33 research outputs found

    DMRG studies of Chebyshev-expanded spectral functions and quantum impurity models

    Get PDF
    This thesis is concerned with two main topics: first, the advancement of the density matrix renormalization group (DMRG) and, second, its applications. In the first project of this thesis we exploit the common mathematical structure of the numerical renormalization group and the DMRG, namely, matrix product states (MPS), to implement an efficient numerical treatment of a two-lead, multi-level Anderson impurity model. By adopting a star-like geometry, where each species (spin and lead) of conduction electrons is described by its own so-called Wilson chain, instead of a single Wilson chain we achieve a very significant reduction in the numerical resources required to obtain reliable results. Moreover, we show that it is possible to find an "optimal" chain basis, in which chain degrees of freedom of different Wilson chains become effectively decoupled from each other further out on the Wilson chains. This basis turns out to also diagonalize the model's chain-to-chain scattering matrix. In the second project we show that Chebychev expansions offer numerically efficient representations for calculating spectral functions of one-dimensional lattice models using MPS methods. The main features of this Chebychev matrix product state (CheMPS) approach are: (i) it achieves uniform resolution over the spectral function's entire spectral width; (ii) it offers a well-controlled broadening scheme; (iii) it is based on using MPS tools to recursively calculate a succession of Chebychev vectors, (iv) whose entanglement entropies were found to remain bounded with increasing recursion order for all cases analyzed here. We present CheMPS results for the structure factor of spin-1/2 antiferromagnetic Heisenberg chains and perform a detailed finite-size analysis. Making comparisons to benchmark methods, we find that CheMPS yields results comparable in quality to those of correction vector DMRG, at dramatically reduced numerical cost and agrees well with Bethe Ansatz results for an infinite system, within the limitations expected for numerics on finite systems. Following these technologically focused projects we study the so-called Kondo cloud by means of the DMRG in the third project. The Kondo cloud describes the effect of spatially extended spin-spin correlations of a magnetic moment and the conduction electrons which screen the magnetic moment through the Kondo effect at low temperatures. We focus on the question whether the Kondo screening length, typically assumed to be proportional to the inverse Kondo temperature, can be extracted from the spin-spin correlations. We investigate how perturbations which destroy the Kondo effect, like an applied gate potential or a magnetic field, affect the formation of the screening cloud. In a forth project we address the impact of Quantum (anti-)Zeno physics resulting from repeated single-site resolved observations on the many-body dynamics. We use time-dependent DMRG to obtain the time evolution of the full many-body wave function that is then periodically projected in order to simulate realizations of stroboscopic measurements. For the example of a 1-D lattice of spin-polarized fermions with nearest-neighbor interactions, we find regimes for which many-particle configurations are stabilized and destabilized depending on the interaction strength and the time between observations

    The Statistical Foundations of Entropy

    Get PDF
    In the last two decades, the understanding of complex dynamical systems underwent important conceptual shifts. The catalyst was the infusion of new ideas from the theory of critical phenomena (scaling laws, renormalization group, etc.), (multi)fractals and trees, random matrix theory, network theory, and non-Shannonian information theory. The usual Boltzmann–Gibbs statistics were proven to be grossly inadequate in this context. While successful in describing stationary systems characterized by ergodicity or metric transitivity, Boltzmann–Gibbs statistics fail to reproduce the complex statistical behavior of many real-world systems in biology, astrophysics, geology, and the economic and social sciences.The aim of this Special Issue was to extend the state of the art by original contributions that could contribute to an ongoing discussion on the statistical foundations of entropy, with a particular emphasis on non-conventional entropies that go significantly beyond Boltzmann, Gibbs, and Shannon paradigms. The accepted contributions addressed various aspects including information theoretic, thermodynamic and quantum aspects of complex systems and found several important applications of generalized entropies in various systems

    Nonlinear Analysis and Optimization with Applications

    Get PDF
    Nonlinear analysis has wide and significant applications in many areas of mathematics, including functional analysis, variational analysis, nonlinear optimization, convex analysis, nonlinear ordinary and partial differential equations, dynamical system theory, mathematical economics, game theory, signal processing, control theory, data mining, and so forth. Optimization problems have been intensively investigated, and various feasible methods in analyzing convergence of algorithms have been developed over the last half century. In this Special Issue, we will focus on the connection between nonlinear analysis and optimization as well as their applications to integrate basic science into the real world

    Introduction to Modern Canonical Quantum General Relativity

    Full text link
    This is an introduction to the by now fifteen years old research field of canonical quantum general relativity, sometimes called "loop quantum gravity". The term "modern" in the title refers to the fact that the quantum theory is based on formulating classical general relativity as a theory of connections rather than metrics as compared to in original version due to Arnowitt, Deser and Misner. Canonical quantum general relativity is an attempt to define a mathematically rigorous, non-perturbative, background independent theory of Lorentzian quantum gravity in four spacetime dimensions in the continuum. The approach is minimal in that one simply analyzes the logical consequences of combining the principles of general relativity with the principles of quantum mechanics. The requirement to preserve background independence has lead to new, fascinating mathematical structures which one does not see in perturbative approaches, e.g. a fundamental discreteness of spacetime seems to be a prediction of the theory providing a first substantial evidence for a theory in which the gravitational field acts as a natural UV cut-off. An effort has been made to provide a self-contained exposition of a restricted amount of material at the appropriate level of rigour which at the same time is accessible to graduate students with only basic knowledge of general relativity and quantum field theory on Minkowski space.Comment: 301 pages, Latex; based in part on the author's Habilitation Thesis "Mathematische Formulierung der Quanten-Einstein-Gleichungen", University of Potsdam, Potsdam, Germany, January 2000; submitted to the on-line journal Living Reviews; subject to being updated on at least a bi-annual basi

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Analysis, modelling and prediction of deterministic and stochastic complex systems

    Get PDF
    The analysis of complex systems at nano- and micro-scales often requires their numerical simulation. Atomistic simulations, that rely on solving Newton's equation for each component of the system, despite being exact, are often too computationally expensive. In this work, firstly we analyse the properties of confined systems by extracting mesoscopic information directly from particles coordinate. Then, taking advantage of Mori-Zwanzig projector operator techniques and advanced data-analysis tools, we present a novel approach to parametrize non-Markovian coarse-graining models of molecular system. We focus on the parametrization of the memory terms in the stochastic Generalized Langevin Equation through a deep-learning approach. Moreover, in the framework of Dynamical Density Functional Theory (DDFT) we derive a continuum non-Markovian formulation, able to describe, given the proper free-energy, the physical properties of an atomistic system. Comparisons between molecular dynamics, fluctuating dynamical density functional theory and fluctuating hydrodynamics simulations validate our approach. Finally, we propose some numerical schemes for the simulation of DDFT with additional complexities, i.e. with stochastic terms and non-homogeneous non-constant diffusion.Open Acces
    corecore