% + g?h?x?) + (x3y)(g®hx + g°x3) is a (48,3,48,16) RDS itX, y, g, h) = Z3 x Z3
relative to(h) = Z3. Suppose firstly that is a character of order 4 gm, y). In this case,
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the character sum is 0 over five of the six terms above, and 4 times the character sum of the
coefficient of the other term. If is principal on(h) then in each case the character sum
of the coefficient is a multiple ofl — 1) = 0, giving a total character sum of 0. }fis
nonprincipal orkh) then in each case the character sum of the coefficient is the difference
of two distinct third roots of unity, giving a total character sum of moduh/84

Next suppose that has order 2 onx, y). Then the kernel ofy contains one pair of
subgroups, angt sums to 0 over the other four subgroups. For the subgroup pair that does
not get eliminated, the character sum is 4 times the character sum of the coefficignts. If
is principal on(h) then in each case the character sum of the coefficient is a multiple of
(2 —2) = 0, giving a total character sum of 0. i is nonprincipal on(h) then in each
case the character sum of the coefficient is again the difference of two distinct third roots
of unity, giving a total character sum of modulug/a.

Finally, suppose that is principal on{x, y). If x is nonprincipal or{h) then the character
sum is equal to four times the sum over the elem@ntsg, g2} (using the fact thay (h)
is a primitive third root of unity to remove multiples ¢1, h, h?}). Since{h?, g, g°} a
(3,3,3,1) RDS in{g, h) relative to(h) and x is nonprincipal onxh), by Lemma 1.1 (i)
the total character sum has modulug3t If x is principal on(h) and nonprincipal orig)
then the character sum is 16 times the character sum over the elgeamtg?}, which is
0. We have therefore established that this example is a RDS.

3. Construction 1: w a Power of 2

This construction generalises Example 1. didte a positive integer and letgenerate the
cyclic multiplicative group of the finite field GR9*1). Considering GR29t1) as a vector
space of dimensiom+1 over GK2), there are 2t — 1 subspaces of dimension 1. These can
be written(1), (), («?), ..., («® " ~2). The affine hyperplanes of this vector space, namely
the subspaces of dimensiah can be written(1, o, &, ..., 2% 1), (o, 0%, &3, ..., %),
(@72 1 0, ..., «%2). We can view these as projective hyperplanes by deleting the
identity element from each set. Each projective hyperplane is a translatg’ofa- 1, 29 —
1, 29-1 — 1, 29-1) Singer difference set ifie+1_; (see Lander [8] for further discussion of
the projective geometry R@, 2) and its regular cyclic automorphism group).

Let She the subsdie’, o) | i = 0,1, ..., 291 — 2} of Zy:1_y x Z3*1, where we regard
the first component of a member 8fas an element of the cyclic multiplicative group of
GF(29+1) and the second component as an element of the additive group(@¥ &F We
get the following character sums ov&r

LEMMA 3.1 Let S be the subset of & Zyi1_1 X ng defined above and let be a
character of G. Then

-1 if x is principal onZ+1_; and nonprincipal oﬁzg“
x(9=1{0 if x is nonprincipal orZy+1_; and principal onZEj+1
20+1 _ 1 if x is principal on G

and|x (S)| = v29+1if x is nonprincipal onZs+1_; and nonprincipal or%g“.
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Proof. The value ofy applied to an ordered pair belonging ®is the product of the
character values of the components. Consider the restrictignmthe grouﬁzg“, which
maps each element sz‘“ either to+1 or —1. Suppose firstly is nonprincipal ong“.

The kernel of the restriction ¢f to this group is an affine hyperplaht The character sum
over Stherefore contains-&1 contribution from each element of the projective hyperplane
H \ {0} and a—1 contribution from each element@f.+._; \ (H \ {0}). Since the projective
hyperplaneH \ {0} can be viewed as a translag® of a (29+1 — 1,294 — 1, 2d-1 1 2d-1).
difference seD in Z+1_1, we have

x(S = +Dx(@D) + (=D x (Zzp+1-1\ gD).

If x is principal onZe:1_4 theny (gD) = 29 —1 andy (Zx+1_1\gD) = 29, so thaty (S) =
—1. If xy isnonprincipal orZ-1_; theny (S) = (+1)x (gD)+(—1)(— x(gD)) = 2x(gD).
SinceD is a difference set, Lemma 1.1 (ii) then implies thatS)| = 2v/29-1 = /2d+1,

Suppose instead thatis principalor@g“. If x is principal orZ+1_; theny (S) = |§| =
29+1_1, whereasif is nonprincipal ofr_; theny (S) = Y2, 2 x () = x((@)) =0
(since({a) = Zga+1_1). ]

The setS satisfies the group ring equati®@S 2 = 29115 + G — Zyu_y — Z3in
Z[G], whereG = Zy+1_1 X Zg“, and so is an example ofdirect product difference
setas introduced by Ganley [5]. Pott [10] used direct product difference sets to show that
the order of a projective plane must be a prime power if the plane has a certain type of
quasiregular collineation group and the order is not a square.

Let J be any subgroup dB of order 2. A character) of G/J defines a character of
G via x(g) = ¥ (gJ). If Sis the image oSin the quotient grous,/J theny (S) = ¥ (9).
The next result then follows directly from Lemma 3.1.

LEMMA 3.2 LetS be the image of the subset S under any quotient mappin@fom; x
737110 G = Zgyn_g x 23", where0 < i < d. Lety be a character of G. Then

B -1 if ¥ is principal onZz:1_; and nonprincipal orzg ™'
Y(S =40 if ¢ is nonprincipal onZ,+1_1 and principal onZCZ’“‘I
29+ _ 1 if y is principal on G

and |y (S)| = v29+1 if y is nonprincipal onZy:_; and nonprincipal orzg '

Suppose now that??! — 1 is prime (and therefore a Mersenne prime). This implies
thatd + 1 is prime, so we will use the notatiom for the primed + 1. Since 2 — 1 is
prime, Z3,_, contains 2 subgroups of order2— 1 (these are the affine hyperplanes of
73, ,, and they correspond to the kernels of the nonprincipal charactet$, of); call
these subgroupKy, ..., K. LetU be isomorphic tdzf’i, so that the quotient group
(3, ,/K;) x U is isomorphic toZs 1 x Z5™'. We define the se§ to be the subset
of (Z2,_,/K;) x U which corresponds t& in the groupZz»_; x Z5~' (as specified in
Lemma 3.2), forj = 1,..., 2P. We then define the s& = {g € Z5,_, x U | gK; € §}.
Note that|§| = |K|[|S| = (2P — 1)2.
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We wish to combine cosets of tf# in the groupZ3, ; x A, whereA is any abelian
group of order 2~ containing a2P, 2P, 2P, 2') RDS relative to an elementary abelian
subgroupU. There are many constructions of such RDSs; see Pott [11] and Davis and
Jedwab [4]. Write the RDS i relative toU as{ri,ro, ..., r2}. Since, by the definition
of RDS, no two distinct elements belong to the same cosetdf the serzilrj § contains

2P(2P — 1)? distinct elements. We now show that this set is a RD33n ; x A relative
toU.

THEOREM3.3 Let2P —1be prime and leti satisf§ < i < p—1. Suppose that the abelian
group A contains a2P, 2P~', 2P, 2') semi-regular RDSrj} relative to an elementary
abelian subgroup U. Letj/Sbe as defined above, for + 1,2,...,2P. Then the set
U]?ilrj §isa(2P(2P - 1)2,2P71, 2P(2P — 1)2, 2 (2P — 1)?) semi-regular RDS i3, ; x A
relative to U.

Proof. Let x be a character ofi3, ; x A and setE = szilrj §. We break the proof up
into four cases.

Case 1. Suppose thay is nonprincipal onZ%L1 and is nonprincipal oty. Theny is
principal on one of th&; and nonprincipal on all the others, gosums to 0 on all of the
§ exceptone, sag. This implies thatx (E)| = [x ('«S)| =[x (S)I = (2P — DIV (S,
where is the character induced by on (Z3, ,/Ky) x U. Sincey is nonprincipal on
73, ,/Kk = Zo_; andis nonprincipal ol , we have thafty (S,)| = +/2P from Lemma 3.2.

Thus,|x (E)| = (2P — 1)4/2P.

Case 2. Suppose thay is nonprincipal orZ3, , and is principal orJ. As in Case 1,
Ix(E)| = (2P — 1) |y ()| for somek, wherey is again nonprincipal oﬁgpfl/Kk = Zow_
but is now principal oiJ. By Lemma 3.2y (&) = 0, sox (E) = 0.

Case 3. Suppose thay is principal onZ3, , and is nonprincipal o). Then, for eachj,

X(S{) = (2P - 1)¢(§1~), whereys is the character induced kyon (ng_l/ Kj) xU. Since
¥ is principal onZ3, ;/K;j = Z»_1 and nonprincipal o), by Lemma 3.2/ (S) = —1.

Thereforey (E) = — (2P -1) ijil x(rj). Since therj} form a RDS and is nonprincipal
onU, by Lemma 1.1 (i) we obtaify (E)| = (2P — 1)v/2P.

Case 4. Suppose thay is principal onZ3, , and is principal oiJ but is nonprincipal on
A. Asin Case 3, for eachwe havex(§) = (2P - 1)1//(3 ), whereyr is again principal on
Z5,_4/Kj = Z 1 butis now principal oJ. Then Lemma 3.2 giveg(S) = (2P — 1)
and Lemma 1.1 (i) giveg (E) = (2P — 1) ijilx(rj) =0.

The result follows from Lemma 1.1 (i). ]

As well as making use of the affine hyperplaneszZgf_,, the construction of Theo-
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rem 3.3 combines two objects with simple character properties, naniah-a1, 2P~ —
1, 2P-2 — 1, 2P—2) Singer difference set (used to construct theSet Lemma 3.1) and a
(2P, 2P—1 2P 2y RDS. A similar construction was given by Davis and Jedwab [2], in which
the favourable character properties of two difference sets were combined to form divisible
difference sets.

Note that the RDSs of Theorem 3.3 occur in groups whose order is not a prime power,
and that the forbidden subgrouphas order 2-'. By the proof of Lemma 7.4 of [4], when
p is odd it is necessary that the subgrduipe contained in a subgroup afisomorphic to
Z5™'. There are many suitable groupsandU for use in Theorem 3.3. In particular, there
exists a2P, 2P, 2P, 1) semi-regular RDS itZ}, for all p [6], which under contraction itself
yields a(2P, 2P, 2P 2') semi-regular RDSifZ} ' x Z, relative to the subgroupy " of
Zy', where0<i < p—1

COROLLARY 3.4 Let2P — 1 be prime. For each i satisfyin@ < i < p — 1, there exists
a (2P(2P — 1)2, 2P 2P(2P — 1)2, 2 (2P — 1)?) semi-regular RDS iZ3, , x Z}~' x Z),
relative to the subgrou@} ™' of Z} .

In the uncontracted case= 0, Corollary 3.4 provides the following small examples:
a(4-3%4,4-3% 32 RDS inZ3 x 73 relative toZ3, a (8- 72,8,8 - 72,7%) RDS in
72 x 73 relative toZ3, a(32- 312, 32, 32- 312, 31%) RDS inZ3, x Z§ relative toZ3, and a
(128- 127,128 128. 127, 127) RDS inZ2,, x Zj relative toZj.

In the contracted case > 0, Corollary 3.4 provides further examples such a8 a
72,2,8-7%,4-7%) RDS inZ3 x Z4 x 73 relative to the subgrou, of Z, (usingp = 3,
i = 2). However by direct reference to Theorem 3.3, and using examples for the RDS
{rj} found in [4], we obtain RDSs which do not arise from Corollary 3.4, including: a
(8-7%,2,8-7%,4-7% RDS inZ2 x Zg x Z, relative toZ, (usingp = 3,i = 2), a
(32-31%,2,32- 312, 16- 31%) RDS inZ3, x Z16 x Z4 relative toZ, (usingp = 5,i = 4),
and a(128- 127, 4, 128- 127,32 127) RDS inZ2,, x Z1s x 72 x Z, relative toZ3
(usingp = 7,i = 5). (In each of these examples, the forbidden subgtdup ZS" must
be contained within a subgroup fisomorphic taz} ')

We can extend Theorem 3.3 by using the recursive construction for RDSs found in [4].
Following [4], define @uilding block in an abelian group G with modulustmbe a subset
of G such that all nonprincipal character sums over the subset have modulus eithmer 0 or
A (a, m, t) building set (BS) on an abelian group G relative to a subgrouis defined as
a collection oft building blocks inG with modulusm, each containing elements, such
that for every nonprincipal charactgrof G

(i) exactly one building block has nonzero character sugig nonprincipal orlJ and
(i) no building block has nonzero character suny ifs principal onU.

Fora > 1, a(a, +/a, 1) BS on a grou relative to a subgroup of orderu is equivalent

to a(a, u, a, a/u) semi-regular RDS irG relative toU. If the groupG has a subgroup
isomorphic toZZ', then we can associate that subgroup with the additive structure of
GF(2")2. Once this association is established, we can make the additional link between the
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affine hyperplanes of GB")? and subgroups o2 of order 2. One of the hyperplanes
(sayHo) will be the forbidden subgroup, and we consider the quotient gr@yp$, where

H; are the other hyperplanes. If there existaa/at, t) BS on each quotient group/H;

relative toZ%’/Hi then there exists @' a, 2" v/at, 2't) BS onG relative toH, (see [4] for

full details). Thus, given an example of a BS relative to an elementary abelian subgroup,
we can recursively construct a family of BSs in larger groups, and these new BSs can be
used to construct RDSs using the following result [4]:

THEOREM 3.5 Suppose there exists(a, +/at, t) BS on an abelian group G relative to a
subgroup U of order u, where at 1. Then there exists @t, u, at, at/u) semi-regular
RDS in G relative to U, where Gis any abelian group containing G as a subgroup of
index t.

To illustrate the use of the recursive construction, we shall restrict attention to the RDSs
of Corollary 3.4. More general results can be obtained from the larger set of RDSs available
directly from Theorem 3.3. Now Corollary 7.9 of [4] demonstrates the recursive construc-
tion of BSs, starting from &'+, 2, 2'+, 21) RDS inZ}, x Z), relative to the subgroup
Z5, of Zj,. A similar method can be used to construct the BSs of the following corollary,
starting from the(2 1 (2" — 1)2, 27, 2'+ (2r+ — 1)2 212"+ — 1)) semi-regular RDS
in ng_l x 7}, x 7, relative to the subgrou@), of Zj, given by Corollary 3.4 (setting
p =r +1i). Asindicated by Theorem 7.11 of [4], the recursion will affect only the Sylow
2-subgroup of the group to give an analogous result to Corollary 7.9 of [4]:

COROLLARY 3.6 Let2'* — 1 be prime, where = 1and i > 0 are integer. For each d and
c satisfying2 < ¢ < d, there exists a

(2(d+c—2)r+i (2r+i _ 1)2’ 2((2d—1)r+i)/2(2r+i _ l), 2(d—C+l)I‘)

BS onZ3., ; x Gg,, where G is any abelian group of orde2@+c~"+ and exponent

at most2°, relative to any subgroup &k = Z5, where U, ¢ is contained in a subgroup of
Gy,c isomorphic taZ}, and where all of the following hold:

(i) Forc =d, Gqc/Uq. contains a subgroup of inde"""} and exponent at mog&t—.

(i) Fori <randd> 2andc=d —1, Gg¢/Uq. contains a subgroup of ind&*" and
exponent at mog®-2.

(iiiy Fori > rand cin the rangemax1, @2} < ¢ < d,rankGg,c/Udc) > I +i.
Using Theorem 3.5 we can deduce the existence of many RDSs from Corollary 3.6 (in
a similar manner to Theorem 8.4 of [4]). We shall give two such examples, based on the

extreme caseis= 0 andi = p — 1 of Corollary 3.6, where we consideri = pto be a
fixed prime.

COROLLARY 3.7 Let2P — 1 be prime. For each & 3, there exists a

(2(2d—1)p(2p _ 1)2’ 2P, 2(2d—l)p(zp _ 1)2’ 2(2d—2)p(2p _ 1)2)
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semi-regular RDS ifZ.3, ; x ng relative to any subgroup isomorphic E£

Proof. Takec =d — 1,i = 0 andGqy = Zé{H in Corollary 3.6 and sat = p. Apply
Theorem 3.5. ]

Corollary 3.7 demonstrates that the group order can grow without bound while the rank
of the Sylow 2-subgroup remains fixed gi.2

COROLLARY 3.8 Let2P — 1 be prime. For each @ 2, there exists a
(22d+p—2(2p _ 1)2, 2’ 22d+p—2(2p _ 1)2’ 22d+p—3(2p _ 1)2)

semi-regular RDS iﬁgp_l X Ligas1 X Ligd X Zg_z relative to U = Z,, where U is contained
within either of the direct factor&,4+1 andZ.

Proof. Takec = d,r = 1 andGq. = ng X Ziz‘l in Corollary 3.6, withUg . = Z, a
subgroup ofzgd, and set + 1 = p. Apply Theorem 3.5. ]

Corollary 3.8 provides new values bfor which (24, 2, 2x, 1) semi-regular RDSs exist.
All previously known examples hadl = v or A = 2v, wherev = 4N? is the order
of an abelian group known to contain a Hadamard difference set with parahdsme
Corollaries 6.7 and 8.1 of [4]). For example, taking= 3, there exists @2+1.49, 2, 22d+1.
49, 224.49) semi-regular RDS ifi2 x Z a1 x Zx x Z; for eachd > 2, whereas no Hadamard
difference set with paramet& = 29-1 . 7 is known to exist.

Finally, we show how the following product construction for RDSs [11] can be applied to
allow the combination of two or more of the examples above to provide further new RDSs.

THEOREM 3.9 Let G be a group of order udaontaining a normal subgroup U of order
u. Let H and H be subgroups of G of order ua and usatisfying HON H’ = U. If H
contains aa, u, a, a/u) RDS relative to U and Hcontains a@’, u, &', a'/u) RDS relative
to U, then G contains &aad/, u, aa, aa’/u) RDS relative to U.

For example, takep = 2,i = 0 in Corollary 3.4 to provide &4 -9,4,4-9,9) RDS in
H = (w1, wp, X1, X2 | wd = w3 = x{ = x5 = 1) = ZZx Z3relativetoU = (X2, x3) = Z3.
Then takep = 3,i = 1 in Corollary 3.4 to provide &8 -49,4,8-49,2-49) RDS in
H = <v1,v2,X1t1,X2t2,t3 | UZ = vZ = Xf = Xg =t% =t22 =t§ = l) EZ% X ZEXZZ
relative toU = (x2, x2) = Z3. The groupG = (w1, wa, v1, vz, X1, X2, t1, to, t3 | w3 =
wi=v]=vl=x}=x3=t2=1t2 =12 =1) = 73 x 72 x Z2 x Z3 containsH andH’
as subgroups of order-41- 9 and 4 8 - 49 respectively, anti N H' = U. Therefore by
Theorem 3.9G contains §32-9-49, 4, 32-9-49, 8-9-49) RDS relative tdJ. Note that
the order ofG is divisible by three distinct primes.

More generally, let 2 — 1 be prime for 0< j <t, wherep; > po for eachj. For
eachj, substitution of = p; — po in Corollary 3.4 gives &2 (2P — 1), 2P, 2Pi (2P —
1)2, 2P —P (2P — 1)2) semi-regular RDS iG] = Z2, | x Z{ x Z3 ™ relative to the
subgroupZ’ of Z. Following the above example, we can identify each grGypvith a
subgroup of a larger group and apply Theorem 3.9 inductively to obtain:
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COROLLARY 3.10 Let2P — 1 be prime for0 < j <'t, where p > po for each j, and set
T= Z}zl p;. There exists a

t t t
<2PO+T []@» -2 2% 20T []2» - 1% 2" [ 2" - 1)2)
j=0

j= j=0 j=0

semi-regular RDS i3, | x 72, ;--- x 73, _, x Z§* x Z] relative to the subgroup
U = Z contained within the direct factdg}’.

There are many other ways in which we can generate further families of RDSs based
on Theorem 3.3 by combinations of the three techniques illustrated here: contraction of
the forbidden subgroup, recursion on the Sylow 2-subgroup, and the use of the product
construction. In particular, note that by contraction of the forbidden subgroup for the RDSs
of Corollary 3.10 we can obtain further examples(2f, 2, 2), A) RDSs for new values
of A.

4. Construction2:u=3

In this section we construct RDSs in the grdBp= (X, y, g, h | x> =y* =g®=h3 =

1) = 73, x Z3relative to(h) = Z3. We will make use of cosets of all of the cyclic subgroups

of order 2. There are 2+ 22~1 such distinct cyclic subgroups, which can be written in
the form (xy?), (x¥y) and(x?/*1y), where 0< j < 221 — 1. These cyclic subgroups

are precisely the kernels of the characters of or@erthe Sylow 2-subgroup @&. Each

such character is therefore principal on one of these subgroups and is nonprincipal on any
other. Furthermore, for any character of order less tlfazn2he Sylow 2-subgroup @&,

the cyclic subgroups of ordef Zontained in the kernel of the character all have only one

of the three forms given above. We remark that the construction presented here is similar
to the construction of Hadamard difference sets in [1] which used the cyclic subgroups of
ZZ. In this paper the roles of the primes 2 and 3 are the reverse of that in [1].

THEOREM4.1 Let G = (x,y,g,h | x¥ = y* = ¢® = h® = 1) = 73, x ZZ, where a> 1.
The set represented by the group ring element

211
F — Z [(Xyzj)(hi+lyi+hj+2y23*1+1)
=0

+(x2y) (ghx] 4 ghit2x2+)
+<X2j+1y>(gzhjxj +gzhj+zxza*1+j)]
is a (223, 3, 2?23, 2?3) RDS in G relative tqh) = Zs.
Proof. We break the proof up into the following six cases, then apply Lemma 1.1 (i).

Case 1. Suppose tha is nonprincipal onx2 ™", y*) and nonprincipal orh). In this
case, the kernel of restricted to(x, y) is one of the cyclic subgroups of ordet @sed to
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defineF, and y will sum to O over all of the other cyclic subgroups of ordér Zhus,
if the kernel is of the formixy2l), then|x(F)| = 22|x(hiTly}) 4+ x(hi+2y2?'+i)| =
22| x (hith) — x(hi*t?2)| = 22/3. If the kernel has one of the other two forme&ly) or
(x2+1y) a similar computation gives a character sum with the same modulus.

Case 2. Suppose thay is nonprincipal onx? ™, yZH) and principal onh). As in Case
1, if the kernel is of the formixy?) then|x (F)| = 22|x (hiTly}) + x (hi+2y?'+i)| and

sincey is now principal onh), |x (F)| = 22|x(y}) — x(y})| = 0. The other two forms
for the kernel give the same result.

Case 3. Suppose thag is principal on(x2 ", y?* "), nonprincipal onx, y), and nonprin-
cipal on(h). Suppose that the cyclic subgroups of ordgc@ntained in the kernel of
are all of the form(xy?}); the cases when they are all of the fotr?! y) or all of the form
(x2+ly) are similar. Let) = {j | x(xy?) = 1,0 < j < 221 — 1} be the set which
indexes the subgroups on whighs principal. Letj be the least element dfand let 2 be
the order ofy (y). Then we havel = {jo+2°k | 0 < k < 2P —1}. Now x(xy?) =1
for somej andy is nonprincipal onx, y), sob > 0. Also x is principal on(x?"", y2371>
and sab < a. Therefore

X(F) = 223 (x(hi*tyl) 4 x(hi+2y2 )
jed
2(x () + x () Y x(yHx(h)
jed
2a-b_7

= —2xy)xh) Y x(y* M h® ),
k=0

so that|x (F)| = 22 Y2 o L(— 1)k (h? )|. Sincey is nonprincipal onth), x (h) is a

primitive third root of unity and sg (hzb'l) is also a primitive third root of unity, say. Then
a—b__ a—b—1__ a—b—1__

X (F)| = 221 Xy =Dk = 21— Il 2oy 02K Now | Xp g 'ndk| =1

sincen? is a primitive third root of unity and 3 does not divid&2-1. Thereforg x (F)| =

22./3.

Case 4. Suppose thag is principal on(x? ", y**), nonprincipal onlx, y), and principal
on (h). As in Case 3, using the example of subgroups of the foryd!), we find | x (F)|
is a multiple of| Zi:g‘l(—l)kx(hzbflkﬂ. Sincey is now principal onth), |x (F)| = 0.

Case 5. Suppose thay is principal on(x, y) and nonprincipal orth). Theny (F) =
2370 () + x(h¥2) 4 x(gh) + x (@™ + x(g?h)) + x(g*hi*?), and
since x (h) is a primitive third root of unity we have (F) = —22(x(h?) + x(9) +
x(9) Zf:g_lx(h”l). Now {h?, g, g%} is a(3,3,3,1) RDS in (g, h) relative to(h),
so by Lemma 1.1 (i)jx (h?) + x () + x(g%)| = /3. Also|2fig‘1x(hj+l)| = 1 since
x (h) is a primitive third root of unity and 3 does not divid&2. Thereford x (F)| = 22/3.
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Case 6 Suppose thag is principal on(x, y), principal on(h), and nonprincipal org).

In this casex (F) = 223707 (x (D) + x (D) + x(@) + x(@ + x(@ + x(@) = 0.
| ]

The construction of Theorem 4.1 combines the cyclic subgrouf.asf order 2 with
a(3,3,3,1) RDSin Z§ relative toZsz. The smallest examples, all relativeg, are: a
(4-3,3,4-3,4)RDSInZ3 x 73, a(16-3, 3, 16-3, 16) RDS inZ3 x Z3, a(64-3, 3, 64-3, 64)

RDS inZ3 x Z3, and a(256- 3, 3, 256- 3, 256) RDS inZ, x Z3.

As in Section 3 we can extend Theorem 4.1 by means of the recursive construction for
RDSs given in [4]. Corollary 7.8 of [4] shows how to construct a family of BSs starting
froma(3,3,3,1) RDSin Z§ relative toZs. Following the case = d of this method for
the RDSs of Theorem 4.1 we obtain:

COROLLARY 4.2 For each d> 1 and each a> 1, there exists g2223% 2a3@d+1)/2 3) BS
oNnZ2. x S, where g is any abelian group of orde8®d+1 and exponent at mo8t, relative
to any subgroup Y= Zs, except possibly whend 1 and § = Uqg x ng.

Application of Theorem 3.5 then gives:

COROLLARY 4.3 Foreachd> landeacha> 1, there exists §222320+1, 3, 22a32d+1 p2a32d)
semi-regular RDS ifZ3, x Gq, where G is any abelian group of ordeg?+2 and exponent
at most3?+1, relative to any subgroup gJof order 3, except possibly when & ng or
whend> land Gy = Uq X Zzi+1 X Zad.

We can also use the RDS product construction (Theorem 3.9) to yield further families of
RDSs based on Theorem 4.1. In particular, the Sylow 2-subgroup can have a more general
form thanZa,. For example, by Corollary 8.2 of [4] there existé3¥, 3, 3, 3*~1) RDS in
73 x G, whereG is any abelian group of ordet’3and exponent at most8*/2!, relative
to the direct factofZs, except possibly whew > 3 is odd andG = Zaw+v2z X Zgw-vy2.
Furthermore, by Theorem 4.1 there exist@® 3, 3, 2243, 22%) RDS inZ3, x Z3 relative
to Z3, wherea; > 1 for eachj. Recursive application of Theorem 3.9 then gives:

COROLLARY 4.4 Letg > 1forl < j <tandsetT= Z}zlaj. Let G be any abelian group
of order3* and exponent at mo8t*1%/2l except, in the case > 30dd,Zzw+1/2 X Zgw-1/2.
There exists 2273w+, 3, 22T 3w+t 22T gw+t-1y gemj-regular RDS in

2 2 2 t+1
Ly X Ligay X -+ X Ligay X Lz~ x G

relative to a subgroufZs; contained within the direct factcﬂig”.

5. Future Directions

The results of this paper show that the existence pattern for semi-regular RDSsis much richer
than was previously apparent. As mentioned, we have indicated only some of the parameter
sets and groups for which such RDSs can now be obtained by means of contraction, the
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recursive construction, and the product constructions. There are also generalisations to
certain nonabelian groups, as outlined in [4]. We close with some possible future research
directions suggested by our results.

1. Can the two RDS constructions of this paper be unified?

2. Which other classes of groups contain semi-regular RDSs whose order is not a prime
power?

3. Can these or other RDS examples be used to construct new difference sets? We know
[4] that certain BSs can be used to construct difference sets, and that if the parameters
of a resulting difference set do not belong to a known family then the BS involved must
be defined on a group whose order is not a prime power. This paper contains the first
examples of BSs on groups whose order is not a prime power, relative to a subgroup of
order greater than 2.

4. Canthe RDSs of Corollary 3.8, or similar examples with a forbidden subgroup of order
2, be used in the construction of new Hadamard difference sets according to the methods
of [4]? These RDSs are the first examples with paramé®r2, 22, A) for which is
neither the order nor twice the order of an abelian group known to contain a Hadamard
difference set. For example, is there a Hadamard difference €&t in A for some
abelian 2-groupA (which, from [3], must have order at least 256 if €& < 8)7?

5. Are there other ways to combine difference sets, relative difference sets, direct product
difference sets, or divisible difference sets to construct new examples of any of these?

Note Added in Proof

K. T. Arasu reports [private communication, 1996] that he recently presented (K. T. Arasu
and W. de Launey, “Complex Hadamard matrices and relative difference sets”, presentation
at Bose Memorial Conference, Fort Collins, Colorado, June 1995) a construction for a
(2P(2P — 1)2, 2, 2P(2° — 1)2, 2P~1(2P — 1)2) semi-regular RDS 72, , x Zs x Z2"
relative to the subgroufd, of Z,, where 2 — 1 is prime. This corresponds to the case

i = p— 1 of Corollary 3.4, in which the forbidden subgroup has order 2.
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