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I am extremely grateful to Virginia, who accompanied me in this journey and encouraged

me in the most di�cult moments. Finally, a huge thanks goes to my parents, my brother

and all my family for the unconditional and tireless support throughout my academic

studies.

4



Abstract

The analysis of complex systems at nano- and micro-scales often requires their numerical

simulation. Atomistic simulations, that rely on solving Newton’s equation for each com-

ponent of the system, despite being exact, are often too computationally expensive. In

this work, firstly we analyse the properties of confined systems by extracting mesoscopic

information directly from particles coordinate.

Then, taking advantage of Mori-Zwanzig projector operator techniques and advanced

data-analysis tools, we present a novel approach to parametrize non-Markovian coarse-

graining models of molecular system. We focus on the parametrization of the memory

terms in the stochastic Generalized Langevin Equation through a deep-learning ap-

proach.

Moreover, in the framework of Dynamical Density Functional Theory (DDFT) we

derive a continuum non-Markovian formulation, able to describe, given the proper free-

energy, the physical properties of an atomistic system. Comparisons between molecular

dynamics, fluctuating dynamical density functional theory and fluctuating hydrodynam-

ics simulations validate our approach.

Finally, we propose some numerical schemes for the simulation of DDFT with ad-

ditional complexities, i.e. with stochastic terms and non-homogeneous non-constant

di↵usion.

5



Publications, presentations,

scholarships and extra-curricular

activities

Publications

Contributions of this work to the literature include:

• A. Russo, M. A. Durán-Olivencia, S. Kalliadasis, & R. Hartkamp. Macroscopic

relations for microscopic properties at the interface between solid substrates and

dense fluids, J. Chem. Phys., 150, 214705 (2019). It includes materials covered in

Section 2.2 of this thesis.

• A. Russo, M. A. Durán-Olivencia, P. Yatsyshin & S. Kalliadasis. Non-Markovian

dynamical density functional theory for reacting multi-component systems: theo-

retical framework and finite volume simulations, J. Phys. A: Math. Theor., 53,

445007 (2020). It includes materials covered in Section 3.2 of this thesis.

• A. Russo, S. P. Perez, J. Carrillo, M. A. Durán-Olivencia, P. Yatsyshin & S. Kalli-

adasis. A finite-volume method for fuctuating dynamical density functional theory,

J. Comp. Phys., 428, 109796 (2020). It includes materials covered in Section 4.1

of this thesis.

• J. Mendes, A. Russo, S. P. Perez & S. Kalliadasis. A finite-volume scheme for

gradient flow equations with non-homogeneous di↵usion, Comput. Math. Appl.,

89, 150–162 (2020). It includes materials covered in Section 4.2 of this thesis.

6



• A. Russo, M. A. Durán-Olivencia, I. G. Kevrekidis & S. Kalliadasis. Machine learn-

ing memory kernels as closure for non-Markovian stochastic processes, arXiv :1903.09562

(under-review). It includes materials covered in Section 3.1 of this thesis.

• A. Russo, D. Sibley, P. Asinari & S. Kalliadasis. Liquid-vapour and immiscible

fluids interfaces: a non-equilibrium molecular dynamic study (in preparation). It

includes materials covered in Section 2.3 of this thesis.

Other contributions to the literature not included in this work, include:

• A. Russo, M. Icardi, M. Elsharkawy, D. Ceglia, P. Asinari & C. M. Megaridis.

Numerical simulation of droplet impact on wettability-patterned surfaces, Phys.

Rev. Fluids (2020).

Presentations

The contents of this work have been presented at the following conferences:

• Mini-symposia ”Transport properties at fluids interfaces: macroscopic relations for

microscopic phenomena” at the ”British applied mathematics colloquium 2017”,

University of Surrey (10th-12th April 2017);

• Talk ”Transport properties at fluids interfaces: a molecular study for a macroscopic

modelling” at the ”70th Annual Meeting of the APS Division of Fluid Dynamics”,

Denver, Colorado (19th-21st November 2017);

• Mini-symposia ”Computational challenges in fluctuating hydrodynamics” at the

”British applied mathematics colloquium 2018”, University of St. Andrews (26th-

29th March 2018);

• Mini-symposia ”A data-driven approach to model reduction: Deep-learning mem-

ory e↵ects” at the ”British applied mathematics colloquium 2019”, University of

Bath (24th-26th April 2019);

• Mini-symposia ”A finite volume scheme for stochastic PDEs” at the ”British ap-

plied mathematics colloquium 2019”, University of Bath (24th-26th April 2019);

• Talk ”Memory e↵ects in dynamic density functional theory with fluctuations” at

the ”8th DFT days 2020”, University of Tuebingen (21st-23rd September 2020);

7



Scholarships and awards

This work was supported by the following scholarship and awards:

• PhD scholarship of £50k+ for the period Nov 2016-Sep 2020 by the Department

of Chemical Engineering at Imperial College London;

• Student Scholarship Award of £100 at the ”British applied mathematics collo-

quium 2017” (University of Surrey);

• Student Scholarship Award of £200 at ”British applied mathematics colloquium

2018” (University of St. Andrews).

Graduate school courses

During my PhD, I attended and passed the following modules o↵ered by the Graduate

School of Imperial College London:

• Entrepreneurship 3: Idea Generation: Why Didn’t I think of That? (2016-2017)

• Writing for Success 4: Publication (2016-2017)

• Careers: Job Search With A Di↵erence (2017-2018)

• Entrepreneurship 5: Generating a Business Model and Plan (2017-2018)

• Entrepreneurship 7b: Strategically Marketing Your Research (2017-2018)

• Global Postgraduate Retreats: Thesis Writing (2018-2019)

• Industrial xChange Retreat: Materials and Technology for the Future (2018-2019)

• Webinar: Teaching: Applying for Associate Fellowship AFHEA (2018-2019)

Extra-curricular activities

During the development of this work, the following academic and non-academic roles

were covered during the PhD:

• Graduate teaching assistant in Mathematics 1 during the academic years 2017/2018

and 2018/2019.

• Co-supervisor of undergraduate and master (UROP) projects.

8



• Accreditation as associate fellow of the higher education academy (fellowship ref-

erence number: PR166992).

• Internship in advanced analytics at eBay with responsibilities in business and prod-

uct analytics, data engineering and modelling, data science and market insights.

9



Contents

List of Figures 14

List of Tables 25

1. Introduction 29

1.1. Motivations and historical notes . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1.1. Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.1.2. Generalized Langevin equation . . . . . . . . . . . . . . . . . . . . 32

1.1.3. Fluctuating dynamical density functional theory . . . . . . . . . . 34

1.1.4. Overdamped FDDFT & DDFT . . . . . . . . . . . . . . . . . . . . 35

1.2. Main aims and outline of the thesis . . . . . . . . . . . . . . . . . . . . . . 37

1.2.1. Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.2.2. Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.2.3. Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2.4. Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2. Molecular dynamics 41

2.1. MD: Background and numerical methods . . . . . . . . . . . . . . . . . . 41

2.1.1. Time integration schemes . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.2. Thermostats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.3. Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.1.4. Reduced units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1.5. From atomistic coordinates to macroscopic fields . . . . . . . . . . 46

10



Contents

2.2. MD simulations of single-phase fluids in confined geometries . . . . . . . . 54

2.2.1. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2.2. Rheological e↵ects and thermostat . . . . . . . . . . . . . . . . . . 57

2.2.3. Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.4. Velocity and shear rate . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2.5. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.6. Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.7. Shear viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3. MD simulations of multi-phase fluids in confined geometries . . . . . . . . 77

2.3.1. Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3.2. Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.3.3. Velocity and shear rate . . . . . . . . . . . . . . . . . . . . . . . . 84

2.3.4. Temperature and thermostat . . . . . . . . . . . . . . . . . . . . . 85

2.3.5. Stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.3.6. Shear viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.3.7. Friction factor in nano-pipes with multi-phase flow . . . . . . . . . 95

3. Low dimensional models 97

3.1. Microscopic coarse-graining: From molecular dynamics to generalized

Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.1.1. Memory kernel in the Laplace space . . . . . . . . . . . . . . . . . 100

3.1.2. Memory kernel extraction through a multi-layer perceptron . . . . 101

3.1.3. GLE integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.1.4. Numerical application I: Single particle in bath . . . . . . . . . . . 106

3.1.5. Numerical application II: Particle in a bistable potential . . . . . . 112

3.1.6. Numerical application III: Particle chain in bath . . . . . . . . . . 113

3.1.7. Numerical application IV: Modelling global temperature . . . . . . 114

3.1.8. Numerical application V: A stock market model . . . . . . . . . . 116

3.2. Macroscopic coarse-graining: From GLE to non-Markovian FDDFT . . . 119

3.2.1. Generalized Langevin equations . . . . . . . . . . . . . . . . . . . . 121

3.2.2. Non-Markovian FDDFT . . . . . . . . . . . . . . . . . . . . . . . . 122

3.2.3. Markovian and overdamped limits: Connections with DDFT and

reaction-di↵usion equations . . . . . . . . . . . . . . . . . . . . . . 126

3.2.4. Extended field dynamics . . . . . . . . . . . . . . . . . . . . . . . . 128

3.2.5. Finite volume discretization . . . . . . . . . . . . . . . . . . . . . . 132

3.2.6. Numerical application I: Equilibrium mono-component system . . 133

11



Contents

3.2.7. Numerical application II: Non-equilibrium space transition . . . . 136

3.2.8. Numerical application III: Memory-driven Turing patterns in bi-

nary reacting system . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4. Numerical methods for DDFT with additional complexities 143

4.1. Overdamped FDDFT: Numerical methods and applications . . . . . . . . 144

4.1.1. Governing equations and related properties . . . . . . . . . . . . . 146

4.1.2. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.1.3. Numerical application I: Ideal-gas system in equilibrium . . . . . . 158

4.1.4. Numerical application II: Ideal-gas system out of equilibrium . . . 164

4.1.5. Numerical application III: Homogeneous nucleation of Lennard-

Jones systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.2. Non-homogeneous DDFT: A finite volume approach . . . . . . . . . . . . 172

4.2.1. Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.2.2. 1D case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.2.3. 2D case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5. Conclusions and Outlook 188

5.1. Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.1.1. Molecular dynamics simulation of liquid-solid, liquid-vapor and

liquid-liquid interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.1.2. Low dimensional models . . . . . . . . . . . . . . . . . . . . . . . . 189

5.1.3. DDFT with additional complexities . . . . . . . . . . . . . . . . . 190

5.2. Additional open directions and future research topics . . . . . . . . . . . . 191

5.2.1. Volume (or bulk) viscosity for inhomogeneous fluids . . . . . . . . 192

Bibliography 195

A. Chapter 2: Additional details and results 217

A.1. MD simulations of a single fluid in a confined geometry . . . . . . . . . . 217

A.1.1. Global density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A.1.2. Derivation of the viscosity of a dense inhomogeneous hard-sphere

fluid from kinetic theory . . . . . . . . . . . . . . . . . . . . . . . . 218

A.1.3. Global shear viscosity for a fluid in a confined geometry . . . . . . 220

A.2. MD simulations of multi-phase systems . . . . . . . . . . . . . . . . . . . 221

A.2.1. LV interface vs shear rate . . . . . . . . . . . . . . . . . . . . . . . 221

A.2.2. Stability of the LL interface in time . . . . . . . . . . . . . . . . . 221

12



Contents

B. Chapter 3: additional details and results 223

B.1. GLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B.1.1. Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . 223

B.1.2. GLE integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.1.3. Modelling global temperature: Additional results . . . . . . . . . . 232

B.1.4. Modelling Nikkei index: Additional results . . . . . . . . . . . . . 234

B.2. Non-Markovian FDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

B.2.1. Derivations of noise in FDDFT . . . . . . . . . . . . . . . . . . . . 234

B.2.2. Extended field dynamics in Non-Markovian FDDFT . . . . . . . . 236

B.2.3. Linear stability analysis for reaction-di↵usion systems . . . . . . . 237

B.2.4. Structure factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

C. Chapter 4: Additional details and results 240

C.1. Overdamped FDDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

C.1.1. Time integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

C.1.2. MD simulations details . . . . . . . . . . . . . . . . . . . . . . . . 242

C.1.3. Time integrators stability analysis . . . . . . . . . . . . . . . . . . 243

C.1.4. Structure factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

C.2. Non-homogeneous DDFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

C.2.1. Numerical methods: 2D scheme . . . . . . . . . . . . . . . . . . . . 245

13



List of Figures

1.1. Some numerical techniques adopted for the simulations of complex sys-

tems across di↵erent time- and length-scales. MD: molecular dynam-

ics, GLE: generalized Langevin equation, DDFT: dynamical density func-

tional theory, FDDFT: fluctuating DDFT, NS: Navier-Stokes equations. 30

2.1. Representation of a MD simulation of a chain of particles immersed in a

thermal bath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2. (a) Density profiles of a system made of fixed particles (bottom panel).

The top panel shows a mesh-based approach with bins of width w =

0.3 to compute the density. In the middle panel the density profiles are

computed by using three di↵erent kernels: piecewise constant with w =

0.15 (in red), cubic with w = 0.3 (in blue) and Gaussian with w = 0.1

(in green). (b) Density and shear rate profile computed for a confined

particle system at T = 1.0 with three di↵erent kernel functions (piecewise

constant, Gaussian and cubic). Cubic and Gaussian kernels give similar

results, while the piecewise constant kernel introduces some errors at the

boundaries. This inaccuracy in the shear rate may directly a↵ect its

derived quantities, including shear viscosity. . . . . . . . . . . . . . . . . 48

2.3. Influence of the Gaussian kernel parameter w on the density profiles evalu-

ated at liquid-vapour (a) and liquid-liquid (b) interfaces for a temperature

T = 1.0. In (b), solid lines represent the single fluid density, while dashed

lines refer to the mixture density. The centre of the channel is denoted

by yc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

14



List of Figures

2.4. Non-equilibrium MD setup for the study of a sheared fluid (blue particles).

Walls (red particles) are located at a constant distance h = 13.0�LJ and

move at a constant velocity uw in opposite directions . The parameter

� in the figures defines regions at the liquid-solid interfaces where the

strong interactions strongly reduce particles mobility, while yf = h � �

is its complementary region. The bulk region, which spans yb ' 4�LJ,

denotes a part of the domain where no significant layering is observed in

the density profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5. Average shear stress against average shear rate is reported for the most

critical scenario (T = 1.0 and ✏f,w = 0.6). Non-Newtonian e↵ects are

evidenced at average shear rates above 0.2. . . . . . . . . . . . . . . . . . 57

2.6. (a)Temperature profile for di↵erent shear rates, when using a single global
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Chapter 1

Introduction

1.1. Motivations and historical notes

During the last few decades, the study of physical properties of the matter at a molecu-

lar level has become more and more important because of its multiple applications. We

have witnessed exceptional technological advances in the fields of micro- and nanoflu-

idics and their applications in engineering [1, 2, 3], colloidal science [4, 5, 6, 7, 8], drug

delivery [9] and bio-engineering [10, 11, 12]. For instance some researchers have shown

that controllable acoustic mixing of di↵erent fluid in micro-channels can be used for

the fabrication of therapeutic nanoparticles [10]. Other research groups have developed

procedures for the micro-fabrication of organs-on-a-chip, multi-channel microfluidic de-

vices used to simulate entire organs, which could boost pharmaceutical research while

reducing hazardous drugs testing on humans and animals [11]. Additionally, numerous

research studies have focused on nanofluidics chips for detection and manipulation of

DNA molecules, which are fundamental in the cure of genetic diseases [12].

The development of products and processes involving micro-/nanofluidics requires a

deep understanding of fluid properties at the nanoscale. This becomes particularly im-

portant when dealing with single or multi-phase fluids in micro-/nano-channels, where

the atomistic interactions between di↵erent fluids and between fluids and solid substrates

give rise to a complex landscape of heterogeneous fluid properties. Experimental obser-

vations of fluids at the nanoscale, obtained by techniques such as scanning tunnelling

microscopy, are extremely complex and mostly limited to static properties. At the
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Figure 1.1. Some numerical techniques adopted for the simulations of complex systems
across di↵erent time- and length-scales. MD: molecular dynamics, GLE: generalized
Langevin equation, DDFT: dynamical density functional theory, FDDFT: fluctuating
DDFT, NS: Navier-Stokes equations.

same time, continuum models based on Navier-Stokes equations are not able to predict

molecular-scale phenomena, where the discrete nature of matter comes to the fore.

For these reasons, extensive studies of fluids behaviour at the nanoscale should be

performed using consolidated approaches able to describe inhomogeneous fluids with an

atomistic resolution. Moreover, novel frameworks and numerical schemes are needed

to overcome several limitations of the existing techniques currently employed in the

simulations of complex systems.

1.1.1. Molecular dynamics

Molecular dynamics (MD) is a numerical technique based on the solution of particles

equations of motion. It is employed to simulate the time evolution of particles coordi-

nates and, thus, to extract the characteristic properties of the system as a whole. In

contrast to the top-down approach of continuum methods, MD simulations require no
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prior assumption on the local fluid properties. As such, MD is a suitable technique to

gain knowledge on the micro- and macroscopic relationships which intertwine the di↵er-

ent physical quantities of a system, with local viscosity being one of the most elusive.

MD was first introduced by Alder and Wainwright in the 1950’s in their preliminary

work on phase transitions of hard sphere systems [13, 14]. These studies were based on

MD simulations of only few hundreds of particles due to the scarce machines computa-

tional power available at the time. A few years later, in 1964 a system of 864 particles

interacting with a Lennard-Jones potential, which is considered a realistic potential for

liquid argon, was simulated for the first time by Rahman [15]. Stillinger and Rahman

pushed notably the capabilities of MD, performing the first simulations of liquid water

in the 1970’ [16, 17]. In 1977, MD was for the first time employed to simulate a pro-

tein, the bovine pancreatic trypsin inhibitor, in a work by McCammon et al. [18]. Since

then, researchers have adopted extensively MD to study the dynamics of complex sys-

tems such as homogeneous and heterogeneous fluids [19], lipids [20], protein folding [21],

enzymes [22] and DNA [23].

Numerous works have employed MD to describe and eventually model microscopic

fluid properties to integrate them into continuum approaches [24, 25, 26, 27, 28, 29, 30].

Nevertheless, such macroscopic relationships are yet to be derived for general conditions

and studies on interfacial phenomena often rely on quite simplistic hypotheses. For

instance, in widely adopted methods, such as level-set [31] and volume of fluid [32], the

variations of density and viscosity at the interface between two fluids characterized by

bulk densities ⇢1 and ⇢2, and bulk viscosities ⌘1 and ⌘2 take the form:

8
<

:
⇢(r) = ⇢1 + (⇢2 � ⇢1) f(r)

⌘(r) = ⌘1 + (⌘2 � ⌘1) f(r)
(1.1)

where f(r) is a space dependent function. In level-set method f(r) = H✏ (�(r)) with

�(r) being a level set function and H✏ a smoothed step function, while in volume of fluid

method f(r) = V2(r)/ (V1(r) + V2(r)), with V1(r) with V2(r) being the local volumes of

the two fluids. In both cases, it is assumed that the local viscosity has a linear functional

dependence on the local density at the interface, namely

⌘(r) � ⌘1

⌘2 � ⌘1

=
⇢(r) � ⇢1

⇢2 � ⇢1

, (1.2)

but this assumption may not always be valid. Similarly, the local viscosity behaviour

at the contact point between a fluid and a solid substrate still remains elusive. For
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these reasons, more detailed investigations are necessary. In the present work, we will

use MD simulation to investigate fluid properties at fluids interface. Specifically, in

Chapter 2 we discuss MD technique in more details and employ non-equilibrium MD

simulations of Lennard-Jones fluids sheared between two walls to scrutinise inhomoge-

neous fluid properties at the liquid-solid, liquid-liquid and liquid-vapour interfaces for

di↵erent temperatures and particles interaction parameters.

1.1.2. Generalized Langevin equation

MD simulations have mainly two limitations. Firstly, typical MD simulation time-steps

(function of the particles collision time) is of the order of femtoseconds, while many

real fluid phenomena occur on a time scale larger than milliseconds. Secondly, MD can-

not deal with systems containing a number of particles of the order of the Avogadro’s

number(NA ⇠ 1023). This is due to the fact that the computational power required

scales at least linearly with the number of particles (more often quadratically due to the

two-body atomistic interactions). To overcome this limitations, researchers have devel-

oped some dimensionality reduction techniques, which make use of projection operators

to reduce the number of observables to simulate [33, 34, 35, 36]. The first application of

the projection operators goes back to the works by Mori and Zwanzig who formally de-

rive the dynamics of a Brownian particle, previously described only phenomenologically

by Langevin. Mori-Zwanzig formalism allows to derive the dynamic evolution of the ob-

servables in the form of generalized Langevin equations (GLEs). GLEs have a stochastic

form that includes a non-Markovian term in the form of a time-convolution which is, in

general, a complex function of the original high-dimensional system. However, in many

relevant cases [37, 38, 39, 40], the memory term can be simplified and expressed as a

time-convolution between the set of observables of interest O and a tensor function ✓(t),

known as memory kernel. In these cases, GLEs take the following form:

@tO(t) = F(O) �
Z

t

0

✓(⌧)O(t � ⌧)d⌧ + R(t). (1.3)

The term F(O) depends only on the current system configuration and corresponds to the

mean force term [37, 38, 39, 40]. Several approaches have been developed to compute the

potential of mean force of a system, including adaptive biasing forces [41] and umbrella

sampling [42].

The vector R(t), being orthogonal to O, is interpreted as a stochastic term, with

correlation given by the fluctuation dissipation theorem hR(t),R(t0)i = ✓(t � t
0)hO,Oi.

The non-Markovian term depends on the previous states of the system and is char-
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acterized by the memory kernel function ✓(t), which also unequivocally determines the

characteristics of the noise term R(t) through the fluctuation dissipation theorem. The

parametrization and numerical simulation of the non-Markovian term often lead to

computational challenges because of its convolution structure. To remove such com-

plexity, the memory kernel ✓(t) is commonly approximated by a Dirac-delta function

✓(t) = 2✓0�(t) with ✓0 being a constant tensor. This procedure leads to the Markovian

approximation of the GLE, known as Langevin equation(LE):

@tO(t) = F(O) � ✓0O(t) + R(t). (1.4)

It is worth highlighting that, because of the properties of Dirac-delta functions, in LE

(Eq. (1.4)) the memory term loses its convolution structure, i.e.
R

t

0
✓(⌧)O(t � ⌧)d⌧ =

R
t

0
2✓0�(⌧)O(t � ⌧)d⌧ = ✓0O(t), and the stochastic term becomes delta-correlated in

time, i.e. hR(t),R(t0)i = 2✓0hO0,O0i�(t � t
0). Despite being widely adopted for its

simplicity, the Markovian approximation above often introduces significant inaccuracies

in the coarse-grained system. As a result, in general, GLE (Eq. 1.3) should be employed

to preserve the main features of the original high dimensional system into the reduced

one and, thus, a robust methodology to extract ✓(t) from the original high-dimensional

system is required.

In previous studies, several approaches have been proposed to parametrize the memory

kernel. Analytical forms can be only obtained for simple systems, such as a particle in a

harmonic oscillator heat bath [43], while numerical parametrization techniques are nec-

essary for more complex systems characterized by non-linear interactions. For instance,

in Ref. [44] the authors adopt a perturbation scheme, which is yet “too complex for

general use”. Despite its accuracy, the algorithm developed in Ref. [45] to parametrize

GLEs involves sampling of the full original system, and thus becomes computationally

prohibitive for large systems. Another procedure involving large matrix computations

and Krylov sub-space approximations has been proposed in Ref. [40]. In Ref. [46], an

iterative approach is used to compute a discrete approximation of ✓(t) from the system

autocorrelation functions. In both Refs [47, 48], the researchers have proposed to ex-

tract the memory kernel by Laplace transforming the correlation functions computed

from some historical data of the observables. However, these strategies exhibits serious

limitations when the available data on the observables are a↵ected by fluctuations, as

shown in Section 3.1. It follows that a robust methodology for an optimal and practi-

cal parametrization of the memory kernel is still missing. In Section 3.1, we propose a

novel data-driven approach which makes use of machine learning tools to parametrise
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the memory kernel in a general GLE.

1.1.3. Fluctuating dynamical density functional theory

The Langevin description discussed above is commonly adopted to simulate only a subset

of an high dimensional system. However, in the field of particle fluids, the coarse-grained

system obtained is usually still atomistic, and consequently its numerical simulation is

characterized by an high computational complexity. A continuum framework capable of

overcoming this limitation, while preserving small-scales system behaviour, is o↵ered by

density functional theory (DFT). Unlike the atomistic GLEs, DFT and its dynamical

counterpart known as dynamical DFT (DDFT) operate with local averaged quantities

and are thus computationally more tractable. DDFT formalism, embedded with either

exact or approximated models for a density-dependent free-energy functional [49], has

already shown its enhanced capabilities in the study of complex system at the nano- and

micro-scale [50, 51, 52]. Examples of such applications include the study of nucleation for

colloids and macro-molecules [53, 54], the simulation of fluids in confined geometries [55,

56, 57] and the analysis of wetting phenomena [58, 59, 60]. DDFT is usually obtained by

deriving the Fokker-Planck equation governing the evolution of the system probability

density function, which is then averaged over all but one degrees of freedom [56, 61, 62,

63]. Several extensions of DDFT have been proposed to account for multi-component

systems [62], to include hydrodynamic interactions [56, 63, 64], and to embed the e↵ects

of particle orientability [65].

The inclusion of thermal fluctuations in the DDFT framework, which is derived

through a mean field approach, has posed many questions [66]. In some studies, such as

the work by Elder et al. [67], an additional noise term had been artificially included. Nev-

ertheless, the physical meaning of this term is dubious. This long standing debate was

clarified in the recent work by Durán-Olivencia et al. [68], who proposed a derivation of

fluctuating DDFT (FDDFT) starting from a Langevin description of the time-evolution

of colloidal particles immersed in a thermal bath. Using a proper ensemble average under

local equilibrium approximation, they derived the governing equations of the stochastic

density ⇢ and velocity v fields for a colloidal fluid in a thermal bath, i.e.

@t⇢(r, t) + rr ·
�
m

�1
⇢(r, t)u(r, t)

�
= 0 (1.5)

@t (⇢(r, t)u(r, t)) + rr · (⇢(r, t)u(r, t) ⌦ u(r, t)) + ⇢(r, t)rr
�E [⇢]

�⇢(r, t)

+ ✓0⇢(r, t)v(r, t) +
p

kBTm⇢(r, t)✓0W(r, t) = 0

(1.6)
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where m is the atomic mass of the colloidal particles, E [⇢] is a density-dependent energy

functional, ✓0 is a friction tensor depending on the interactions between colloidal and

bath particles, kB is the Boltzmann constant, T is the systems temperature and W is

a vector of Gaussian stochastic processes with zero mean and delta-correlated in space

and time, i.e.

hW(r, t)i =0, (1.7)

hW(r, t),W(r0
, t

0)i =2�(t � t
0)�(r � r0). (1.8)

Despite the exceptional insights in their derivation, the work by Durán-Olivencia et

al. [68] relies on some simplifications:

• The colloidal particles are assumed to belong the same single species. However,

many real physical systems of interest include multiple components.

• The system particles are considered to be non-reactive. However, many industrial

application, such as the analysis of chemical reactors [69], require a framework able

to deal with reactive systems.

• The stochastic time-evolution of the Langevin particles system is assumed to follow

a Markovian stochastic dynamics (Eq. 1.4). This assumption is satisfied when the

system is characterized by a clear scale separation between colloidal particles and

bath. However, in many applications, a non-Markovian approach (Eq. 1.3) is

required to preserve the atomistic correlations in the continuum description.

To overcome these limitations, in Section 3.2 we propose a non-Markovian FDDFT

framework for reacting multi-species particles. Moreover, we develop a finite-volume

discretization scheme which enables us to employ FDDFT in the study of relevant phys-

ical phenomena, such as Turing patterns formation in binary reacting systems.

1.1.4. Overdamped FDDFT & DDFT

As discussed above, the FDDFT framework derived in Ref. [68] provides the governing

equations for the time-evolution of density and momentum fields of a colloidal system.

In the strong damping limit (i.e. when m
�1✓0 ! 1), the characteristic time scale of

the momentum dynamics is much shorter than the density one [52, 68] and, thus, the

contributions of the terms rr·(⇢v ⌦ v) and @⇢v
@t

can be neglected. As a result one obtains
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the so called overdamped FDDFT which does not involve the velocity field [68, 70]:

@t⇢(r, t) = rr ·
✓

✓�1

0
⇢(r, t)rr

�E [⇢]

�⇢(r, t)

◆
+ rr ·

✓q
kBT⇢(r, t)✓�1

0
W(r, t)

◆
. (1.9)

For the simple ideal-gas free-energy functional E [⇢] = ⇢ (log ⇢ � 1), Eq. (1.9) reduces

to the stochastic di↵usion equation [71]. However, the presence of the functional E [⇢]

allows for the introduction of non-linear di↵usion, external force fields and non-local

interactions. Equation (1.9) may be seen as a stochastic version of the gradient flow

equation previously studied, for instance, in Refs [72, 73].

Di↵erent numerical methods have been proposed in the past to simulate fluctuating

equations similar to Eq. (1.9). Many numerical methodologies focused on the Landau-

Lifshitz-Navier-Stokes (LLNS) equations [74]. For instance, Garcia et al. [75] proposed

a finite di↵erence scheme to discretize the LLNS equations for dilute gases. Finite dif-

ferent schemes, embedded with a third-order Runge-Kutta time integrator, were also

developed by Bell et al. [76, 77] for the discretization of the full LLNS equations. Their

scheme was able to reproduce the proper the fluctuation correlations for density, mo-

mentum and energy fields. They also introduced the analysis of the structure factor

(equilibrium fluctuation spectrum) to assess the accuracy of the scheme in reproduc-

ing the proper fluctuations for the di↵erent fields. The same group also constructed

alternative methods to solve FH via staggered grids [78]. Other works have proposed

numerical schemes based on temporal integrators that are implicit-explicit predictor-

corrector [79] or two-level leapfrog [80]. Additionally, hybrid schemes coupling LLNS

with MD [81, 82, 83] or with Monte Carlo [84, 85] simulations of complex fluid systems

have been developed. Finally, other works, such as Refs [71, 86], developed numerical

methods for reaction-di↵usion equations, obtained by adding reaction terms to the over-

damped FDDFT (Eq. (1.9)) equipped with the ideal-gas free-energy functional. These

works provided a better understanding of the role of thermal fluctuations in fluids.

However, a numerical methodology able to simulate stochastic gradient flow equations

such as Eq. (1.9) equipped with a general free-energy functional is not readily available

yet. This methodology could be useful in the simulation of noise-driven non-equilibrium

phenomena, such as energy-barrier crossing transitions, in the framework of FDDFT.

Also, not many work in the literature tackled the numerical simulation of gradient flow

equations such as Eq. (1.9) with a non-constant di↵usion (✓0 parameter).

In Section 4.1 we propose a finite volume numerical scheme for solving general stochas-

tic gradient flow equations, which resemble Eq. (1.9) of FDDFT. Additionally, in Sec-

tion 4.2 we develop a finite volume scheme to simulate the deterministic counterpart
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of Eq. (1.9), known as overdamped DDFT, equipped with space- and time-dependent

friction parameters ✓0.

1.2. Main aims and outline of the thesis

The general aim of this work is twofold. On the one side, it aims to contribute to the

understanding of key properties of the matter at the nanoscale, extending the current

knowledge on the topic. On the other side, it aims to extend the current state of the art

in numerical simulations of complex systems by developing new theoretical frameworks

and numerical methods. More specifically, this thesis focuses on:

• The study of fluid properties in interfacial regions to develop ready-to-use rela-

tions for the design and analysis of microfluidic devices. By means of atomistic

simulations, we obtain relations between viscosity and density profiles for confined

fluids in a variety of conditions. These relations can be employed, for instance, to

computed the friction factor of fluid flows in nano-pipes or as a closures for non-

equilibrium continuum frameworks (such as DDFT) applied at nanoscopic level.

• The development of mathematical tools for a data-driven stochastic modelling

of complex systems. We couple elements of machine learning with the formal

structure of the generalized Langevin equation to model complex systems dynamics

under noise-governed conditions based on historical data. We shown that our

methodology has applications also in climatology and finance.

• The derivation of a new theoretical framework able to describe with a continuum

approach the dynamics of colloidal particles in a thermal bath retaining detailed

information on the colloids-bath coupling. The developed framework is also ex-

tended to multi-species reacting particles systems, and has relevant applications

in the study of Turing patterns.

• the development of novel numerical methods for (both deterministic and stochastic)

continuum approaches to simulate fluids at the nanoscopic scale. We extend and

generalize existing finite-volume methods to include stochastic flux, external fields

and inter-particles potentials.

Because of the wide range of topics and fields involved, this work has many direct

applications in the fields of technology and science. As an example, a deep knowledge

of fluid properties at the nano-scale is crucial in the design and analysis of nanofluidic

devices, which are widely adopted in environmental engineering and medicine. Moreover,
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our methodology for parametrization of stochastic modelling is successfully employed

to model not only chemical and physical systems, but also data series in finance and

climatology. Finally, multiple parts of this work were published in recognized open-

access journals and presented in international conferences to help advance knowledge

and progresses of the whole scientific community. In what follows, we provide a detailed

overview of the main topics covered in each chapter.

1.2.1. Chapter 2

In Chapter 2, we employ MD technique to study and model physical properties of fluids

at interfaces with an atomistic resolution. Specifically, in Section 2.1, molecular dynam-

ics technique is introduced. We discuss governing equations, common time integration

schemes and thermostat algorithms. Next, we include the derivations of formulas re-

lating atomistic information, i.e. particles positions and momenta, with macroscopic

observables, e.g. density, stress tensor, . . . MD is then employed in Section 2.2 to study

the local properties of a fluid system confined between solid walls. Based on MD simula-

tions results, local properties, such as density and stress tensor, are analysed. Moreover,

using a semi-empirical approach, we propose local and non-local models relating shear

viscosity and density profiles. Finally, in Section 2.3, MD is used to simulate multi-phase

Lennard-Jones fluid and gather insights on the fluid properties at fluid interfaces. Follow-

ing a data-driven approach, we propose a macroscopic relation between shear viscosity

and density profiles at interfaces between two immiscible fluids and at liquid-vapour

interfaces.

1.2.2. Chapter 3

Chapter 3 deals with dimensionality reduction techniques applied mainly to atomistic

physical systems. Section 3.1 provides a discussion of GLEs. They involve a non-

trivial parametrization of the non-Markovian term known as memory kernel. In this

work, we present a novel data-driven approach, which makes use of neural networks

(multilayer perceptron) to obtain an optimal approximation of the memory kernel from

historical data. The multi-exponential form of the activation function employed in such

approximation allows us to derive an extended dynamics framework to integrate the

GLE. The proposed methodology is tested in various application: from coarse-graining

of thermal baths to modelling global temperature dynamics in climatology and a stock

price index in finance.

In Section 3.2 we propose a theoretical derivation of non-Markovian FDDFT for
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multi-species reacting species. The microscopic GLEs governing the particles dynam-

ics is our starting point. After defining density and momentum fields, we derive the

non-Markovian FDDFT and its overdamped limit. We then include an extended field

variables dynamics framework to overcome the computational challenges due to the con-

volution structure of the memory term and the time-correlated noise. A finite volume

scheme is adopted for the spatio-temporal discretization of the extended variable dynam-

ics. Finally, we include a numerical validation of the non-Markovian FDDFT against

MD simulations and an application of FDDFT to the study of Turing patterns in binary

systems.

1.2.3. Chapter 4

In Chapter 4 we present numerical methods developed to solve overdamped DDFT in the

presence of additional complexities, such as fluctuations or heterogeneous thermal baths.

In Section 4.1 we develop a finite volume numerical scheme for solving general stochastic

gradient flow equations. We present a space discretization for the deterministic flux

based on a hybrid approach which takes advantage of both central and upwind schemes.

Families of implicit-explicit Euler-Maruyama and Milsten schemes, with a weak second

order Runge-Kutta scheme are employed as time integrators. To overcome the com-

monplace challenge of preserving non-negative densities in the presence of a stochastic

flux, an adaptive time steps based on the Brownian bridge technique is adopted. We use

the proposed scheme to simulate the time-evolution of physical systems characterized

by di↵erent free-energy functionals, validating the simulations results against MD and

theory. Additional numerical applications in this section include the time-evolution of

an ideal gas in a double well potential and the homogeneous nucleation kinetics of a

Lennard-Jones like fluid.

In Section 4.2, we propose a finite-volume schemes to solve gradient flow equations

(obtained in the framework of DDFT) with a non-homogeneous di↵usion (or friction)

coe�cient. First- and second-order upwind schemes for the space discretization of one-

and two-dimensional systems are derived. We then prove that these schemes satisfy a

decay of the free-energy functional in time. Finally, we employ the proposed schemes

to simulate colloidal systems immersed in thermal baths characterized by anisotropic,

space-dependent and time-dependent properties.
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1.2.4. Chapter 5

In Chapter 5, a summary of the results of each chapter is reported together with the

main conclusions. We also discuss open questions related to the topics covered in this

work and we provide an outlook on future research works.
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Molecular dynamics

2.1. MD: Background and numerical methods

Figure 2.1. Representation of a MD simulation of a chain of particles immersed in a
thermal bath.

Molecular dynamics simulations are based on the solution of particles equations of

motion. Let us consider a system of N particles with positions r(t) = r1(t), . . . , rN (t)

and momenta p(t) = p1(t), . . . ,pN (t). The internal energy of an atomistic system is
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determined by the Hamiltonian H

H =
NX

i=1

pi · pi

mi

+ U (r1, . . . , rN ) (2.1)

where U is the potential energy of the system which depends in general on the absolute

and relative positions of the particles, namely

U =
NX

i=1

v1 (ri) +
NX

i=1

NX

j>i

v2 (ri, rj) +
NX

i=1

NX

j>i

NX

k>j

v3 (ri, rj , rk) + . . . (2.2)

with v1, v2 and v3 denote the one-body, two-body and three-body terms, respectively.

The time evolution of position ri(t) and momentum pi(t) of the particle i is governed

by Newton’s equations:

dri

dt
=

dH
dpi

=
pi

mi

(2.3)

dpi

dt
= � dH

dri

= Fi (2.4)

with Fi being the total force acting on the particle i.

When system constrains, number of particles and potential interactions do not explic-

itly dependent on time, the Hamiltonian coincides with the total energy of the system,

namely

dH
dt

=
NX

i=1

✓
dH
ri

· dri

dt
+

dH
pi

· dpi

dt

◆
=

NX

i=1

✓
dH
ri

· dH
pi

� dH
pi

· dH
ri

◆
= 0 (2.5)

In MD, the dynamical evolution of multi-body systems is simulated by using Eq. (2.4).

The simulation results are then analysed to extract physical quantities of the system

such as density and stress tensor, and transport properties such as shear and volume

viscosities.

It is worth highlighting that the integration of Newton’s equations for real systems is

usually computationally expensive for multiple reasons. First, the time-step size adopted

in the time integration must be smaller than the fastest time-scale in the system, typ-

ically the bond vibration time which is of the order of femtoseconds. However, typical

transitions in real systems occur over a time of the order of seconds. Second, real sys-

tems contain a number of particles of the order of Avogadro’s number ( 1023). Thus the

computational cost, which scales with the square of the particles number if two-body
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interactions are used, could exceed the available machine capabilities.

2.1.1. Time integration schemes

A commonly adopted time-integration algorithm is the velocity Verlet algorithm, which

can be expressed in the form:

ri(t + �t) = ri(t) +
pi(t)

mi

�t � rriH(t)

2mi

�t
2 (2.6)

pi(t + �t) = pi(t) � rriH(t) + rriH(t + �t)

2
�t (2.7)

with �t being the integration time-step.

Velocity Verlet algorithm is third order accurate in time, i.e. its error is O(�t
3),

and is symplectic, i.e. it conserves the area in phase space delimited by an ensemble of

systems. The latter property is particularly important as it ensures the conservation of

the average Hamiltonian.

2.1.2. Thermostats

Solving the equation of motion with the classical definition of Hamiltonian generates

trajectories of the system with constant energy, consistent with an NV E ensemble.

However, many physical scenarios require molecular dynamics simulations to be run at

constant temperature, such that the system can be represented by an NV T ensemble.

This is achieved by including additional terms in the equations of motion, as if the

system was in contact with a thermostat. During the last century, several kinds of

thermostats have been proposed. Here, we briefly discuss the Langevin [87] and Nosé-

Hoover [88, 89, 90] thermostats.

Langevin thermostat The Langevin thermostat is a stochastic thermostat acting

on every particle of the system. Its formulation can be derived through Mori-Zwanzig

formalism, assuming the presence of a heat bath in contact with the system. In general

a system controlled by a Langevin thermostat has the following equations of motion:

@tri =rpiH (2.8)

@tpi = � rriH �
Z

t

0

✓(t � ⌧) · pi(t)d⌧ + R(t) (2.9)
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where ✓ is a time-dependent matrix determining the system-bath coupling and R(t) a

Gaussian process satisfying:

hR(t)i =0 (2.10)

hR(t)RT (s)i =mkBT✓(t � s) (2.11)

However, such formulation of the thermostat may often be inpractical to adopt in sim-

ulations because of its convolution term depending on the whole history of the system

and its correlated noise. Thus, it is commonly assumed that the system has no memory

of its previous state, i.e. that ✓(t) ⇠ 2✓0�(t), with ✓0 being a constant matrix and �(t)

the Dirac delta function. Moreover, it is also commonly assumed that the thermal bath

is isotropic, i.e. that the memory (or friction) term can be rewritten as ✓0 = ✓01. It

follows that the commonly adopted Langevin thermostat has then the following form:

@tri =rpiH (2.12)

@tpi = � rriH � ✓0pi + R(t) (2.13)

where ✓0 determines the coupling between system and thermal bath, and the random

contribution is a Gaussian process satisfying

hR(t)i =0 (2.14)

hR(t)RT (s)i =2mkBT✓0�(t � s)1 (2.15)

Nosé-Hoover thermostats The Nosé-Hoover (NH) thermostat is deterministic and

time-reversible. It was derived by modifying the Hamiltonian with an extra degree of

freedom for the heat bath s. The NH modified Hamiltonian reads:

HN (r,p, s, ps) =
NX

i=1

pi(t) · pi(t)

2mis
+ U(r) +

p
2
s(t)

2Q
+ (3N + 1)kBT ln(s). (2.16)

where Q determines how fast the system temperature converges to the desired one. The

equations of motion resulting from the NH Hamiltonian read:

@tri =rpiH (2.17)

@tpi = � rriH � ⇠pi (2.18)

@t⇠ =
1

Q

 
NX

i=1

pi(t) · pi(t)

2mi

� 3

2
NkBT

!
. (2.19)
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It has been shown that the NH thermostat performs well for systems in equilibrium and

for weakly sheared systems. Unlike the Langevin thermostat, it does not alter the value

of the system properties, such as viscosity [91]. However, being a global thermostat, the

NH thermostat su↵ers inhomogeneous conditions of non-equilibrium system where the

friction heat is not generated uniformly. To overcome this issue, when necessary, a series

of local Nosé-Hoover thermostats is commonly adopted [26].

2.1.3. Boundary conditions

Boundary conditions play a fundamental role in atomistic simulations. Depending on

the system under study, particles can be simulated in a box with flexible, periodic or

fixed boundaries.

A simulation box with flexible sizes is used when the simulated system can change

its size and shape in time. It can be adopted to study, for instance, the properties of a

single molecule or cluster.

Periodic boundary conditions are employed to analyse the bulk properties of a large

system by simulating only a representative portion of it, i.e. a unit cell. Specifically one

simulates only the particles within the unit cell. However the unit cell is surrounded by an

infinite number of replicas of itself. It follows that every particle can interact with other

particles both in the unit cell and in the neighbouring image cells. In periodic boundary

conditions, the minimum-image convention is commonly followed. This prescribe that

each particle can interact only with the closest image of every other particle. It follows

that the cut-o↵ radius of non-bonded interactions can be at most equal to half the

domain length.

Fixed boundary conditions are typically employed when a particles system is confined

by an external potential or rigid/semi-rigid atomistic walls placed at the borders of the

system. There are at least three ways of modelling an atomistic wall [92]. A first option

is to fix particles at their lattice position, forming an atomically smooth surface able to

appropriately model very rigid materials. Although this approach is justifiable for the

study of various fluid properties that are not notably a↵ected by wall dynamics, rigid

walls are not able to absorb heat from the fluid, thus not allowing for a realistic modelling

of heat transfer between walls and fluids. Consequently, if the systems generates energy,

as in the case of sheared systems, the fluid itself has to be thermostatted in order to

dissipate the generated heat. An advantage of the rigid walls is that interactions between

wall particles are not computed, thus reducing the computational cost. Alternatively,

particles can be connected to their lattice site by means of harmonic springs whose

sti↵ness is related to the ‘softness’ of wall materials. This kind of walls are able to
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absorb energy from the system, (although this may not be su�cient to keep the system

temperature constant, e.g. in case of large shear rates). As shown later in this work, a

combination of di↵erent boundary conditions, one for each direction, can be employed.

2.1.4. Reduced units

When working at the atomistic scales, SI units may not be opportune because often too

large compared to the typical values to measure. To overcome this, all the quantities of

interest are usually scaled. Lennard-Jones reduced units are obtained by scaling every

measure with respect to the fundamental quantities: �LJ, ✏LJ and m, corresponding to

atomic diameter, energy and atomic mass, respectively. The values of the fundamental

quantities depend on the specific fluid and can be used to move from reduced to real units.

For instance, LJ parameters for Argon take the following values: �LJ = 3.405⇥ 10�10
m,

✏LJ = 1.65 ⇥ 10�21
J and m = 6.69 ⇥ 0�26

Kg.

In this work all physical quantities are non-dimensionalized. In Table 2.1 we report

the relation between real and reduced units for some relevant physical quantities.

Table 2.1. Physical quantities for a d-dimensional system in reduced units.

Quantity real units reduced units
distance r⇤ r = r⇤

/�

energy E
⇤

E = E
⇤
/✏

density ⇢
⇤

⇢ = ⇢
⇤
�

d

temperature T
⇤

T = kBT
⇤
/✏

pressure P
⇤

P = P
⇤
�

d
/✏

time t
⇤

t = t
⇤
p

✏/m�2

2.1.5. From atomistic coordinates to macroscopic fields

Particles trajectories obtained via MD simulation can be adopted to compute macro-

scopic fields characterizing the corresponding system, e.g. state variables and transport

coe�cients. This can be achieved mainly with two methods, which di↵er in the way

they distribute the microscopic information in space.

A first approach consists in dividing the spatial domain into a finite number of bins

and assigning the information of each particle to the bin in which the centre of the

particle resides. This approach is computationally cheap and easy to implement, but it

disregards the finite particle size. Furthermore, when a particle resides anywhere within

the confines of a bin, its information is e↵ectively assigned to the central position of a

bin, thus potentially introducing errors. The shift of information is averted in the limit
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of infinitesimally thin bins, but this also requires extremely long simulations to gather

su�cient statistics in each bin. More importantly, it is impossible to analytically calcu-

late gradients of the computed profiles, which instead require an additional numerical

approximation.

Some of these limitations can be overcome by locally distributing the atomistic in-

formation via smooth di↵erentiable kernels, based on smoothed particle hydrodynam-

ics [93]. In this second approach, a macroscopic field X(r, t) is expressed as follows,

X(r, t) =
X

i

�i�(ri(t) � r), (2.20)

where �i is the information of interest of the i � th particle located at ri at time t,

and � is a kernel function with unitary area. The most commonly used kernels in

the literature are described by piecewise constant, Gaussian, or polynomial functions.

These kernels will be briefly introduced below. For the purpose of this study, profiles

are calculated as functions of one spatial coordinate y, and the dependency on time is

omitted. Instead, stored information is averaged under the ergodic assumption (i.e., for

a given physical macroscopic property X, the ensemble and time averages are considered

equivalent: hXiNVT = hXit). A piecewise constant function (mostly adopted in mesh-

based approaches) is defined as:

�(y) =

8
<

:

1

2LxLzw
for kyk < w,

0 otherwise ,

(2.21)

with Lx and Lz being the total system length along the x and z directions, respectively,

and w is the half-width of the function. A Gaussian kernel is given by:

�(y) =

8
<

:

1

LxLz

p

2⇡w2
e
�
kyk2

2w2 for kyk < Rc,

0 otherwise ,

(2.22)

where w
2 is the variance. Also linear [94], cubic [95] and quartic [96] splines have been

adopted in the literature. For instance, a cubic spline is defined as:

�(y) =

8
<

:

1

LxLzw

⇣
1 � 3kyk

2

w2 + 2kyk
3

w3

⌘
for kyk < w,

0 otherwise ,

(2.23)

where w controls the width of the kernel.
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Figure 2.2. (a) Density profiles of a system made of fixed particles (bottom panel).
The top panel shows a mesh-based approach with bins of width w = 0.3 to compute the
density. In the middle panel the density profiles are computed by using three di↵erent
kernels: piecewise constant with w = 0.15 (in red), cubic with w = 0.3 (in blue) and
Gaussian with w = 0.1 (in green). (b) Density and shear rate profile computed for
a confined particle system at T = 1.0 with three di↵erent kernel functions (piecewise
constant, Gaussian and cubic). Cubic and Gaussian kernels give similar results, while
the piecewise constant kernel introduces some errors at the boundaries. This inaccuracy
in the shear rate may directly a↵ect its derived quantities, including shear viscosity.

The Gaussian kernel is more computationally expensive to evaluate than a polynomial

function, and provides no compact support since the Gaussian function never reaches

zero. However, it can be truncated and reweighed so that the information is conserved.

On the other hand, one advantage of the Gaussian kernel is that it allows for exactly

calculating the n
th derivative of a macroscopic field X as:

dX
n(y)

dyn
=

*
X

i

�i

d
n
�(yi � y)

dyn

+

t

, (2.24)

where the angle brackets with subscript t denote a time average. Conversely, the smooth-

ness and the number of derivatives that can be taken of a polynomial kernel is limited by

the order of the polynomial, which also determines the computational cost of the kernel.

In Fig. 2.2(a) we compare, for a system of five particle floating in space, the density

profiles computed by using binning and di↵erent kernel-based methods. In the binning

approach, the domain is divided into ten bins of equal width (top panel). The number

density in a bin then equals the number of particles in that bin divided by its volume.
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Figure 2.3. Influence of the Gaussian kernel parameter w on the density profiles
evaluated at liquid-vapour (a) and liquid-liquid (b) interfaces for a temperature T = 1.0.
In (b), solid lines represent the single fluid density, while dashed lines refer to the mixture
density. The centre of the channel is denoted by yc.

As shown in the top panel of Fig. 2.2(a), this approach may lead to an unphysical shift of

peaks in the the density profile with respect to the particles centres. A second approach

consists in adopting a mesh-free discretization employing piecewise constant, cubic and

Gaussian kernels. This method allows for an arbitrary number of computational points

within the domain and, thus, a finer description of the density. The piecewise constant

kernel assumes that the information of a particle is homogeneously distributed across a

width of 2w. Consequently, the piecewise constant profile can still cause some artificial

density peaks, as seen on the right in the middle panel of Fig. 2.2(a).

Various recent studies, especially in the areas of granular materials [97, 98] and molecu-

lar dynamics [26, 99, 100], have reported the kernel e↵ects on the calculated macroscopic

profiles. For example, Weinhart et al. [97] found, using granular flow simulations, that

the Gaussian smoothing parameter w should be small compared to the smallest length

scale to be captured.

For Lennard-Jones fluids confined between two walls, the smallest length scale of inter-

est is approximately 0.8�LJ � 1.0�LJ, corresponding to the period of density oscillations

near the walls [101]. For these systems, in this work we adopt a Gaussian kernel with

w = 0.1, truncated at 6.5�LJ (half domain). The gradients of macroscopic fields can

be particularly sensitive to the method used to distribute information. In Fig. 2.2(b)

we compare shear rate profile for a sheared Lennard-Jones fluid, calculated with the

di↵erent kernels. The widths of the kernels are chosen to spread the data approximately
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equal. The shear rate profiles are nearly identical far from the walls, where the fluid is

more homogeneous. However, close to the walls, the profile calculated with the piecewise

constant kernel deviates from the other analytically di↵erentiated profiles.

A Gaussian kernel embedded with a value w = 0.1 is also adopted to extract the

macroscopic properties in multi-phase Lennard-Jones systems. This choice is tested

in Fig 2.3 where we compare the density profiles obtained with several values of w.

As shown in Fig 2.3, values of w greater than 0.1 lead to an artificial smoothing in

the density profile for both liquid-vapour and liquid-liquid interfaces. On the contrary,

the density profiles obtained with w = 0.1 and w = 0.01 overlap, thus confirming a

convergence of the macroscopic field values.

In Sections 2.2 and 2.3 we analyse single and multi-phase fluids with heterogeneous

behaviours along the y-direction. Thus, in the following paragraphs we report the for-

mulas adopted to extract the local physical quantities of interest, e.g. density, velocity

and stress tensor components, as a function of y.

Density

The steady-state density profile of the ↵ component of a multi-species fluid is evaluated

as:

⇢↵(y) =

*
X

i2↵

mi�(yi � y)

+

t

(2.25)

where mi is the atomic mass and yi denotes the y-coordinate of the i-th particle belonging

to the species ↵.

The total mass density is then obtained by summing the density profiles of all the

components at every point in space, namely

⇢(y) =
X

↵

⇢↵(y). (2.26)

Velocity and shear rate

The velocity profile of the system component ↵ is evaluated as function of the momentum

j↵(y) and density ⇢↵(y) profiles as:

u↵(y) =
j↵(y)

⇢↵(y)
=

1

⇢↵(y)

*
X

i2↵

miui�(yi � y)

+

t

, (2.27)
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with ui denoting the velocity vector of the particle i belonging to the species ↵. Similarly,

the velocity profile of the whole system is computed as function of total mass density

and total momentum density as u(y) = j(y)/⇢(y).

Employing the quotient rule, then we can compute the shear rate profile �̇↵(y) =

@u↵,x/@y as function of mass density and x-component of the momentum, namely

�̇↵(y) =
1

⇢↵(y)2


⇢↵(y)

dJ↵,x(y)

dy
� d⇢↵(y)

dy
J↵,x(y)

�
(2.28)

where the gradients appearing in the numerator can be evaluated through Eq. (2.24).

Similarly it is possible to compute the shear rate profile of the total system as �̇(y) =

@ux/@y.

Temperature

The temperature profile of a system is computed along the y axis as function of the

number density ⇢(y) and the kinetic energy of the particles, namely

T (y) =
1

3⇢(y)

*
X

i

mi(ui � u) · (ui � u) �(yi � y)

+

t

. (2.29)

Stress tensor

The Irving-Kirkwood-Noll formulation is adopted to compute the stress tensor compo-

nents from particles coordinates [102, 103]. Following Schofield and Henderson’s work,

to derive the stress tensor contributions we start di↵erentiating in time the momentum
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equation:

@

@t
j(r; t) =

@

@t

NX

i=1

pi�(r � ri) (2.30)

=
NX

i=1

ṗi�(r � ri) � rr ·
NX

i=1

pipi

mi

�(r � ri) (2.31)

=
NX

i=1

Fi�(r � ri) � rr ·
NX

i=1

pipi

mi

�(r � ri) (2.32)

=
NX

i=1

NX

j>i

Fi (�(r � ri) � �(r � rj)) �

rr ·
 

⇢uu +
NX

i=1

mi(ui � u)(ui � u)�(r � ri)

! (2.33)

= �rr · (⇢uu � �) (2.34)

where � is the stress tensor, u is the streaming velocity, ⇢ is the density and where we

used that rri�(r � ri) = �rr�(r � ri). From the equation above it follows that the

stress tensor can be computed using the relation:

rr · � =
NX

i=1

NX

j>i

Fi (�(r � ri) � �(r � rj)) � rr ·
NX

i=1

mi(ui � u)(ui � u)�(r � ri)

(2.35)

Moreover, the di↵erence in deltas can be rewritten as:

�(r � ri) � �(r � rj) = �rr · rij

Z
1

0

�(r � ri + �rij)d� (2.36)

Thus, the stress tensor is defined (although not uniquely) by the following relation:

� = �
NX

i=1

NX

j>i

rijFi

Z
1

0

�(r � ri + �rij)d� �
NX

i=1

mi(ui � u)(ui � u)�(r � ri) (2.37)

where the first term constitutes the potential contribution and the second term represents

the kinetic term.

Eq. (2.37) highlights that the six independent components of the stress tensor are

the results of two di↵erent microscopic mechanisms. The momentum transfer through

particles thermal motion produces the kinetic contribution, which is predominant at
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low densities (e.g. in the vapor phase). In a general multi-component system, the

kinetic stress tensor acting on the ↵ component of the system is calculated from particles

momenta as:

�k

↵(y) = �
*
X

i2↵

mi(ui � u↵(y)) ⌦ (ui � u↵(y)) �(yi � y)

+

t

, (2.38)

where, ui and u↵ are the absolute and the streaming velocity vectors for the species

↵, respectively. The total kinetic stress is then obtained as function of absolute and

streaming velocity vectors of the full system, i.e. �k(y) =
P

↵
�k

↵(y).

The momentum transfer due to interactions between particles give raise to the poten-

tial contribution, prevailing in high density components, such as liquids. The potential

stress tensor is computed as:

�v

↵(y) = �
*

1

2

X

i2↵

X

j 6=i

Fi,j ⌦ (ri � rj) b�(y; yi, yj)

+

t

, (2.39)

with ri being the position vector of the particle i, Fi,j the force acting on the particle i of

the species ↵ due to any other particle j, and b�(y; yi, yj) =
R

1

s=0
�((1� s)yi + syj � y)ds

is the bond function [103, 104]. The total potential stress tensor can be then computed

by summing the contributions of all system components, i.e. �v(y) =
P

↵
�v

↵(y). It

follows that the full stress tensor for a species ↵ is readily evaluated as:

�↵(y) = �k

↵(y) + �v

↵(y). (2.40)
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2.2. Molecular dynamics of single-phase fluids in confined

geometries 1

Figure 2.4. Non-equilibrium MD setup for the study of a sheared fluid (blue parti-
cles). Walls (red particles) are located at a constant distance h = 13.0�LJ and move at
a constant velocity uw in opposite directions . The parameter � in the figures defines
regions at the liquid-solid interfaces where the strong interactions strongly reduce par-
ticles mobility, while yf = h � � is its complementary region. The bulk region, which
spans yb ' 4�LJ, denotes a part of the domain where no significant layering is observed
in the density profile.

In this Section, we present results and analysis of MD simulations used to study the

local physical properties of a fluid system confined between two solid substrates. Solid-

liquid interactions give rise to non-homogeneous properties close to the wall. In fact, the

density profile shows a typical oscillating trend due to the particles layering (Fig. 2.4).

Interestingly, also the viscosity profile in the channel exhibits a non-homogeneous be-

haviour in proximity of the wall. Specifically, we found that this structure of the fluid

viscosity is mainly dependent on local density, temperature and wall interaction poten-

tial, and thus can be modelled as function of these parameters.

1This section includes material from A. Russo, M. A. Durán-Olivencia, S. Kalliadasis, & R. Hartkamp.
Macroscopic relations for microscopic properties at the interface between solid substrates and dense
fluids, J. Chem. Phys., 150, 214705 (2019).
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Modelling the viscosity of fluids is a long standing problem in the fluid-dynamics

field. The first successful attempt to model viscosity of a fluid is due to Maxwell in

1860 [105]. Using kinetic theory to study a dilute gas [106], Maxwell concluded that

internal friction of a gas is independent of its density. This was later confirmed by

Chapman [107] and Enskog [108]. However, shortly after, Enskog showed that, unlike

dilute gases, the viscosity of dense gases varies with density and temperature [109]. Since

then, researchers have tried to generalize Enskog’s theory to inhomogeneous systems

by utilizing both theoretical and numerical tools. Din and Michaelides [25] proposed

a theoretical framework to model the viscosity of strongly inhomogeneous gases using

kinetic theory. They validated such framework against MD simulations, showing that the

proposed formulation can only qualitatively predict the viscosity profile of an interacting

Lennard-Jones fluid. Later, Zhang et al. [110] employed a di↵erent approach to study

the viscosity profile of inhomogeneous fluids. They parametrized a nonlocal constitutive

model for the viscosity by means of an e↵ective space-dependent viscosity kernel, and

then applied this approach to confined fluids undergoing a Poiseuille flow. Despite the

interesting methodology, Zhang et al.’s approach is approximate since it does not take

into account any explicit dependence on the density profile and is impractical as it does

not provide a general simple formula for the local viscosity. More recently, Hoang et

al. [27, 111, 112] proposed local average-density models combined with weight functions

to include non-local e↵ects on the viscosity profile. In case of fairly adsorbent narrow

pores this empirical method leads to modelled viscosity profiles in line with MD results.

Finally, Morciano et al. [30] adopted a fully data-driven approach to extract an easy-to-

use relation between viscosity and density profiles at solid-fluid interfaces. Despite the

practical relation proposed in their study, a connection with existing theoretical models

was not provided. Moreover the system properties were investigated only for a single

temperature.

While considerable e↵orts have been made to consider e↵ects of temperature and wall-

interaction strength on local viscosity, a generic model remains elusive. In this work, we

employ non-equilibrium MD simulations of Lennard-Jones fluids sheared between two

walls to scrutinise inhomogeneous fluid properties at liquid-solid interfaces. Specifically,

we model the viscosity profile of inhomogeneous dense LJ fluids as a functional of density

profile, system temperature and wall interactions. The proposed models are validated

validated in a range of interfacial conditions and temperatures, and they represent a

generalization of the relation proposed by Morciano et al. [30]. These relations can

be easily employed in the design and analysis of nanofluidic devices, where solid-fluid

interfaces play a crucial role.
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2.2.1. Simulation details

A Couette flow is simulated by shearing two parallel atomistic walls with a fluid sand-

wiched between them, as shown in Fig. 2.4. The fluid and wall particles are interacting

through a Lennard-Jones potential, typically used to model a charge-neutral and inert

material. Wall particles are structured in a square lattice, with a lattice spacing of

�LJ. The interaction between any two particles i and j is described by the two-body

Lennard-Jones potential ULJ:

ULJ(rij) = 4 ✏LJ,ij

✓
�LJ,ij

rij

◆
12

�
✓

�LJ,ij

rij

◆
6
�
, (2.41)

where rij = |ri � rj | is the distance between the particles, ✏LJ,ij is the depth of the

potential well and �LJ,ij is the finite atom-atom distance at which the potential is zero.

The interaction potential is truncated at a cut-o↵ radius rc, such that ULJ(rij � rc) = 0.

Walls are modelled as a rigid square particles lattice. Consequently, the fluid itself has to

be thermostatted to dissipate the heat generated due to shear. Such direct control over

the fluid temperature allows, in principle, for maintaining the desired fluid temperature

under arbitrarily high shear rates. Thus, allowing for simulations with a high signal-noise

ratio.

The accessible fluid domain (delimited by the centres of the walls particles in direct

contact with the fluid) is [15�LJ]⇥ [13�LJ]⇥ [10�LJ] and is kept constant throughout the

simulations. We impose periodic boundary conditions along the x and z axes, while the

fluid is enclosed by the walls along the y direction. A steady shear flow is generated by

imposing equal and opposite velocities along the y direction to the two walls [113]. The

heating caused by shearing of the fluid is removed from the system by thermostatting

the fluid particle velocities in the directions perpendicular to the flow. This is done by

applying separate Nosé-Hoover [88, 89, 90] thermostats to slabs of fluid, dividing the

fluid region in 13 equally-sized slabs across the channel. The system is simulated at

constant temperatures, 1.0  T  4.0. The influence of the applied strain rate on the

system properties with respect to the type of thermostat is discussed in Appendix 2.2.2.

The simulations in this study are performed using the Large-Scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [114]. The equations of motion are integrated

using the velocity-Verlet [115] algorithm, with a time-step of dt = 0.005⌧ [116]. Simula-

tions are performed at constant temperature, volume and number of particles.

As regards Lennard-Jones potential parameters, we adopt the following values: ✏LJ,f,f =

✏LJ, ✏LJ,f,w = 0.6✏LJ, 1.0✏LJ, 1.4✏LJ, and �LJ,f,f = �LJ,f,w = �LJ. Furthermore, a cuto↵

56



Chapter 2. Molecular dynamics

0.00 0.05 0.10 0.15 0.20 0.25

¯̇�

�0.6

�0.4

�0.2

0.0

�̄
x
y

Figure 2.5. Average shear stress against average shear rate is reported for the most
critical scenario (T = 1.0 and ✏f,w = 0.6). Non-Newtonian e↵ects are evidenced at
average shear rates above 0.2.

radius rc = 3.5�LJ is employed. Without loss of generality, �LJ, ✏LJ, m and the Boltz-

mann constant kB are set equal to unity.

MD simulations are performed as follows. First, the system is equilibrated at equi-

librium conditions for 2 ⇥ 106 time steps. Then, a constant velocity is imposed to the

walls and a nonequilibrium steady state is reached after 2 ⇥ 106 time steps, ensured by

convergence of the density, velocity and temperature profiles. Finally, a run of 2 ⇥ 106

time steps is performed, during which fluid particle positions and velocities are stored

every 102 time steps for analysis.

2.2.2. Rheological e↵ects and thermostat

Non-Newtonian e↵ects manifest at high shear rates, with the onset shear rate depending

on the state point of the fluid. For example, for a dense homogeneous LJ fluid (⇢ =

0.84, T = 1.0) shear-thinning is observed at shear rates above approximately 0.1 [117].

Other rheological phenomena, such as normal stress di↵erences, have been shown to be

very small for shear rates up to 0.5 for a homogeneous fluid near the LJ triple point

(⇢ = 0.8442, T = 0.72) [118]. In Fig. 2.5, we report the average shear stress in our

confined sheared system against the average shear rate for the most critical analysed

case (T = 1.0 and ✏f,w = 0.6). No significant rheological e↵ects are evidenced for shear

rates below 0.2. Therefore, we adopt ¯̇� ⇠ 0.15 in order to maximize the signal-to-noise

ratio, while remaining in the Newtonian regime.

The temperature in a MD simulation can be controlled via various thermostats, in-

cluding Langevin [87], Nosé-Hoover [88, 89, 90] and dissipative particle dynamics [119]
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Figure 2.6. (a)Temperature profile for di↵erent shear rates, when using a single global
Nosé-Hoover thermostat and a series of Nosé-Hoover thermostats, each controlling a
region of (non-dimensional) unitary width. (b)Velocity profile induced by the moving
walls at several shear rates at the temperature T = 1.0.

thermostats. In this work, a Nosé-Hoover (NH) thermostat is adopted since it has been

shown to perform well in case of weakly sheared systems and, unlike Langevin and dissi-

pative particle dynamics thermostats, does not alter systems viscosity [91]. However, NH

is a global thermostat, and consequently may su↵er for any inhomogeneous conditions

of the system since the heat is not generated uniformly. To overcome this limitation,

we adopted a series of local Nosé-Hoover thermostats (LNH), each of (non-dimensional)

unitary width. A similar strategy was already adopted in previous works [26]. Figs 2.6(a-

b) compare temperature and velocity profiles obtained with NH and LNH thermostats

for di↵erent shear rates. The global thermostat is unable to keep a flat temperature

in proximity of the walls, where the local shear rate is higher. At the same time, at

high shear rates (i.e. 0.8), NH thermostat leads to unphysical velocity and temperature

profiles, thus the need for LNH thermostat.

2.2.3. Density

The fluid structure density exhibit a rich behaviour across the channel. The region at

the centre of the channel, of width approximately equal to yb ' 4�LJ, does not show

significant layering, and thus, it will be denoted as bulk region. The density profiles in

Fig. 2.7 reveal that the intensity of the density layering near the wall depends inversely

on temperature and directly on ✏LJ,f,w. On the other hand, the location of the layers

remains una↵ected, as it depends primarily on the wall structure and on the interaction
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Figure 2.7. (a) Density profile at di↵erent temperatures of the domain, 1.0  T  4.0;
(b) Density profile for di↵erent interaction potential between walls and fluid, ✏LJ,f,w =
0.6, 1.0, 1.4. The markers represent MD simulation results, while the fitting relation
given by Eq. (2.42) is reported in solid lines.

length scale parameter �, which are both identical for all our simulations. The dense

layers are equidistant, with a mean distance between adjacent peaks of about l = 0.93,

which is consistent with Refs [19, 26] and in reasonable agreement with the one predicted

by kinetic theory: l ⇠
�p

2�LJ⇢̄
��1

= 0.88. The density profiles obtained from MD are

well approximated with the following exponential oscillatory relation:

⇢(y) = ⇢b


1 + Ae

�B(y�yw) cos

✓
2⇡

l
(y � yw)

◆�
, (2.42)

where ⇢b is the density in the bulk region of the channel, the fitting parameter A =

A(✏LJ,f,w, T ) depends on the oscillations amplitude and B = B(✏LJ,f,w, T ) indicates

the decay away from the interface, located at yw. It turns out that the amplitude is

mainly dependent on the fluid-wall interactions, and can be expressed as A ⇠ 3.5 ✏
0.5

LJ,f,w
,

whereas, the decay parameter depends mostly on the temperature as B ⇠ 0.85 T
0.3.

The comparison of Eq. (2.42) with MD data (fitting curves shown in Fig. 2.7) leads to

relative errors ranging between 2% and 10%.

Wall potential, stando↵ distance and confinement parameter The mean po-

tential energy acting on the fluid due to its interactions with the walls can be computed

with the following two approaches. First, the e↵ective mean potential energy, that takes

into account both wall-fluid and fluid-fluid particles interactions, can be calculated from
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the density profile at equilibrium according to the Boltzmann distribution [120, 121]:

Ue↵(y) = �kBT log

✓
⇢(y)

⇢b

◆
, (2.43)

where ⇢b is the bulk density. Alternatively, the mean interaction potential acting on a

fluid due to an infinite LJ lattice wall can be modelled analytically as [101]:

ULJ10�4
(y) =

2⇢w✏LJ,f,w

5

"
2

✓
�f,w

y � yw

◆
10

� 5

✓
�LJ,f,w

y � yw

◆
4
#

, (2.44)

where ⇢w is the density of the walls. The latter expression has the advantage of providing

an analytical form for the wall potential, that is independent from the density profile.

However, this approach neglects the influence of the interactions between fluid parti-

cles, thus potentially leading to significant inaccuracies in the case of strong fluid-wall

interactions.

The density layering at the walls is a result of the competition between potential

energy, which favours an ordered structure of the fluid, and particles thermal energy,

which enhances the jumps among the di↵erent potential wells. Following the work of

Chiavazzo et al. [122], we introduce the total energy profile as:

E(y) = U(y) + ↵
kBT

2
, (2.45)

where U(y) is the potential energy acting on the fluid particles due to the walls and

the other fluid particles, and ↵ indicates the fraction of the average thermal energy per

particle available to escape the wall absorption. Because of the equipartition theorem,

each degree of freedom has associated a kinetic energy of kBT/2. Since particles in

proximity of a flat wall are able to overcome the potential energy barriers only along a

single direction normal to the solid surface (representing half degree of freedom), ↵ is

taken equal to 1/2 [122]. E(y) gives access to two important quantities: the stando↵

distance and the confinement parameter. The stando↵ distance ymin is defined as the

minimum distance from a wall accessible to the fluid:

ymin = n1 � yw, (2.46)

with ni, i = 1, . . . , r being the roots of the function E(y) = 0, and yw the position of the

first layer of wall particles. It turns out that close to the walls, being U(y) extremely

sharp, one can safely assume U(y) ⇠ E(y). As a result, the stando↵ distance can be
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readily obtained by finding the roots of ULJ10�4
(y) = 0, rather than E(y) = 0. It follows

that ymin ⇠ (2/5)1/6 ⇠ 0.86, as also verified in Wang et al. [101]. The comparison with

our MD results shows that this approximation is able to accurately model the stando↵

distance with an error lower than 3%.

The confinement parameter � denotes the fluid region where wall e↵ects are significant.

A way of estimating � was introduced by Chiavazzo et al. [122] and is given by the

following expression:

� = nr � yw. (2.47)

The confinement parameter � provides a quantitative means of defining two kinds of

region inside the channel: a confined one, where the influence of the wall is significantly

a↵ecting particles mobility, and a free region of width yf where the particles motion is

only marginally a↵ected by the presence of the fluid-solid interface. In general the free

region does not coincide with the bulk region of width yb, being the latter completely

una↵ected in structure by the presence of the wall (i.e. no layering at all is observed

in the density profiles). Fig. 2.8(a) shows the total energy landscape E(y) for two

limit cases: one with hydrophobic walls at high temperature (weak layering) and one

with hydrophilic walls at low temperature (strong layering). The stando↵ distance ymin

and the confinement parameter � are indicated for the latter case. For the sake of

completeness, we also report the potential energy excess at the wall computed directly

from inter-atomic interactions. The small discrepancy observed between the energy

landscape computed from particle interactions and the one obtained from the Boltzmann

distribution does not significantly a↵ect the value of the parameter �.

Fig 2.8(b) shows the parameter �, computed with both approximations of U(y), as a

function of the Wall number Wa = (⇢wall�
2

LJ
✏LJ,f,w)/(kBT ), which is a measure of the

influence of the walls on the fluid [101]. The values of � obtained for Ue↵(y) are, in

most cases, greater than the ones obtained for ULJ10�4
(y) and in both cases � increases

with Wa. The greater values for � obtained for Ue↵(y) indicate that intramolecular

correlations between fluid particles (not taken into account by ULJ10�4
(y)), enlarge the

fluid region with strong confinement e↵ects. Furthermore, the values of � calculated

from ULJ10�4
(y) increase smoothly with Wa, whereas those evaluated from Ue↵(y) show

a stepwise trend. Such behaviour is related to the number of fluid layers intercepted by

the horizontal axis in the total energy profile.
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Figure 2.8. (a) Interfacial energy profile computed with potential energy Ue↵ (solid
lines) and ULJ10�4

(y) (dashed lines) in two representative cases, one with ✏LJ,f,w = 0.6
and T = 4.0 (in red), the other with ✏LJ,f,w = 1.4 and T = 1.0 (in blue). Markers
represent the potential energy excess at the wall computed directly from inter-atomic
interactions. The roots of this functions are used to define ymin and � parameters through
Eqs (2.46)-(2.47). (b) The parameter � as function of the Wall number when computed
from Ue↵ (solid lines) and from ULJ10�4

(y) (dashed lines).
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Figure 2.9. (a) Velocity and (b) shear profiles for ✏LJ,f,w = 0.6, 1.0, 1.4 at T = 1.0.

2.2.4. Velocity and shear rate

A Couette flow between two planar walls is expected to produce a linear velocity profile

for homogeneous fluids. However the layered fluid structure near the walls causes a

non-uniform mobility of the particles, resulting in oscillations of the velocity profile
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Figure 2.10. Temperature profiles at di↵erent temperatures of the domain, namely
1.0  T  4.0 for ✏LJ,f,w = 1.0.

(Fig. 2.9(a)). In contact with the solid surface, a layer of fluid atoms is adsorbed to the

surface. The thickness of this layer depends on the strength of the fluid-wall interactions.

Furthermore, an increase in strength of the walls interaction produces a reduced width

of the channel available for the mobile particles, and this results in a higher shear rate

in the bulk region of the channel (Fig. 2.9(b)). In addition, the value of the shear rate

evaluated at the wall will significantly depend on the wall-fluid interactions, due to slip

e↵ects. This phenomenon plays an important role in the study of boundary conditions

and has been widely studied in the past, for instance through the analysis of a parameter

known as slip length [113]. A comparison between Figs 2.7(b) and 2.9(b) highlights that

the lowest peaks in the density correspond to the highest values (in absolute value) of

the shear rate. This suggested that a modest slip occurs not only in the contact layer

with the wall, but also between fluid layers.

2.2.5. Temperature

The temperature distribution in a nano-channel depends on material and geometry of

the walls, type of fluid and shear rate. When a fluid is sheared, energy losses in form

of viscous dissipation turn into heat. According to Navier-Stokes energy equation, the

heat production is proportional to the fluid viscosity ⌘ and to the square of the shear

rate �̇. Moreover, the amount of heat dissipated through the walls depends on the

thermal conductivity according to the Fourier’s law and on the specific topology of the

walls [123]. Because of this mechanism of heat transfer, the temperature distribution

across the channel in real scenarios is strongly dependent on the specific system and its
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working conditions.

In this study we restrain our attention to weakly sheared systems with highly conduc-

tive walls. In such cases, the generated heat is assumed to be instantaneously dissipated

through the walls. As a consequence, the temperature distribution can be assumed to be

constant throughout the channel. This assumption, on the one side allows us to use the

canonical ensemble to represent the possible states of the fluid system at an atomistic

level, on the other side justifies the use of local thermostats, previously adopted in other

works [26] and described in Section 2.2.2. The e↵ectiveness of the thermostat in keeping

the temperature distribution constant is shown in Fig. 2.10.

2.2.6. Stress tensor

In order to analyse and validate the simulations results for the stress tensor, let us con-

sider the momentum equations and apply it to our system. Firstly, for the system under

consideration, the steady-state condition satisfies: @t (⇢(y, t)u(y, t)) ⇠ 0. Moreover, due

to the periodic conditions along x and z directions, the thin film approximation gives:

⇢(r) ⇠ ⇢(y), u(r) ⇠ u(y), �(r) ⇠ �(y), sb(r) ⇠ sb(y). It follows that the integrated

momentum equations integrated in a planar control volume delimited by two general

coordinates y1 and y2 > y1 can be written as:

�↵y(y2) � �↵y(y1) +

Z
y2

y1

sb,↵(y)dy = 0, (2.48)

with ↵ = {x, y, z}. Specifically, if we consider a control volume that contains only fluid

particles not subject to any external force, the source term is null, i.e. sb,↵(y) = 0,

and consequently �↵y(y2) = �↵y(y1), meaning that �↵y is expected to be constant along

the direction normal to the walls. On the contrary, if the control volume includes also

the walls particles which are constrained in their positions by means of external forces

(or geometric constrains), then the source term is di↵erent than zero and �↵y(y) is not

constant along the y direction.

As reported in Figure 2.11 (a-b), our MD results are consistent with the derivation

above. In fact, Figure 2.11(a) shows the diagonal component of the stress tensor �yy(y),

including its kinetic and potential components, for a system of temperature T = 1.0

and ✏LJ,f,w = 1.0. The profiles of the kinetic and potential components have both an

anisotropic behaviour. However, since they oscillate in antiphase with identical am-

plitude, the resultant �
t
yy(y) is constant (as expected from the momentum equations).

Because of the system configuration and its shear, the only non-zero o↵-diagonal com-

ponent of the fluid stress is given by �xy(y). Figure 2.11(b) reports kinetic, potential
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Figure 2.11. (a) Diagonal component �
t
yy and (b) o↵-diagonal component �

t
xy of the

stress tensor evaluated for T = 1.0 and ✏LJ,f,w = 1.0. The bulk values of �
t
yy and

�
t
xy evaluated at di↵erent temperatures for ✏LJ,f,w = 1.0 are reported in (c) and (d)

respectively. For the sake of completeness and for validation purpose, we also report
additional data from Hartkamp et al. [26] for T  1. The linear dependencies between
the kinetic contributions and the temperature are highlighted by the black line.

and total shear stress profiles �xy(y) for T = 1.0 and ✏LJ,f,w = 1.0. Similarly to the

normal stress component �yy(y), the total shear stress is approximately constant since

its potential and kinetic components have identical oscillations with phase ⇡.

In Fig. 2.11(c) we report the bulk values of �yy obtained with our MD simulations (at

✏LJ,f,w1.0) as function of temperature. For the sake of consistency, we also include the

bulk values of �yy obtained by Hartkamp et al. [26] in a di↵erent range of temperatures

(0.4  T  1.0) for a system with similar characteristics. First, it is easy to verify that,

as expected from equipartition theorem, the kinetic component of �yy is proportional to
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Figure 2.12. Solid lines represent the total shear viscosity profile (a) at di↵erent
temperatures of the domain, namely 1.0  T  4.0, for ✏LJ,f,w = 1.0 and (b) at various
wall interaction potentials, i.e. ✏LJ,f,w = 0.6, 1.0, 1.4 and T = 1. The kinetic viscosity
profile in (a) and (b) is reported in dashed lines.

the temperature, and more exactly is equal to �
k
yy = �⇢bT/m. Physically this means

that at higher temperatures particle thermal velocities increase and, thus, more normal

momentum is transferred by means of collisions between them. As regards the potential

component �
v
yy, its dependency on the temperature is related to the non-linear inter-

particles potential. However, it can be noticed that �
v
yy also increases (in absolute value)

with the temperature. The reason for this may be found in the fact that higher thermal

velocities cause particles to interact repulsively on average at lower distances. Such

increase in repulsions lead to more negative normal stress (or, equivalently, to more

positive pressure).

Some di↵erent behaviours can be detected when analysing the bulk values of the

o↵-diagonal stress �xy with respect to the temperature (at ✏LJ,f,w1.0). In this case,

the kinetic component still increases in absolute value as a function of the temperature.

However, a linear relation seems not to reproduce accurately the MD results at the lowest

temperatures and a correction factor is needed, as will be discussed in Section 2.2.7. The

potential component �
v
xy decreases in absolute value. A reason for this is that higher

thermal velocities reduce the e↵ects of repulsive interactions between fluid layers on the

shearing motion of the same layers.
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2.2.7. Shear viscosity

Shear viscosity is evaluated as a function of the o↵-diagonal stress component �xy and

of the shear rate �̇ as:

⌘(y) = �xy(y)�̇(y)�1
. (2.49)

In analogy with the stress tensor, one can define the kinetic and potential components

of the viscosity, representing the resistance to shearing flows due to particle motion

and to inter-particle interactions, respectively. Specifically, the kinetic component (/
⇢ for homogeneous media) is predominant at low fluid densities, while the potential

contribution (/ ⇢
2 for homogeneous media) prevails at high densities. Figures 2.12(a)-

(b) show the kinetic and the total shear viscosity profiles for several temperatures and

wall interactions. The oscillatory behavior observed in the vicinity of the walls follows

closely (but not exactly) the density profiles. Higher Wa corresponds to more pronounced

layering in the viscosity profile, due to fluid adsorption at the solid interface. The

viscosity in the bulk region ranges from 2.05 to 2.5, which can be explained by di↵erences

in bulk density and temperature of the systems. In the case that T = 1 and ✏LJ,f,w = 1.6,

the average density in the bulk region is ⇢b ⇠ 0.81, which is approximately the same

value detected in Refs [26, 30]. Thus, under such circumstances, it is possible to compare

the value of the viscosity in the bulk region against previous work. From our simulation,

we observe a value ⌘b ⇠ 2.18, which is consistent with the values ⌘b ⇠ 2.06 obtained in

Ref. [26] and ⌘b ⇠ 2.15 found in Ref. [30].

Analytical expressions to model the viscosity of dense inhomogeneous real fluids are

not available up to date. However, for simple hard sphere (HS) systems, Din and

Michaelides [25] proposed a theoretical framework that allows to derive the viscosity

profile directly from the Boltzmann equation (for more details see Appendix A.1.2). In

what follows, such a framework is briefly introduced and, by means of proper empirical

correction factors directly obtained from our simulations, it is employed to model the

viscosity of LJ fluids. The main aim of the remaining part of this section is to ob-

tain widely applicable functional relations between viscosity and density profiles, which

enables us to accurately determine the complex behavior of this transport property in

confined fluids.

Analytical model for the viscosity of inhomogeneous hard-sphere fluids The

theoretical derivation proposed by Din and Michaelides [25] distinguishes between the

kinetic and the potential contributions to the fluid viscosity. The kinetic component is
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a local function of the density, that can be written as:

⌘
k

HS(y) =
16

5
⌘

0
⇢(y)b⇤(y), (2.50)

where ⌘
0 = 5(kBTm/⇡)1/2

/(16�
2

HS
) is the zero-density viscosity, and b

⇤(y) is a dimen-

sionless space-dependent function that can be evaluated by solving the following integral

equation:
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(2.51)

The potential contribution to the viscosity for a HS fluid is given by a non-local

expression of density:

⌘
v
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8⇡

5
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0
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y
0
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0
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0) dy

0
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where I(y, y
0) denotes the following infinite series:

I(y, y
0) = y
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(2.53)

where g is the pair correlation function.

Among the possible approximations for the pair correlation function of an inhomoge-

neous fluid g(y, y + y
0), the one proposed by Fischer et al. [124] is adopted here. These

authors approximated g(y, y + y
0) as the radial correlation function of an homogeneous

fluid evaluated at an average density ⇢̄(y, y + y
0), namely:

g(y, y + y
0) = g

hom[r = �HS, ⇢̄(y, y + y
0)], (2.54)

where ⇢̄(y, y + y
0) is the density average over a sphere centered in y + y

0

2
, with radius
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Figure 2.13. Correction factors c
v
⌘(T ) (solid line) and c

k
⌘(T )(dashed line) for the bulk

values of potential and kinetic viscosity respectively. The correction factors are compared
against the ratio ⌘/⌘HS computed directly from our MD results. The error bars indicates
the standard errors computed from the distribution of viscosity values inside the bulk
region.

�HS/2, i.e.,

⇢̄(y, y + y
0) =

6

⇡�
3

HS

Z

r<
�HS

2

⇢(y +
y

0

2
+ r)dr. (2.55)

Moreover, if the Carnahan-Starling equation of state is adopted [125], then the radial

correlation function of an homogeneous fluid can be computed as g
hom[r = �HS, ⇢̄] =

(1�0.5⇠)/(1�⇠)3, with ⇠ = ⇡�
3

HS
⇢̄/6. It is clear from Eqs. (2.52)-(2.53) that, in general,

the potential contribution to the viscosity, unlike the kinetic one, cannot be expressed as

a local function of the density. However, the e↵ect of the non-locality may be neglected

under certain system conditions, as will be shown below.

Shear viscosity of bulk fluid: from Hard-Sphere to Lennard-Jones When

using kinetic theory to model a fluid characterized by complex interaction potentials,

such as LJ, the temperature dependency of the viscosity is often not accounted properly.

To overcome this issue, similarly to Refs [112, 126], we employ some empirical correction

factors obtained by comparing the viscosity in the bulk region computed from MD

simulations with the HS viscosity given by Eqs (2.50)-(2.52).

The kinetic viscosity in the bulk region can be described by the following expression:

⌘
k ⇠ c

k

⌘(T ) ⌘
k

HS, (2.56)
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where c
k
⌘(T ) is a correction parameter. This parameter can be expressed as c

k
⌘(T ) ⇠

1/⌦(2,2)(T ), where ⌦(2,2) is the factor introduced by Chapman and Enskog to obtain the

viscosity of a LJ dilute gas with the kinetic theory. The value of ⌦(2,2)(T ) is di�cult

to compute directly, and for this reason is typically either reported in tables [127] or

provided in form of empirical expressions [128]. Here, ⌦(2,2)(T ) is evaluated according

to the expression derived by Neufeld [128], that reads:

⌦(2,2)(T ) =
A

TB
+

C

eDT
+

D

eFT
+ RT

B sin
�
ST

W � P
�
, (2.57)

with A, B ,C ,D ,E, F , R, S, W and P being real numbers.

As regards the potential contribution to the viscosity, it depends on the specific inter-

particle interaction potential. In the case of LJ systems, the potential viscosity exhibits

an Arrhenius-like dependence on temperature [126], that is not captured by the HS

model. Thus, we adjust the HS potential viscosity as:

⌘
v ⇠ c

v

⌘(T ) ⌘
v

HS, (2.58)

where c
v
⌘(T ) is a correction factor. We model c

v
⌘(T ) as function of the temperature by

means of our MD simulation results as c
v
⌘(T ) = Ce

�D/T , with C = 0.35 and D = 1.2.

Figure 2.13 shows a comparison between the correction factors c
v
⌘(T ) (ck

⌘(T )) and the

ratio ⌘
v
/⌘

v

HS
(⌘k

/⌘
k

HS
) evaluated with MD simulations. The correction factors are able

to approximate the values obtained with MD with an accuracy lower than the standard

error for almost any value of the temperature considered in this work 1.

Non-local density-viscosity relation If we consider only the zeroth-order terms of

Eq. (2.53), the following approximate expression for the viscosity is obtained:

⌘(y) =
16⌘

0

5⌦
⇢(y)b⇤(y) +

8⇡c
v
⌘⌘

0

5
⇢(y)

Z
�LJ

��LJ

K(y, y
0) dy

0
, (2.59)

where K(y, y
0) is a kernel function responsible for the nonlocal contributions to the

potential component:

K(y, y
0) =y

02sin3
�
arccos(y0)

�
g(y, y + y

0)⇢(y + y
0)

⇥
⇥
2 + b

⇤(y + y
0) + b

⇤(y)
⇤
.

(2.60)

1It is worth underlining that, as implicitly assumed in Ref. [25], the HS diameter �HS is assumed to be
equivalent to the LJ parameter �LJ.
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Figure 2.14. Function b
⇤(y) computed numerically from MD density profiles through

Eq. (2.51) for di↵erent wall interaction potentials, i.e. ✏LJ,f,w = 0.6 (red solid line),
✏LJ,f,w = 1.0 (blue dashed line) and ✏LJ,f,w = 1.4 (green dashed line), at T = 1. It can
be noticed that for stronger wall interactions, b

⇤(y) has higher bulk values and shows a
slower decay at the wall interface.
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Figure 2.15. (a) Normalized viscosity vs. normalized density profiles for liquid-solid
interfaces obtained by MD (symbols) and by Eq. (2.67) (dashed black line). The symbols
correspond to di↵erent wall potentials (⇥: ✏LJ,f,w = 0.6, �: ✏LJ,f,w = 1.0 and +: ✏LJ,f,w =
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the shaded blue area correspond to the viscosity and density of the first fluid layer in
contact with the walls for systems at high Wa. (b) Root mean square error normalized
with respect to the average channel viscosity when employing Eq. (2.67) to model the
viscosity of the whole system (dotted lines) and of the system without the first fluid
layer at the walls (solid lines).
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Equation (2.59) represents a semi-empirical nonlocal viscosity model, consistent with

the kinetic theory and similar in form to local average density models presented in

previous works [27, 112, 129]. In this work, we compare our model against the one by

Hoang et al. [27], showing that the latter is inappropriate for strongly layered fluids.

Specifically, by fitting numerous MD simulation data, Hoang et al. [27] proposed the

following empirical non-local model for the viscosity in a narrow channel:

⌘(y) =
⌘

0

⌦

✓
⇢(y)

⇢b

◆
�

+ ⌘corr [T (y), ⇢e↵(y)] , (2.61)

where � = 0.8e
0.022T

2

/⇢b and ⇢e↵(y) =
R

! (| y � y
0 |) ⇢(y0)dy

0 is a non-local average

density with kernel ! (y) given by:

! (y) =

8
<

:

6

�
3

LJ

h�
�LJ

2

�
2 � y

2

i
if y  �LJ

2

0 otherwise
(2.62)

Furthermore, ⌘corr [T, ⇢e↵(y)] in Eq. (2.61) takes the following functional expression:

⌘corr [T, ⇢e↵(y)] =b1

⇣
e
b2 ⇢e↵ � 1

⌘
+ b3

⇣
e
b4 ⇢e↵ � 1

⌘

+
b5

T 2

⇣
e
b6 ⇢e↵ � 1

⌘
,

(2.63)

with fitting coe�cients bi given in the study of Galliero et al. [130].

Local density-viscosity models The complexity of the previously proposed non-

local viscosity model can limit its practicality, for example when limited computational

resources are available. Here, we make three assumptions to simplify the model and

obtain purely local expressions, which do not require the computation of space con-

volutions. First, the pair correlation function in the confined region is assumed to

not di↵er significantly from its bulk counterpart, namely g(y, y + y
0) ⇠ gb(�LJ). Sec-

ond, b
⇤(y) is assumed to be approximately constant between y � �LJ and y + �LJ,

i.e. b
⇤(y + y

0) ⇠ b
⇤(y) in Eq. (2.60). Finally, we assume that the value of the inte-

gral
R

�LJ

��LJ

sin3 (arccos(y0)) ⇢(y + y
0) dy

0 is only weakly dependent on y. Consequently,

Eq. (2.59) simplifies to:

⌘(y) ' ⇢(y)

⇢b


b
⇤(y)

b
⇤

b

⌘
k

b
+

1 + b
⇤(y)

1 + b
⇤

b

⌘
v

b

�
, (2.64)
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where ⌘b, ⇢b and b
⇤

b
are shear viscosity, density and b

⇤(y) evaluated in the bulk region,

respectively. Equation (2.64) provides a local functional expression relating shear viscos-

ity to the density variations at the fluid-solid interface. The analysis of our MD results

shows that the ratio b
⇤(y)/b

⇤

b
mainly depends on the wall interaction, and not on the

temperature. The profile of b
⇤(y) as function of the wall interaction strength is shown in

Fig. 2.14. By analysing the MD data, we found that the ratio b
⇤(y)/b

⇤

b
can be well ap-

proximated without using Eq. (2.51), by fitting the following empirical expression with

MD simulation results:

b
⇤(y)

b
⇤

b

' 1 � Ab e
Bb(y�yw)/✏

Cb
LJ,f,w , (2.65)

where y�yw is the distance from the wall and the fitting coe�cients take the value Ab =

0.59, Bb = 1.61 and Cb = 0.15. Equation (2.65) can be used to have a straightforward

evaluation of b
⇤(y), given that its bulk value b

⇤

b
can be computed from Eq. 2.51 as:

b
⇤

b
=

⇡

12
+

5

16 �LJ ⇢b ghom[r = �LJ, ⇢b]
. (2.66)

Assuming that b
⇤(y) ⇠ b

⇤

b
, Eq. (2.64) reduces to the linear relation:

⌘(y) ⇠ ⌘b

⇢b

⇢(y), (2.67)

observed also by Morciano et al. [30] by analyzing MD data correlations at a fixed tem-

perature T = 1. Interestingly, Fig. 2.15(a) shows that the linear relation in Eq. (2.67)

can be directly detected from MD results and holds for any analysed temperature. Fig-

ure 2.15(b) shows that the corresponding standard error associated with this linear model

ranges between 15% and 30% if the first fluid layer in contact with the walls is included

and between 5% and 15% if the first fluid layer at the walls is excluded. Eq. (2.67)

provides an attractive approximation as it does not require computing the convolution

kernel or b
⇤(y), but its applicability is limited to moderate fluid-wall interaction (low

Wa), or to situations in which the first fluid layer in contact with the walls is excluded.

Comparison between the di↵erent models In Fig. 2.16, we compare the perfor-

mance of the proposed viscosity models in predicting MD results for several system

conditions, i.e. for varying ✏LJ,f,w and T . We also report the viscosity profile predicted

by the model recently introduced by Hoang et al. [27] and given by Eq. (2.61). As regards

the bulk region, the qualitative features of the shear viscosity are well reproduced both

by our approach and by the data-driven approach of Refs [27, 130]. On the contrary, for
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the inhomogeneous region in proximity of the walls, two regimes may be distinguished.

At Wa ⌧ 1, a weak layering is observed in the viscosity profile and non-local e↵ects are

negligible. In this regime, both our local models and Hoang et al. [27]’s model, which is

based on a correlation derived for uniform fluids, are able to accurately reproduce MD

results. However, when the Wall number increases, wall e↵ects become more and more

important, and models such as Hoang et al. [27]’s one fail dramatically to predict the

viscosity profile. The models proposed in this work, including the local ones, show a

surprisingly good agreement even in case of Wa ⇠ 1. As expected from the derivation,

the nonlocal model outperforms the local ones. Furthermore, when looking at the first

fluid layer in contact with the walls, the linear model of Eq. (2.64) is more accurate than

the simplified linear model in Eq. (2.67).

Darcy-Weisbach friction factor in nano-pipes The findings of this work can be

applied to study, for instance, the Darcy-Weisbach friction factor in nano-geometries.

As extensively discussed in the work by Liakopoulos et al. [131], it is possible to use a

modification of the Darcy-Weisbach friction factor to model flows in nanoscale confined

geometries. For an infinitely wide channel with height h, the Darcy-Weisbach friction

factor, f , is given by:

f =
�2D

@p

@x

⇢̄V̄ 2
(2.68)

with p being the pressure, D = 2h the hydraulic diameter, and ⇢̄ = 1

h

R
h

0
⇢(y) and

V̄ = 1

h

R
h

0
ux(y) the average density and velocity in the cross-section, respectively. From

momentum conservation, assuming a Poiseuille flow, the local velocity can be computed

by solving the following di↵erential equation:

d

dy

✓
⌘(y)

dux(y)

dy

◆
=

@p

@x
. (2.69)

For symmetric flows, Eq. (2.69) has the solution:

ux(y) =
@p

@x

Z
y

0

y
0

⌘(y0)
dy

0 + us (2.70)

where us = ux|
y=0

is the slip velocity at the wall. The integrals in Eq. (2.70) can

be solved by using one of our (local or non-local) models to approximate ⌘(y). For

simplicity, here we will use the local model in Eq. (2.67), equipped with the density
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profile approximation in Eq. (2.42). After some algebraic manipulations, we obtain the

following expression for the Darcy-Weisbach friction factor in nano-channels:

f =
�2D

@p

@x

⇢b

h

R
h

0

⇣
1 + Ae�By cos 2⇡y

l

⌘
dy


1

h⌘b

@p

@x

R
h

0

R
y

0
y0

⇣
1 + Ae�By0 cos 2⇡y0

l

⌘
�1

dy0dy + us

�
2
.

(2.71)

The more accurate non-local viscosity model in Eq. (2.59) can also be employed, but

this would increase the computational cost. Moreover, this approach can be generalized

to study nano-channel with arbitrary shapes.

The functional relations developed here can be implemented in numerical methods

dealing with mesoscopic fluid flows (e.g. Ref [132]) to improve the accuracy of such

methods in the description of fluid-solid interfaces. But also models in the framework of

dynamic density-functional theory (e.g. Refs [50, 56, 63]), which su↵er from unresolved

closures, such as the dependence of viscosity on density. Moreover, since the functional

relations are derived from a general theoretical framework for HS systems, they can

be employed to model the inhomogeneous properties of non-LJ fluids, by appropriately

adjusting the empirical factors.

In the next Section, we explore characteristics and properties of liquid-vapor and

liquid-liquid interfaces of multi-phase fluids in confined systems, where the treatment of

the stress tensor and emergence of surface tension is crucial (e.g. Ref. [133]).
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Figure 2.16. Shear viscosity profile for ✏LJ,f,w = 0.6 (a-b), ✏LJ,f,w = 1.0 (c-d) and
✏LJ,f,w = 1.4 (e-f) at temperatures T = 1.0 (a-c-e) and T = 4.0 (b-d-f). MD results (red
dots) are compared against the non-local model given by Eq. (2.59) (solid blue line), the
linear model of Eq. (2.64) (dashed green line), the simplified linear model in Eq. (2.67)
(dotted orange line), and, finally, the model proposed by Hoang et al. [27] (Eq. (2.61)).
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2.3. MD simulations of multi-phase fluids in confined

geometries
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Figure 2.17. MD setup of a liquid-vapour system on the left (a) and of a system with
two partially miscible fluids on the right (b).

In widely adopted methods such as level-set [31] and volume of fluid [32], the variations

of density and viscosity at the interface between two fluids characterized by bulk densities

⇢1 and ⇢2 and bulk shear viscosities ⌘1 and ⌘2, take the form:

8
<

:
⇢(r) = ⇢1 + (⇢2 � ⇢1) f(r)

⌘(r) = ⌘1 + (⌘2 � ⌘1) f(r)
(2.72)

where f(r) is a space dependent function. Specifically, in level-set method f(r) takes

the form f(r) = H✏ (�(r)), with �(r) being a level set function and H✏ a smoothed step

function, while in volume of fluid method f(r) = V2(r)/ (V1(r) + V2(r)), with V1(r) and

V2(r) being the local volumes of the two fluids. In both cases, it is commonly assumed

that the local viscosity has a linear functional dependence on the local density at the
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interface, namely

⌘(r) � ⌘1

⌘2 � ⌘1

=
⇢(r) � ⇢1

⇢2 � ⇢1

, (2.73)

but this assumption may not always be valid.

Experiments at the nanoscale are extremely di�cult and are hampered by errors [4,

134], while continuum models based on Navier-Stokes equations are not suitable to

investigate molecular-scale phenomena which are characterized by the discrete behaviour

of the matter. Among the di↵erent numerical techniques that could be used to investigate

fluid interfaces, molecular dynamics (MD) o↵ers an attractive alternative in view of these

di�culties and indeed it is often the computational tool of choice in the nanoscale regime.

In fact, MD allows us to extract the local properties at the interfaces directly from the

coordinates of fluid particles.

Molecular dynamics has already been extensively used for the investigation of liquid-

vapour interfaces at equilibrium for Lennard-Jones fluids [135, 136, 137, 138], water [139,

140], as well as for more complex fluids [141, 142]. Some research studies on liquid-

vapour interfaces in out-of-equilibrium conditions have also been previously conducted,

e.g. analysing fluid evaporation [143] or of water cluster formation [28, 29].

Multiple research studies have also analysed the interfaces of immiscible fluids by

means of MD simulations or density functional theory [134, 144, 145, 146, 147]. For

instance, Bohn et al. [145] analysed the structure and the dynamical properties of a

liquid-liquid interface by employing MD simulations. Afterwards, Goel et al. [148] pro-

posed a methodology to compute interfacial tension of complex two-phase systems in

the framework of Dissipative Particle Dynamics. Later, Braga et al. [149] used non-

equilibrium MD to investigate the di↵usion at liquid-liquid interfaces. Recently, the

fundamental role of partially miscible fluids interfaces in the field of ionic liquids have

been investigated in multiple works, i.e. Refs [150, 151, 152]. Moreover, a theoretical

approach to the study of the density profile at the interface has been proposed by Iat-

sevitch et al. [153]. However, long-standing issues remain to be solved, especially in the

investigation of transport properties [145, 149].

In this section, non-equilibrium MD simulations of Lennard-Jones fluids are used to

explore and model the variation of the main physical properties at the interfaces be-

tween two fluids. Our final aim is to detect existing relations between fluid properties,

mainly shear viscosity, and density variations. This approach is motivated by the recent

development of mesoscopic numerical frameworks, such as Dynamical Density Func-

tional Theory [51, 154, 155], which is characterized by unresolved closures, such as the
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dependence of viscosity on density.

This section is structured as follows. In Sect. 2.3.1 we analyse the local density profiles

and model the interface thickness as function of temperature and interaction parame-

ters. Velocity, shear rate and temperature profiles are discussed in Sects 2.3.3-2.3.4. A

dedicated analysis of the kinetic and the potential components of the stress tensor is pro-

vided in Sect. 2.3.5, where we also analyse surface tension. Hence, functional relations

between local shear viscosity and local density at fluid-fluid interfaces are proposed in

Sect. 2.3.6. As an example of applications, these models are then employed to compute

the Darcy-Weisbach friction factor of multi-phase fluids in nano-geometries (Sect. 2.3.7).

2.3.1. Simulation details

We simulate two di↵erent system configurations: one composed of a liquid coexisting

with its vapor, and another made of two partially miscible fluids. Both systems are

confined between two solid parallel walls, as shown in Fig. 2.17. A steady-state Couette

flow is generated by shearing one of the walls [113, 156]. The interaction potential Ui

is the given by the sum of the interaction between pairs of fluids particles and between

fluid and wall particles, i.e.

U(ri) =

NfX

j=1

Uf,f (rij) +
NwX

j=1

Uf,s(rij), (2.74)

where Nf and Nw are the total number of fluid and wall particles, respectively. Both fluid

and wall particles are modelled as mono-atomic particles with mass m = 1 interacting

via a 12-6 Lennard-Jones potential ULJ . In this work we are interested in analyzing

the interfaces between liquid-vapor and liquid-liquid which are not directly a↵ected by

the fluids behaviour close to the walls. Thus we adopt solid walls, with particles fixed

in their lattice positions as in Refs [26, 116, 156]. Regarding ULJ parameters, for all

fluid-fluid interactions we adopt the values ✏f,f = ✏ and �f,f = �. Moreover, in the LV

system we employ ✏f,w = 0.8✏ and �f,w = � for the wall particles in contact with the

liquid, while ✏f,w = 0.4✏ and �f,w = � for the wall particles in contact with the vapor.

This ensures that the liquid phase remains in contact with the same wall throughout the

simulations. For the partially miscible liquids we adopt for both fluids ✏f,w = 0.8✏ and

�f,w = �.

The simulation box (wall excluded) measures [15�]⇥ [33�]⇥ [10�]. Periodic boundary

conditions are imposed along x and z axes, while the fixed walls wrap the system in the y

direction. The periodic boundaries along the directions parallel to the fluid interfaces and
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the confinement induced by the limited cross-sectional size of the system act as stabilizer

of the planar interface, limiting the formation of capillary waves, phenomena widely

discussed in previous works, i.e. Refs [157, 158]. In order to reach an high accuracy in

density and surface tension profiles a cut-o↵ radius rc = 4.5� is adopted (as recommended

in Refs [136, 159, 160]).

One of the main purposes of this work is the analysis of shear viscosity profile, which

is independent of the shearing velocity of the wall only for limited shear rates (ideally

tending to zero). On the other side, in order to achieve an high signal-to-noise ratio, it

is convenient to impose a relatively large velocity gradient. Taking into consideration

these factors, we adopt an average shear rate of about �̇ = 0.02 for the liquid-vapour

system and �̇ = 0.05 for the liquid-liquid system.

The motion of the walls causes heating of the flow, which reveals in a continuous

energy contribution to the system. However, one of the aims of this study is to analyse

the systems in isothermal conditions, for di↵erent sub-critical temperatures, i.e. 0.8 
T  1.2. Thus, in order to dissipate the shear energy and maintain a local constant T

along the entire domain(consistently with an NVT ensemble), a Nosé-Hoover thermostat

is employed [88, 89, 161].

Liquid-vapor coexistence is generated by an isothermal expansion of a uniform system

with average density ⇢ = 0.67 along the z direction. In this stage, the liquid phase nu-

cleates at the more attractive wall, and the equilibrium liquid-vapor interface is formed.

The interface between the two partially miscible fluids instead is generated by simply

allocating the two fluids separately within the domain.

Afterwards, both kinds of system are equilibrated for 2x106 time steps. The shear

velocity is then applied to the walls, and an equilibration run of 2x106 time steps is

used to reach steady-state conditions, characterized by the stationarity of temperature,

density and velocity profiles. The physical properties of interest are computed as a

function of particle positions and momenta. Finally, under the ergodic assumption

(i.e. for a property ‘A’: < A >NV T =< A >t), they are averaged over 10 independent

trajectories of t = 4x106 time steps.

Finite size e↵ects

Finite size e↵ects can a↵ect the properties of the system at the liquid-vapour and liquid-

liquid interfaces. Since our analysis is focused on understanding interface properties far

from the walls, we aim to keep those e↵ects at minimum. Figure 2.18 shows the density

profiles of LV (a) and LL (b) systems for varying domain size and same average shear

rate. As shown in the insets, for a small size of the system (Ly = 20) wall e↵ects cause
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Figure 2.18. Density profiles for LV (a) and LL (b) systems for di↵erent sizes of the
domain.

oscillating trends in the density profile at both LV and LL interfaces. On the contrary,

the profiles obtained with Ly = 30 and Ly = 40 do not show significant di↵erences. To

be on the conservative side, we then adopt a domain length in the y-direction of Ly = 40

for both LV and LL systems.

2.3.2. Density

LV systems

In previous studies, i.e. Refs. [28, 140], a typical approach consists in approximating

the density profile across liquid-vapour interfaces by means of an hyperbolic tangent

function, namely:

⇢(y) =
1

2

⇣
⇢

l + ⇢
v

⌘
� 1

2

⇣
⇢

l � ⇢
v

⌘
tanh

✓
y � y0

d

◆
, (2.75)

where ⇢
l and ⇢

v are the bulk densities of liquid and vapour respectively, y0 is the posi-

tion of the Gibbs dividing interface and d is the interface thickness. In Fig. 2.19(a), we

report the density profile obtained with MD simulations and the corresponding fitting

curves (Eq. (2.75)) at various temperatures. The fitting above allows us to obtain the

values of bulk densities and interface thicknesses at di↵erent temperatures. As shown

in Fig. 2.19(b), in accordance with the Lennard-Jones fluid phase diagram [162], the

di↵erence between the bulk densities of coexisting liquid and vapour reduces for increas-

ing temperatures. The value of the temperature for which such di↵erence becomes zero
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Figure 2.19. (a) LV density profiles at di↵erent temperatures, namely 0.8  T  1.2.
(b) Corresponding phase diagram for the finite-size system, obtained from liquid and
vapor bulk densities. (c) Interface thickness d as function of the system temperature T

obtained by fitting Eq. (2.75) to the MD simulation results.

is known as critical temperature. By following the approach in Ref. [163], the critical

temperature TC is approximated by fitting the expression:

⇣
⇢

l � ⇢
v

⌘
= A

✓
1 � T

TC

◆
�

, (2.76)

where A is a proportionality constant and � is the critical exponent. By fitting Eq. (2.76)

with the MD data, we obtained A ⇠ 1.073, TC ⇠ 1.267 and � = 0.318 (R2 = 0.999). It

is worth noting that our value of � is consistent (only 3% o↵) with the one (� = 0.328)

reported in Ref. [163].

The values of the interface thickness obtained by fitting Eq. (2.75) with the MD
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results, together with the critical temperature Tc estimated with Eq. (2.76), allows us

to model the thickness as a function of the temperature with the commonly adopted

expression [163]:

d(T ) = d0

✓
1 � T

TC

◆
�⌫

. (2.77)

This fitting (characterized by R
2 = 0.997) returns the values d0 ⇠ 0.556 and ⌫ ⇠ 0.624.

The latter exponent is again very close to the value ⌫ = 0.640 reported in Ref. [163]. In

Fig. 2.19(c) we report the interface thickness as a function of the temperature obtained

with MD simulations and with Eq. (2.77). From the previous relation, it is clear that the

higher the temperature, the wider the interface. Specifically, for a temperature T = Tc

the interface width tends to Ly and, thus, the liquid-vapour interface disappears.

LL systems

Figures 2.20(a-b) show the density profiles for one of the fluids (dashed line) and for the

mixture of the two identical fluids at di↵erent temperatures (a) and di↵erent repulsive

interaction parameter ✏12 (b). The total density profile exhibits a well at the interface

between the two fluids, which is governed by repulsive forces between the two components

and temperature. Specifically, the well reduces by increasing ✏12 (which corresponds to

weaker repulsive interactions between the two fluids), or by increasing the temperature

(which corresponds to higher thermal velocities at the interface).

Similarly to LV systems, we model the density profile for a single fluid across the

liquid-vapour interface by means of a hyperbolic tangent function, namely:

⇢(y) =
⇢

l

2

✓
1 � tanh

✓
y � y0

d

◆◆
(2.78)

where ⇢
l is the liquid bulk density, y0 is the position of the dividing interface and d is

the interface thickness.

The interface thickness, estimated by fitting Eq. (2.78) to the MD simulations data,

is dependent on both ✏12 and T . The relation governing the dependency of the thickness

on the temperature for LV systems [163] is applied here to LL systems as well. It reads:

d(T ) = d0 e
✏12�1

✓
1 � T

TC

◆
�⌫

, (2.79)

with fitting parameters d0 = 0.647, Tc = 1.689 and ⌫ = 0.714 (R2 = 0.947) which is not

far from the value ⌫ = 0.640 obtained in Ref. [163] for LV interfaces. In Fig. 2.20(c)
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Figure 2.20. Density profiles for one of the fluids (dashed line) and for a mixture of
the two fluids (solid line) obtained for di↵erent values of temperature T = 1 (a) and
interaction parameter ✏12 (b). (c) Interface thickness variation with ✏12 and T

⇤.

we report the interface thickness obtained with MD simulations and the corresponding

fitting (Eq. (2.79)).

2.3.3. Velocity and shear rate

In a system with a single homogeneous fluid, the velocity profile generated by a Couette

flow is linear. However, when the system is constituted by multiple fluids or phases,

the gradient of the velocity profile (i.e. the shear rate) will vary with the density. In

Fig. 2.21(a) we report the velocity profile generated by the relative motion of the two

walls for the LV system. For such systems the velocity gradient in the vapour is larger

than in the liquid, and this gap reduces by increasing the temperature. Moreover, the
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Figure 2.21. (a)Velocity profile and (b) shear rate in LV systems induced by the
shearing walls at temperatures 0.8 < T < 1.2.

sharp variation of the density profile at the interface causes a local increase (in absolute

value) of the shear rate (Fig. 2.21(b)).

The velocity and shear rate profiles for the LL system is reported in Fig. 2.22. The

velocity profiles exhibit the characteristic linear trend typical of a Couette flow in the

bulk regions of the two fluids. However, the interface generated by the repulsive forces

between the two fluids generates a zone with particles at higher mobility. This leads to

a peak in the shear rate at the interface which decreases (in absolute value) with the

temperature. In addition, the value of the shear rate evaluated at the interface depends

significantly on the interaction parameter ✏12, which controls the intensity of the repulsive

forces. This suggests that slip occurs among the two fluids, and this phenomenon scales

with temperature and interaction potential.

2.3.4. Temperature and thermostat

The shear stress generated by the moving walls induces a viscous friction, which causes

an increase in the system temperature, known as viscous heating. In order to ensure an

experimentally representative uniform temperature across the domain, we remove the

excess of thermal energy by thermostatting the fluid. Among the possible thermostatting

techniques, we employ a Nosé-Hoover (NH) thermostat, which, di↵erently from other

thermostats such as Langevin and dissipative particle dynamics, does not introduce

an artificial contribution to the viscosity [91]. In preliminary tests, we tested a single

global NH thermostat and a series of local Nosé-Hoover thermostats similar to the one

adopted in other works studying fluid properties close to walls [26, 164]. However, the
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Figure 2.22. (a)Velocity profile and (c) shear rate in LL systems induced by the
shearing walls at temperatures 0.8 < T < 1.2 . (b)Velocity profile and (d) shear rate in
LL systems induced by the shearing walls for 0.1  ✏12  0.5 at a temperature T = 1.

latter strategy was artificially altering the stress tensor profiles, thus a single global

NH thermostat is employed. Since such thermostatting strategy su↵ers strongly non-

homogeneous system conditions, we adopted low values of the shear rates. In order to

avoid biasing the fluid flow, the thermostat is applied only in the directions perpendicular

to the flow, i.e. only in the y and z directions, and the relaxation time adopted is about

⌧ = 1.0, in line with the discussion in Ref. [165].

Figure 2.23 shows the temperature profiles obtained for LV (a) and LL (b) systems.

The global thermostat is able to keep a uniform temperature in proximity of liquid

interfaces at high temperatures, e.g. T = 1.2. At the same time, the temperature

profiles exhibit non-constant trends at lower temperatures, e.g. T = 0.8, when the shear

rate is strongly heterogeneous. However, these local deviations of the temperature from

the mean one are less than 10% for LL systems and less than 15% for the LV systems,
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Figure 2.23. Temperature profile at di↵erent temperatures 0.8  T  1.2 for (a)
liquid-vapour and (b) liquid-liquid systems.

thus we do not expect significant e↵ects in the following analysis of stress and viscosity

profiles.

2.3.5. Stress tensor

As previously discussed in Sect. 2.2.6, the momentum conservation equation states that,

in the simulated systems, �↵y(y2) = �↵y(y1) for any two points y1 and y2 between the two

walls, meaning that the profiles �xy(y), �yy(y) and �zy(y) are constant throughout the

phases. This is consistent with the MD results for both LV and LL systems (Fig. 2.24).

As shown in Fig. 2.25, the stress tensor components tangential to the interface �xx(y)

and �zz(y) diverge from �yy(y) because of surface tension e↵ects. Based on its derivation

from statistical mechanics [134, 145], the interface energy excess Eif can be defined as

function of the diagonal stress tensor components according to Kirkwood-Bu↵ formula,

namely:

Eif (y) =
�xx(y) + �zz(y)

2
� �yy(y) (2.80)

such that the surface tension � is equal to:

� =
1

2

Z
L

�L

Eif (y) dy (2.81)

where the interface spans between �L and L. It is worth highlighting that Eif is due to

the excess of energy introduced by the system heterogeneity into the pressure component
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Figure 2.24. Potential and kinetic the stress tensor components �yy (a-b) and �xy

(c-d) for LL (a-c) and LV (b-d) system at T = 1 and ✏12 = 0.3.

tangential to the interface, thus it is equal to zero in the bulk regions where the diagonal

components of the stress tensor equal each other (Figs 2.25(a-b)).

LV systems

Even if the kinetic and potential components of �yy(y) (in Fig. 2.24(a)) exhibit a non

linear trend in the y-direction and a jump at the interfaces, their sum �yy(y) is constant

across the liquid and vapour phases, consistently with the momentum conservation.

Similarly, even if the kinetic contribution to the o↵-diagonal stress tensor component

�xy(y) is predominant in the vapour phase, the corresponding potential contribution

�
v
xy(y) is larger in the liquid phase. Specifically, this leads to a constant profile of the

total stress tensor �xy(y) (Fig. 2.24(c)).
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Figure 2.25. In (a-b) we show the diagonal stress tensor components �xx, �yy and �zz

for LV (a) and LL (b) systems. We also report the surface tension values as a function
of T and ✏12 for LV (c) and LL (d).

The surface tension values for LV systems is shown in Fig. 2.25(a). Given the previ-

ously found values TC = and ⌫ ⇠ 0.624, we fit the surface tension for LV systems against

the temperature employing the expression [163]:

�(T ) = �0

✓
1 � T

TC

◆
2⌫

. (2.82)

The MD data and the fitting curve are shown in Fig. 2.25(a).
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Table 2.2. Values of R
2 and relative root mean square error (RRMSE) for the viscosity-

density fitting relation in LV systems.

System Linear Quadratic
T R

2 RRMSE R
2 RRMSE

0.8 0.553 59.9% 0.802 39.8%
1.0 0.813 32.7% 0.933 19.5%
1.2 0.891 15.7% 0.941 11.5%

LL systems

For LL systems the kinetic component of �yy(y) (Fig. 2.24(b)) shows a non-linear drop

at the interface, which is however compensated by an equal and opposite increase in

the potential component �
v
yy(y). It should be noted also that the total stress tensor

components �yy(y) evaluated for a single fluid (dashed line in Fig. 2.24(b)) drops to zero

in parts of the domain and, as expected, does not satisfy the momentum conservation

equation being only a subset of the total system. Similarly, the o↵-diagonal stress tensor

component �xy(y) (Fig. 2.24(d)), which is the sum of non-constant kinetic and potential

contributions, is homogeneous across the system.

The surface tension values for LL systems is shown in Fig. 2.25(b). Similarly to LV

systems, surface tension for LL systems decreases with the temperature. Additionally,

the parameter ✏12, which governs the repulsive interactions between the two fluids, has

a strong e↵ect on the values of surface tension. Specifically, higher values of ✏12 shift the

surface tension-temperature curve down.

2.3.6. Shear viscosity

Local shear viscosity is evaluated as function of the non-diagonal stress component �xy

and of the velocity gradient @ux
@y

as:

⌘(y) = �xy

✓
@ux

@y

◆
�1

. (2.83)

LV systems

Figures 2.26(a-b) show the kinetic and the potential contributions to the shear viscosity

profiles, respectively. As expected, the kinetic contribution is approximately one order

of magnitude smaller than the potential one in the liquid phase. It is interesting to

point out the anomalous behaviour of the kinetic viscosity at the interface, where a well

90



Chapter 2. Molecular dynamics

(a)

�10 �5 0 5 10

y � yc

0

1

2

3

4

�(
y)

T = 0.8 T = 1.0 T = 1.2

(b)

�10 �5 0 5 10

y � yc

0.0

0.1

0.2

0.3

0.4

0.5

�k
(y

)

T = 0.8 T = 1.0 T = 1.2

(c)

0.0 0.5 1.0 1.5 2.0

�

0.8

1.0

1.2

T

bulk vapour bulk liquid

(d)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

10
�1

10
0

(�(y) � �v) /
�
�l � �v

�
10

�3

10
�1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(�
(y

)
�

�v
)
/
� �l

�
�v

�

Figure 2.26. Total shear viscosity (a) and kinetic component of the shear viscosity (b)
profiles for the LV interface at di↵erent temperatures. Bulk liquid and vapour viscosity
as a function of the temperature for the LV system (c). Viscosity vs density profile for
the LV interface obtained by MD (marks) and by Eq. (2.84) (solid line) (d)

appears at lower temperature, manifestation of a interface-induced confinement. This

confirms that the shear viscosity is a↵ected by the confinement induced by the liquid-

vapour interface. As a consequence, the commonly adopted approximation of the shear

viscosity trend at the interface as a hyperbolic tangent function (e.g. in some Volume of

Fluids and Cahn-Hilliard solvers) may introduce significant errors at low temperatures.

Figure 2.26(c) shows the values of the shear viscosity in the bulk liquid and vapour.

As expected, the viscosity in the vapour phase (which is dominated by its kinetic compo-

nent), increases with the temperature. On the contrary, the liquid phase viscosity, mostly

determined by its potential component, decreases with T since the thermal motion of

particles reduces any e↵ects of interaction between fluid layers.

In Fig. 2.26(d), the shear viscosity variation is plotted as function of the density vari-
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Table 2.3. Values of R
2 and RRMSE for the viscosity-density fitting relation in LL

systems.

System Linear Quadratic
✏12 T R

2 RRMSE R
2 RRMSE

0.1 0.8 0.509 54.0% 0.753 38.2%
0.1 1.0 0.862 26.5% 0.934 18.3%
0.1 1.2 0.893 22.7% 0.947 15.9%
0.3 0.8 0.834 29.5% 0.923 20.1%
0.3 1.0 0.905 21.5% 0.952 15.3%
0.3 1.2 0.931 17.9% 0.960 13.7%
0.5 0.8 0.877 24.5% 0.934 17.9%
0.5 1.0 0.938 16.8% 0.959 13.6%
0.5 1.2 0.949 14.5% 0.942 15.5%

ation along the liquid-vapour interface. For the investigated temperatures, the following

family of relations between ⌘s(y) and ⇢(y) is tested:

⌘s(y) ⇠ ⌘
v

s +
⇣
⌘

l

s � ⌘
v

s

⌘✓
⇢

l � ⇢
v

⇢(y) � ⇢v

◆k

(2.84)

where ⌘
v
s and ⌘

l
s denote shear the bulk viscosity in vapour and liquid respectively, ⇢

v

and ⇢
l denote the bulk density in vapour and liquid respectively, and k is a parameter

to be determined. Figure 2.26(d) shows the MD data (markers) against the model in

Eq. (2.84) embedded with k = 1 (black line) and k = 2 (blue line). The model with

k = 2 exhibit a better agreement with MD, as visible in both the linear and log-log

plots. Also the values of R
2 and relative root mean square error reported in Table 2.2

confirm that the quadratic model (k = 2) outperform the linear one (k = 1) for every

temperature T . In the range of temperature analysed, for both k = 1 and k = 2 an

enhanced model accuracy is reached at higher temperature, probably because of reduced

confinement e↵ects at the interfaces. The quadratic relation between the two quantities

is consistent with the expressions empirically derived in Ref. [166] for bulk fluids in the

framework of dissipative particle dynamics. In fact, in Ref. [166] Groot and Warren

approximate the viscosity as function of density as ⌘ = 2⇡�⇢
2
r
5
c/1575 where � and rc

are two constant coe�cients.

LL systems

In Figs 2.27(a-b), we report the shear viscosity profiles at the interface between two

partially miscible fluids for di↵erent values of T and ✏12. The shear viscosity shows
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Figure 2.27. Shear viscosity profiles of the mixture of the two fluids (solid lines) and
of one of them (dashed lines) for varying temperature T (a) and di↵erent values of the
interaction parameter ✏12 (b). Kinetic component of the shear viscosity profiles of the
mixture of the two fluids (solid lines) and of one of them (dashed lines) for varying
temperature T (c) and di↵erent values of the interaction parameter ✏12 (d).

a well which reduces at high temperatures and high ✏12 (less repulsive fluids). The

corresponding kinetic contribution to the viscosity (shown in Figs 2.27(c-d)) is about an

order of magnitude smaller than the total viscosity. Its profile is temperature-dependent

and weakly a↵ected by ✏12 (except at the well).

In Fig. 2.28(a), the shear viscosity profile at the liquid-liquid interface is plotted against

the corresponding density profile for a single fluid at the interface. Similarly to the LV

interfaces, for the investigated T and ✏12, we tested the following family of relations
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Figure 2.28. Total viscosity (a) and kinetic viscosity (b) profiles against density profiles
for one single fluid at the LL interface.

between ⌘1(y) and ⇢1(y):

⌘1(y) ⇠ ⌘
l

✓
⇢1(y)

⇢l

◆
k

(2.85)

where ⌘
l and ⇢

l denote the values of shear viscosity and density in bulk liquid respectively,

and k is an exponent to be determined. In Fig. 2.28(a) we report the MD data (markers)

against the model in Eq. (2.84) embedded with k = 1 and k = 2 (lines). The model with

k = 2 exhibit a better agreement with MD, as clear from the linear plot. The better

fitting accuracy of the quadratic model (k = 2) compared to the linear one (k = q) is

quantitatively confirmed by Table 2.3 which reports the values of R
2 and relative root

mean square error. In the range of T and ✏12 analysed, for both k = 1 and k = 2 a

better agreement is reached at higher temperatures and less repulsive interfaces (higher

✏12).

It is interesting to notice that the quadratic behaviour is mainly driven by the po-

tential component of the viscosity. In fact, as shown in both linear and log-log plots of

Fig. 2.28(b), the variation of the (normalized) kinetic viscosity varies linearly with the

(normalized) density profile.

The quadratic relation observed for each one of the two (identical) fluids in the binary

system allows us to gather some insights on the relation between the viscosity and the

density profiles of the total system. The viscosity of the total fluid ⌘(y) can be expressed
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as:

⌘(y) ' ⌘1(y) + ⌘2(y) =
⌘

l

1

⇢
l

1

2
⇢1(y)2 +

⌘
l

2

⇢
l

2

2
⇢2(y)2 (2.86)

Since the two fluids in the analysed systems are identical, then
⌘

l
1

⇢
l
1

2 =
⌘

l
2

⇢
l
2

2 = ⌘
l

⇢l2
. It

follows

⌘(y) ' ⌘
l

⇢l2

�
⇢(y)2 � 2⇢1(y)⇢2(y)

�
(2.87)

where ⇢(y) = ⇢1(y)+⇢2(y) is the total density. This simple derivation highlights that the

quadratic relation derived for each one of the two (identical) fluids does not holds for the

total fluid. Specifically, the multiplicative term proportional to ⇢1(y)⇢2(y) is di↵erent

than zero only at the interface and must be subtracted from the quadratic contribution

due to the total density.

2.3.7. Friction factor in nano-pipes with multi-phase flow

The proposed relations between density and viscosity profiles in multi-phase fluids can be

employed directly to obtain the Darcy-Weisbach friction factor in nanoscale flows. The

friction factor for single-component fluids at the nanoscale has been already obtained

in previous studies [131, 156]. However, an extension of those approach to multi-phase

fluids is still missing. As already reported in Refs [131, 156], for an infinitely wide

channel with height h, the Darcy-Weisbach friction factor f is given by:

f = � 1

⇢̄V̄ 2

✓
2D

@p

@x

◆
(2.88)

where ⇢̄ = 1

h

R
h

0
⇢(y) is the average density in the channel, V̄ = 1

h

R
h

0
ux(y) is the average

velocity, D is the hydraulic diameter (equal to 2h for the studied geometry) and p is

the pressure (proportional to the trace of the stress tensor). For a Poiseuille flow, the

momentum conservation equation in the x-direction states:

d

dy

✓
⌘(y)

dux(y)

dy

◆
=

@p

@x
. (2.89)

Integrating Eq. (2.89) twice, one obtains an expression for the x-component of the ve-

locity:

ux(y) =
@p

@x

Z
y

0

y
0

⌘(y0)
dy

0 + us (2.90)
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where us = ux|
y=0

is the slip velocity at one of the walls. Eq. (2.90) can be computed

by employing the proposed relations for ⌘(y). For LV systems, we adopt the viscosity

model in Eq. (2.84) together with the density profile approximation in Eq. (2.75). This

allows us to obtain the following expression for the Darcy-Weisbach friction factor in

nano-channels:

f =
�2D

@p

@x

1

2h3

R
h

0

�
2⇢v + (⇢l � ⇢v)

�
1 � tanh

�
y�y0

d

���
dy


@p

@x

R
h

0

✓R
y

0

y
0

⌘(y0)
dy0 + us

◆
dy

�
2
.

(2.91)

with ⌘(y) ⇠ ⌘
v +

�
⌘

l � ⌘
v
�
"

1�tanh

⇣
y�y0

d

⌘

2

#
2

.

Similarly, for LL systems the Darcy-Weisbach friction factor can be obtained using

Eqs (2.85) and (2.87), and expressing the total density and viscosity profiles as sum of

the corresponding contributions by each fluid:

f =
�2D

@p

@x

1

h

R
h

0
(⇢1(y) + ⇢2(y))dy

"
1

h

@p

@x

R
h

0

R
y

0
y0

✓
⌘

l

⇢l
(⇢(y)2 � 2⇢1(y)⇢2(y))

◆�1

dy0 + us dy

#
2
.

(2.92)

where ⇢1(y) and ⇢2(y) can be approximated by employing Eq. (2.78). It is worth noting

that the proposed approach for an infinitely wide channel can be extended to compute

the Darcy-Weisbach factor of fluids in nano-pipes with arbitrary geometries.

In this chapter, we have analysed and discussed the microscopic properties of LJ sys-

tems at interfaces. Moreover we have extracted macroscopic relations from simulations

data. However, MD simulations are typically computationally expensive. In the next

chapter we derive and discuss low dimensional models that can be employed to investi-

gate phenomena at atomistic scale.
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Low dimensional models

3.1. Microscopic coarse-graining: From molecular

dynamics to generalized Langevin equation 2

$

Figure 3.1. Two possible approaches to simulate the time evolution of a dynamical
system observable. A first one consists in solving the full deterministic dynamical system
(red arrow). Despite the advantage of being exact, this approach is often not suitable
either because too computationally expensive or because a model of the full system is
not accessible. An alternative approach consists in building a stochastic GLE model for
an observable of the dynamical system and parametrizing it given proper historical data
(green arrows).

Physical properties at the nano-scale are often investigated in a brute-force manner

by solving the Newton’s equations of motion for every particle, i.e. by means of molec-

2This section includes material from A. Russo, M. A. Durán-Olivencia, I. G. Kevrekidis & S. Kalli-
adasis. Machine learning memory kernels as closure for non-Markovian stochastic processes,
arXiv :1903.09562 (2021).
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ular dynamics (MD) or Monte Carlo simulations. However, many interesting physical

events, such as protein folding [167, 168] and phase nucleation [169, 170], occur at time

and length scales several orders of magnitude larger than those accessible by atomistic

simulations. Due to the prohibitively high computational cost associated with full sim-

ulations, coarse-graining remains a highly relevant instrument in the study of physical

systems.

Precursory model reduction techniques go back to the phenomenological description

of pollen particles in water by Brown [171]. However, it was not until the work of

Langevin [172] that a stochastic model for such phenomena was formulated. Since then,

several reduced models have been proposed [33, 34, 35, 36, 40, 43, 44, 45, 61, 173, 174,

175]. A standard way to coarse-grain a physical system of particles is by using projection-

operator techniques to decouple the relevant and the irrelevant degrees of freedom in the

system [34, 40, 43, 176]. This leads to the following stochastic Generalized Langevin

Equations (GLEs) for the time evolution of the resolved variables (or relevant degrees

of freedom):

@tO(t) = F(O) �
Z

t

0

✓(⌧)O(t � ⌧)d⌧ + R(t) (3.1)

with F(O) accounting for the mean force contributions. The term F(O) depends only

on the current system configuration and, in some cases, corresponds to the mean force

term [37, 38, 39, 40]. Several approaches have been developed to compute the potential

of mean force of a system, including adaptive biasing forces [41] and umbrella sam-

pling [42]. The vector R(t) is interpreted as a stochastic term, with correlation given by

the fluctuation dissipation theorem hR(t),R(t0)i = ✓(t � t
0)hO,Oi, where the notation

hA,Bi indicates the inner product hA,Bi =
R

⇢(z)A(z)B⇤(z) dz, with ⇢(z) being a

normalized pdf defined in the phase space of the original system, and B⇤ the conjugate

transpose of B. The convolutional (non-Markovian) term depends on the previous evo-

lution of the system and is characterized by the memory kernel function ✓(t), which also

unequivocally determines the characteristics of the noise term R(t) through the fluctua-

tion dissipation theorem. As a consequence, a proper approximation of ✓(t) is required

to preserve the main features of the original high dimensional system into the reduced

one. However, the memory kernel depends on both the full set of DoF and the whole

history of the complex system, hence making the problem often intractable.

In previous studies, several approaches have been proposed to parametrize GLEs. An-

alytical forms can be only obtained for specific systems, such as a particle in a harmonic

oscillator heat bath [43], while numerical techniques are necessary for more complex
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systems characterized by non-linear interactions. For instance, in Ref. [44] the authors

adopt a perturbation scheme, which is yet “too complex for general use”. Despite its

accuracy, the algorithm developed in Ref. [45] to parametrize GLEs involves sampling of

the full original system, thus, becoming computationally prohibitive for large systems.

Another procedure involving large matrix computations and Krylov sub-space approxi-

mations is shown in Ref. [40]. In both Refs [47, 48], the researchers propose to extract

the memory kernel by Laplace transforming the correlation functions computed from

some historical data of the observables. However, this strategy exhibits serious limita-

tions when the available data on the observables are a↵ected by fluctuations, as shown

later in this section.

In this section, we present a novel data-driven approach, which makes use of the

GLE structure coupled with a multilayer perceptron (MLP) to achieve an optimal

parametrization of the memory kernel. The MLP is provided with proper historical

data of the observables of interest obtained either from simulations or existing databases

and then executes an optimization procedure to find the optimal approximation of the

memory kernel. As we shown later in this section, compared to previous approaches our

approximation through MLP shows enhanced robustness, especially when the available

data are limited or a↵ected by significant fluctuations. In the this procedure, the mem-

ory kernel is extracted in the form of a multi-exponential functions, thus enabling us to

derive a tractable stochastic integration algorithm of the non-Markovian process char-

acterized by a time-correlated noise. The universal approximation theorem [177, 178]

guarantees a wide applicability of the our methodology which is tested in some relevant

case studies from chemistry, biology, climatology and finance.

Correlations equation Let us consider a system in equilibrium condition, such that

the historical data of some observables of the system can be considered a realization of

a stationary process. If we take the inner product of the GLE with O(0), one obtains

the following correlation equation [48]:

g(t) = � h@tO(t) � PLO(t),O(0)i =

⌧Z
t

0

✓(t � ⌧)O(⌧)d⌧ + R(t),O(0)

�

=

Z
t

0

✓(t � ⌧) hO(⌧),O(0)i d⌧ + hR(t),O(0)i =

Z
t

0

✓(t � ⌧)h(⌧)d⌧,

(3.2)

where the matrices g(t) and h(t) = hO(t),O(0)i were introduced, and the orthogonality

between the random force and the initial value of the observable was employed to set

hR(t),O(0)i = 0. For ergodic systems g(t) and h(t) are evaluated from the data by
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Figure 3.2. Convolution function g(t) a↵ected by random noise with varying amplitudes
(a). Comparison between the memory kernel ✓ computed in the Laplace space (b) and
with our MLP-based method (c), for g(t) a↵ected by random noises. For comparison
purpose, in (b) we also report the Laplace transform of the memory kernel obtain with
our MLP for the strongest noise.

means of time averages. In many scenarios, such as one-dimensional systems or systems

of spherical particles, ✓(t), g(t) and h(t) are diagonal matrices, i.e. ✓(t) = ✓(t)1, g(t) =

g(t)1 and h(t) = h(t)1. In such cases, hereinafter, we will denote the scalar functions

simply as ✓(t), g(t) and h(t).

3.1.1. Memory kernel in the Laplace space

Recently, in Ref. [48] it was proposed a way to compute the memory kernel using the

properties of Laplace transform defined as Lp (A(t)) =
R

1

0
A(t)e�t/�. In fact, it can be
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easily shown that Eq. (3.2) in the Laplace space takes the simple form

Lp (✓(t)) = Lp (g(t)) [Lp (h(t))]�1
. (3.3)

Despite its simplicity, this approach is not suitable in case of limited data, which

produce correlations a↵ected by random noise. As an example, let us consider a Gaus-

sian error ✏(t) a↵ecting only the function g(t). Then, the error acting on the Laplace

transform of the kernel ⇥(�) = Lp (✓(t)), is defined as

�⇥(�) = ⇥̃(�) � ⇥(�) = Lp (✏(t)) [Lp (h(t))]�1
. (3.4)

If we assume ✏(t) to be the sum of non-systematic local errors, i.e. ✏(t) =
P

i
✏i(t) =

P
i
ki�(t � ti), with ✏i ⇠ N (0, �

2), then the total error acting on the memory kernel in

the Laplace space becomes

�⇥(�) =
X

i

kie
�ti/� [Lp (h(t))]�1

. (3.5)

This argument shows that local random errors in the real space turn into non-local con-

tributions in the Laplace space. Such a propagation can lead to significant inaccuracies

if the memory kernel is approximated in the Laplace space.

As an example, let us consider the simple case, that can be analytically solved, with

h(t) = e
�t and a noisy g(t) = �te

�t, as reported in Fig. 3.2(a). Figure 3.2(b) shows

that the exact memory kernel computed in the Laplace space (as in Ref. [48]) diverges

from the analytical solution when noise becomes significantly large. To overcome this

issue, we propose to adopt a MLP-based procedure that gives an optimal approximation

of ✓ in the real space. Our method is robust and allows to reproduces accurately the

expected function even when the strongest noise a↵ects the data, as shown in Fig. 3.2(c).

3.1.2. Memory kernel extraction through a multi-layer perceptron

Artificial neural networks are an interesting substitute of conventional methods in the

parametrization of the GLE because of their enhanced capabilities in function approxi-

mations. Developed in analogy with the biological processes in the brain, artificial neural

networks are essentially made of series of linear and non-linear transformations of some

inputs in some output. Among the di↵erent possible variants, MLPs have gained pop-

ularity because of their versatility and capabilities in the approximation of non-linear

functions [179].
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Figure 3.3. In order to test our methodology two representative cases (discussed in
the main text) are reported: Case 1 in (a-c) and case 2 in (b-d). The functions h(t) and
g(t) (a-b), discretized at 800 points, are provided to the MLP. The comparison between
the memory kernel ✓ computed numerically with our MLP and the exact one is given in
(c-d). In (e-f) we show the cost function and learning rate for the two analysed scenarios.
In both cases, the numerical approximation is obtained with a MLP trained for 5000
epochs.

MLPs consist of at least three layers, known as input, hidden and output layers, each

one including several nodes (Fig. 3.4). Each node i in the layer l � 1 is connected with
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Figure 3.4. Representation of a MLP structure and the learning process

any other node j in the successive layer l and every connections is characterized by a

parameter called weight w
l

j,i
. In addition, to every neuron in the network corresponds a

parameter called bias b
l

j
. The transformation of the dataset at each node is determined

by an activation function �(zl

j
). It follows that the output a

l

j
of the neuron j of the

layer l is computed as a
l

j
= �

⇣
z

l

j

⌘
, with z

l

j
=
P

i
w

l

j,i
a

l�1

i
+ bj . The network learning

process consists in an optimization algorithm aiming to find weights w
l

j,i
and biases b

l

j

that minimize a cost (or error) function C computed at the output of the MLP. In this

work, we employ a quadratic cost function

C =
NtX

tj

1

2Nt

�
yj(tj) � a

L

j (tj)
�2

, (3.6)

where Nt is the number of data samples. Hence, an algorithm is used to cyclically back-

propagate the information about the error evaluated at the output to update weights

and bias. Every repetition of this algorithm is called epoch e and the whole procedure

is commonly known as learning process.

In the present work, we adopt a three layer MLP with a single input and a single output

function. The hidden layer has an arbitrary number of neurons Nn, determining the

degree of accuracy of the memory kernel approximation. The universal approximation

theorem guarantees that such a structure of the network is able to approximate any

continuous function defined on a compact subset of Rd [177, 178]. Initialization of the

MLPs is obtained providing Gaussian distributed random numbers to the weights, and
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zeros to the bias. Moreover, no bias is added at the output layer. As regards the

activation functions, in the hidden layer we adopt �(z) =
R

t

0
h(t � ⌧)ez(⌧)

d⌧ , with h(t)

being known a priori, while we employ �(z) = z at the output layer. The learning

algorithm adopted is the resilient back-propagation algorithm (Rprop) [180], which can

be synthesized as follows:

⌘(e) =

8
>>><

>>>:

⌘
+ · ⌘(e � 1) if @C

@↵
(e) · @C

@↵
(e � 1) > 0,

⌘
� · ⌘(e � 1) if @C

@↵
(e) · @C

@↵
(e � 1) < 0,

⌘(e � 1) otherwise,

(3.7)

where ↵ =
h
w

l

j,i
; bl

j

i
, e indicates the epoch, ⌘ is the adaptive learning rate and 0 < ⌘

�
<

1 < ⌘
+ are fixed parameters. In our experience and according to the literature [180],

Rprop algorithm gives an optimal compromise between fastness of the response and

solution convergence.

The memory kernel is extracted in the form of an exponential series, namely as:

✓(t) ⇠
NnX

k=1

w
3

k
e
b
2

ke
w

2

kt =
NnX

k=1

Ake
Bk(t)

, (3.8)

where Nn is the number of nodes in the hidden layer, Ak = w
3

i
e
b
2

k are real numbers and

Bk = w
2

k
are strictly real negative coe�cients. The algorithm presented is adopted to

extract the memory kernel in case of diagonal ✓(t), but a generalization of our approach

to non diagonal memory kernel matrices is also possible.

As a preliminary test of our approach, we consider triples of simple functions h(t),

✓ and g(t) satisfying the relation g(t) = �
R

t

0
✓(t � ⌧)h(⌧)d⌧ . Given h(t) and g(t), an

approximation of ✓ is computed with our methodology and is compared with the exact

analytical ✓. Two tests with di↵erent sets of functions are reported here. The functions

used for the first test are the following:

h(t) = e
�t

, ✓(t) = e
�t

, g(t) = �te
�t (3.9)

In this test, because of the single exponential form of ✓, a MLP with a single neuron in

the hidden layer is adopted, namely Nn = 1.
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The functions adopted for the second test are the following:

h(t) = e
�t

, ✓(t) = 6e
�4t � 4e

�t + 2e
�t/2

g(t) = �
⇣
2e

�t � 2e
�4t � 4te

�t + 4e
3t/2 � 4e

�t

⌘ (3.10)

For this latter example, we impose Nn = 3 neurons in the hidden layer.

Figure 3.3(a-b) reports h(t) and g(t) provided as input to the MLP for both tests. The

comparisons between numerical approximations and analytical ✓ reported in Figs 3.3(c-

d) shows that our methodology can accurately learn the exact memory kernel. The

behaviours of cost function and learning rate during the learning process for both tests

is also shown in Figs 3.3(e-f).

3.1.3. GLE integration

The integration of the GLE dynamics is a not-trivial task for two reasons: first, the con-

volution integral depends on the full history of the observable, and second, the stochastic

term is correlated in time. Several approaches have been proposed to face these issues

based on the introduction of a set of auxiliary variables, i.e. Refs [48, 181, 182]. In the

present work, we take advantage of the exponential structure of ✓(t) to implement an

integration algorithm. The history-dependent convolution term is written as a sum of

the additional variables Zk(t), each defined as Zk(t) =
R

t

0
Ake

Bk(t�⌧)
O(⌧)d⌧ , so that

their evolution equation can be expressed as Żk(t) = BkZk(t) � AkO(t).

The noise R(t) has to be generated with proper time correlations in order to satisfy

the fluctuation-dissipation theorem. The introduction of an additional set of auxiliary

variables ⇠k(t) allows us to express it as function of a standard white noise processes. In

details, the noise term is decomposed as R(t) =
P

Nn

k=1
Rk(t) =

P
Nn

k=1
bk⇠(t), so that the

corresponding evolution reads Ṙk(t) = BkRk(t) + bk⇠(t), where ⇠(t) is a white noise

with zero mean and time correlation h⇠(t)⇠(s)i = 2hO,Oi �(t�s), while the coe�cients

bk can be computed numerically (for details see Appendix B.1.2 ).

As a result, after defining the variables Sk(t) = �Zk(t) + Rk(t), the GLE can be

rewritten in form of extended dynamics as:

8
<

:
Ȯ = F(O(t)) +

P
Nn
k=1

Sk(t)

Ṡk(t) = BkSk(t) � AkO(t) + bk⇠(t).
(3.11)

The numerical algorithm adopted to solve the system is the following splitting method,
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with Euler-Maruyama scheme for Sk(t):

O
(n+1/2) = O

(n) +
�t

2
F

c(O(n)) +
�t

2

NnX

k=1

S
(n)

k
, (3.12)

S
(n+1)

k
= (1 + Bk�t) S

(n)

k
� AkO

(n+1/2)�t + bk⇠
(n)

k
, (3.13)

O
(n+1) = O

(n+1/2) +
�t

2
F

c(O(n+1)) +
�t

2

NnX

k=1

S
(n+1)

k
(3.14)

where ⇠
(n)

k
⇠ N (0, 2�t) are independent Gaussian distributed random values.

In order to test the numerical stochastic integrator, similarly to Ref. [181], we consider

a one dimensional GLE with single exponential memory kernel and no conservative

forces. In this specific case, the time correlation is analytically solvable. Thus, we

compare the autocorrelation function computed numerically with the analytical one,

which can be expressed as [181]:

hO(t)O(0)i
hO(0)O(0)i =

8
<

:
e

tB
2

�
cos(⌦t) � B

2⌦
sin(⌦t)

�
⌦ 6= 0,

e
tB
2

�
1 � Bt

2

�
⌦ = 0,

(3.15)

where it is introduced the complex parameter ⌦ =
p

A � B2/4. Figure 3.5 shows that

the numerical integrator is able to accurately reproduce the analytical correlation in the

under-damped (A = 1 and B = 1), in the damped (A = 1 and B = �2) and in the

over-damped cases (A = 1 and B = �4).

3.1.4. Numerical application I: Single particle in bath

The proposed methodology is tested, first, to model the global e↵ect of a heat bath on a

single particle. Data regarding momentum and forces of the target particle, with mass

m = 1, immersed in a bath of identical particles with masses mb = 1.0 are gathered

from equilibrium MD simulations. The interactions between any two particles i and j

are modelled via a Lennard-Jones (LJ) potential:

vLJ(rij) =

8
<

:
4✏

h
(�/rij)

12 � (�/rij)
6

i
if rij  rc,

0 otherwise,
(3.16)

where rij = |ri � rj | is the distance between the particles, ✏ = 1.0 is the depth of the

potential well, � = 1.0 is the finite atom-atom distance at which the potential is zero,
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Figure 3.5. Comparison between numerical and analytical time correlation computed
over 104 independent trajectories for a GLE with memory kernel in the form of a single
exponential function [181]. The correlation is computed in the under-damped limit with
A = 1 and B = 1 (a), in the damped case with A = 1 and B = �2 (b) and in the
over-damped limit with A = 1 and B = �4 (c). In all cases the temperature is set to
T = 1.

and rc = 2.5� is the cut-o↵ radius.

The simulation box dimensions are 10�⇥10�⇥10�, and periodic boundary conditions

are imposed along x, y and z axes. A Nosé-Hoover thermostat is used to equilibrate

the system at a reduced temperature T = 1.0. The following procedure is followed to

run the MD simulations. First, the bath particles are randomly generated inside the

simulation box. Then, a minimization algorithm is employed to avoid overlaps between

particles. Hence, a run of 105 time steps is used to equilibrate the system. Finally, data

on forces and momenta are gathered over 105 time steps. This process is repeated for
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Figure 3.6. Memory kernels computed with the MLP are compared against the one
obtained directly from MD simulation in the Laplace space, for (a) LDL and (b) HDL
cases. Velocity correlation functions computed from MD, LE and GLE dynamics over
104 trajectories for both (c) LDL and (d) HDL cases are also reported. GLE1 and GLE2
refer to the memory kernel approximations obtained respectively with 1 and 2 neurons in
the hidden layer. In (e-f) we report the mean square di↵erences ✏p(t) and ✏q(t) between
the pdfs of the reduced systems (GLE and LE) and the exact pdf of the full system
(MD) as function of the relaxation time.
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Figure 3.7. Comparison of the mean square displacement (MSD) computed with GLE
and MD, for both LDL (a) and HDL (b) cases. GLE1 and GLE2 refer to the memory
kernel approximations obtained respectively with 1 and 2 neurons in the hidden layer.

102 trajectories in order to enhance the accuracy of the correlations, and consequently,

of the memory kernels.

In this study, we consider two bath densities: the low density limit (LDL) with ⇢ =

0.699, and the high density limit (HDL) with ⇢ = 0.799. Figures 3.6(a-b) show the

comparison in the Laplace space of the exact memory kernel computed with MD and with
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Figure 3.8. Relaxation dynamics of position (a-c-e) and momentum (b-d-f) probability
density function from Dirac delta to equilibrium condition computed with MD, LE and
GLE over 104 trajectories. Corresponding mean square error between LE/GLEs and
MD of position (g) and momentum (h) probability density function in time.

our methodology for both LDL and HDL cases. It is worth underlying that the Laplace
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space is used only for comparison purpose, since it allows to extract ✓(t) numerically from

MD data. From the comparison it emerges that the first order approximation obtained

with the MLP outperforms the Markovian approximation at low �, but is unable to

catch the behaviour at high � in the Laplace space. In contrast, the second order

approximations exactly overlay with the MD results for the entire spectrum of �. The

accuracy in the memory kernel approximation directly a↵ects the velocity correlation

functions obtained with the di↵erent methods, which is shown in Figs 3.6(c-d). In the

log-log diagram clearly emerges the limitations of LE, which is unable to accurately

replicate the original correlation dynamics obtained with MD simulations. The first

order approximation of the GLE, on the contrary, is fairly accurate, but diverges for

long times. Finally, the GLE embedded with an higher approximation of the memory

kernel follows the exact autocorrelation within a tolerance lower than 1%.

In Figs 3.7(a-b), we report the mean square displacement h(x(t) � x(0))2i computed

with MD, LE and GLE in the LDL and HDL cases. From the comparison, it emerges

that both the Markovian and the non-Markovian coarse-graining are able to accurately

reproduce the mean square displacement.

Figs 3.7(c-d) show the values of the adaptive learning rate ⌘ during the MLP learning

process. The log-log plot highlights the wide range of ⌘ values, that spans up to 8 orders

of magnitude. This variability exemplifies the advantages of an adaptive learning rate

over a fixed one. The error (or cost function) evolution during the learning process is

reported in Figs 3.7(e-f). The monotonically decreasing trend of C at some point shows

a plateau, which corresponds to an end of the learning process.

The e↵ectiveness and the limitations of the coarse-graining out of equilibrium is also

tested, by analysing the probability density function ⇢. A target particle with zero ini-

tial position x and momentum p is immersed in an equilibrated bath of 699 particles

identical to the one adopted in the LDL case at equilibrium. Then, 105 trajectories of

the system relaxation to equilibrium are simulated. This relaxation corresponds to the

evolution of a Dirac delta to the equilibrium distribution in the phase space. Similarly,

the relaxation of ⇢ obtained by coarse-graining the bath with GLE and LE is followed.

The comparison reported in Figs 3.8(a-f) shows that GLE, even if parametrized with

a memory kernel evaluated in equilibrium conditions, significantly outperforms LE. As

expected, at equilibrium the distributions obtained with MD, GLE and LE converge.

During the relaxation, ⇢ relaxes faster for LE and GLE with respect to MD. A quantita-

tive estimation of the accuracy of GLE in reproducing the density relaxation is provided

by the mean square errors in position ✏q and momentum ✏p, shown in Figs 3.8(g-h). As

expected, both errors are null at the beginning and, asymptotically, when the system
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reaches equilibrium. During the first instants of the relaxation, the error reaches a peak,

whose value for GLE is lower than LE of about 50% and 35% if considering ✏q and ✏p,

respectively.

3.1.5. Numerical application II: Particle in a bistable potential
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Figure 3.9. (a) Trajectory of a particle in a bistable potential simulated with MD
(explicit bath particles), GLE embedded with a memory kernel approximated through
our MLP (implicit bath particles) and a standard package using neural network for data
series modelling (NeuralProphet). The comparison between transition time probability
densities (b) shows that NeuralProphet cannot accurately reproduce the transition dy-
namics of the particle because of the non-seasonal behaviour of the original MD data
series. On the contrary, the transition time distribution obtained with our GLE follows
very closely the MD one.

As an additional validation of our GLE approach, we simulated a particle in a bath

confined in a double well potential U
ext = 10 ⇥ (y4 � y

2), and compared the GLE dy-

namics against MD, and against a neural-network forecasting of the dynamics by using

NeuralProphet (a standard numerical library for data series modelling). NeuralProphet

is based on an open-source software used for time data series forecasts by Facebook’s

core data science team [183]. It adopts an additive model where non-linear trends are fit

with yearly, weekly, and daily seasonality, plus holiday e↵ects. In Figure 3.9(a) we show

a particle trajectory in the bistable potential simulated with MD (explicit bath parti-

cles), GLE embedded with a memory kernel approximated through our MLP (implicit

bath particles) and NeuralProphet. This visualization clearly shows that NeuralProphet

is not able to accurately replicate the original non-seasonal dynamics obtained with MD.

In Figure 3.9(b), we also report the probability densities of the transition time, defined

as the time di↵erence between two consecutive crossings of the saddle point of the po-
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Table 3.1. Values of interaction potentials parameters adopted to simulate a particle
chain.

Parameters KH K� K� r0 �0 ✏i,j �i,j

Values 100 10 10 1.5 109.5 1 1

(a) (b)

0 50 100 150 200

t

0.0

0.5

1.0

C
R

MD

LE

GLE1

GLE2

Figure 3.10. (a) Representation of the particle chain in the bath at equilibrium. (b)
Time correlation of the gyration radius of the particle chain in a bath at equilibrium
computed from LE, GLE and MD simulations.

tential. This comparison between MD, GLE and NeuralProphet confirms that standard

packages, such as NeuralProphet, cannot detect and replicate the full kinetics of transi-

tion dynamics dominated by non-seasonal events. On the contrary, our GLE approach

shows its high capabilities in reproducing the MD transition time.

3.1.6. Numerical application III: Particle chain in bath

As an additional test, we analyse the dynamics of a chain of N = 20 particles in a

bath. A LJ potential vLJ is used to model pairwise non bonded interactions among

chain and bath particles. The chain particle interactions are modelled by the following

multi-body Dreiding potential [184], already adopted in Ref. [185] to study polymer

chain deformations,

v(ri,j,k,l) = vLJ(rij) + vH(rij) + v✓(rijk) + v�(rijkl), (3.17)

where vH(rij) = kH(rij �r0)2, v✓(rijk) = k✓(✓ijk�✓0)2 and v�(rijkl) = k�(1+cos(2�ijkl))

account for linear, angular and dihedral bonds, respectively. Linear covalent bonds are
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modelled with the harmonic potential vH(rij) = kH(rij�r0)2, where r0 is the equilibrium

position and kH is a positive constant. Similarly, angular covalent bonds are modelled

by v�(rijk) = k�(�ijk � �0)2, where �ijk is the angle in i formed by the particles i, j and

k, �0 is the equilibrium angle and k� is a positive constant. Finally, we consider torsional

(dihedral) bonds through the potential v�(rijkl) = k�(1 + cos(2�ijkl)), with �ijkl being

the angle between the two planes defined by {ri, rj , rk} and {rj , rk, rl} respectively,

and k� being a positive parameter. Table 3.1 reports the values of the interaction

parameters adopted in the present work. The bath contains 69, 900 particles interacting

with Lennard-Jones potential vLJ . The simulation box measures 50� ⇥ 50� ⇥ 40�,

and periodic boundary conditions are imposed along x, y and z axes. A Nosé-Hoover

thermostat is used to equilibrate the system at a reduced temperature T = 1 with a time

step �t = 10�2. The following procedure is followed to run the MD simulations. First,

the bath particles are randomly generated inside the simulation box. Then, the chain

particle are placed along a straight line, and a minimization algorithm is employed to

avoid particle overlaps. Hence, a run of 1.5 ⇥ 105 time steps is used to equilibrate the

system. Finally, data are gathered over 2 ⇥ 107 time steps.

The bath has the same characteristics (density ⇢ = 0.699, temperature T = 1 and

interaction potential vLJ) of the LDL case for the single particle. This choice, together

with the assumption that the potential of mean force acting among the chain particles

is approximately equal to v(ri,j,k,l), allows us to use the same memory kernel obtained

for the single particle (see Fig. 3.6). Particle chains are usually used to model polymers,

whose characteristic dimensions are described by the gyration radius, defined as R
2

G
=

1

N

P
N

k=1
(rk�rCM)2, where rk and rCM are the position of the particle k and of the centre

of mass of the chain respectively. Figure 3.10 shows the radius of gyration autocorrela-

tion, computed as [186, 187] CR =
⇥
hRG(t)2RG(0)2i � hRG(0)2i2

⇤ ⇥
hRG(0)4i � hRG(0)2i2

⇤
�1

,

for the particle chain dynamics at equilibrium simulated with LE, GLE and MD. It is

interesting to observe that GLE, already with a single neuron, is able to accurately re-

produce the bath e↵ects on the chain and outperforms the commonly used Markovian

approximation.

3.1.7. Numerical application IV: Modelling global temperature

Several stochastic models have been developed to reproduce and forecast global and

local temperature dynamics, for example in Refs [188, 189, 190]. In the present work,

we show that GLE, parametrized through our method, is able to accurately model the

global daily temperature fluctuations with respect to a properly chosen moving average.

It is worth underlying that the same methodology could be also employed to model lo-
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Figure 3.11. (a) Global temperature T (t), annual moving average temperature Ty(t)
and the daily anomaly Ta(t) = T (t) � Ty(t) between 1880 and 2014. (b) Memory kernel
approximations computed through MLP with 1,2 and 3 neurons in the hidden layer and
(c) corresponding time correlations obtained from real data and GLE simulations.

cal temperature dynamics. We consider the daily land-average global temperature T (t)

measured during the period 1880-2014, published by the Berkeley Earth [191, 192]. De-

spite the local temperature showing cyclical trends in the short period due, for instance,

to season changes, global temperature does not exhibit a significant seasonal behavior,

being a result of the energy balance between solar and earth radiations [193]. Neverthe-

less, T (t) reveals non-stationarity features due to a long period increasing trend related

to global warming, as visible in Fig. 3.11(a). Hence, we first compute the long term
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dynamics Ty as an yearly moving average:

Ty(t) =
1

y

t�1X

i=t�y�1

T (i) (3.18)

Then, we define the observable of interest as Ta(t) = T (t)�Ty(t), so that the correspond-

ing time series is stationary (see Appendix B.1.3). Consequently, we model Ta(t) with a

GLE in the form @tTa(t) = �
R

t

0
✓(t � ⌧)Ta(⌧)d⌧ + R(t). In fact, this is a generalization

of the Markovian model for weather derivatives proposed in Ref. [188].

In Fig. 3.11(b), we plot various degrees of approximation of the memory kernel ex-

tracted with our MLP-based method, while Fig. 3.11(c) shows the corresponding correla-

tions functions. In first place, it emerges an excellent agreement between the correlations

obtained with GLE dynamics and the real world data, especially when three neurons are

adopted in the hidden layer. Then, matching the relaxation times of memory kernel (⇠
days) with the characteristic time of the variable Ty (⇠ years), we can obtain the evolu-

tion of T (t) as sum of a Markovian yearly (long term) contribution and a non-Markovian

daily (short term) term, namely:

@tT (t) = (@t + ✓c) Ty(t) �
Z

t

0

✓(t � ⌧)T (⌧)d⌧ + R(t), (3.19)

where we introduced the constant ✓c =
R

t

0
✓(⌧). Eq. (3.19), originating directly from

data, reflects the main features of global temperature multi-scale dynamics.

3.1.8. Numerical application V: A stock market model

In more than one study, stochastic models have been employed to model financial in-

struments, such as bonds and stock prices [194, 195, 196]. In fact, operations such

as financial risk management and portfolio optimization require accurate predictions of

markets dynamics to maximize profits. However, most of the models used in finance

relies on Markovian assumptions, which can potentially introduce inaccuracies. A pos-

sible way to overcome such limitations is employing a GLE model. Here we show how

the methodology can be applied to model the daily price of the Japanese financial index

Nikkei NI(t) between May 1949 and May 2018 [197]. As many other financial instru-

ments, NI(t) exhibits a non-stationary behavior in both mean and variance. Thus, we

build an observable defined as NIa(t) = [NI(t) � NIy(t)] /�y(t), with NIy(t) and �y(t)

being respectively a moving average and a moving standard deviation computed over a
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Figure 3.12. (a) Daily close price of Nikkei index NI(t), moving average index Ny(t)
computed over a window of 10 days preceding the time t and the normalized index
NIa(t) between 1949 and 2018. (b) Memory kernel approximations computed through
MLP with 1,2 and 3 neurons in the hidden layer and (c) the corresponding time correla-
tions obtained from real data and GLE simulation. (d) Comparison between predicted
probability distribution (colour-map) and actual market data (dashed black line). Dot-
ted lines in grey delineate the 10 days long investment windows.

period [t � y, t � 1] as:

NIy(t) =
1

y

t�1X

i=t�y�1

NI(i) (3.20)

�y(t) =

vuut1

y

t�1X

i=t�y�1

(NI(i) � NIy(t))
2 (3.21)
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The parameter y is then properly chosen in order to obtain a stationary NIa(t); In this

work we adopt y = 10 days. Hence, we model the normalized stock price NIa(t) with

the following non-Markovian model @tNIa(t) = �
R

t

0
✓(t � ⌧) NIa(⌧)d⌧ + R(t).

In Figs 3.12(b-c) we report various degrees of approximations obtained with our

method and the corresponding correlations functions. In contrast with the global tem-

perature trend, NIa(t) do not exhibit a clear time-scale separation between memory

kernel and autocorrelation decays. The comparisons between the correlations obtained

with GLE dynamics and the real data exhibit a growing accuracy with an increasing

number of neurons in the hidden layer. In fact, with the third order approximation we

are able to reproduce the correlation decay with a maximum relative errors of order

10�2. The proposed GLE model, parametrized with our MLP equipped with 3 neurons,

is employed in a comparison between the predicted probability distribution and actual

market data for four time windows, each ten market days long, between 15 Jun 2018

and 10 Aug 2018 (Fig. 3.12(d)). It emerges that our model is able not only to predict

most of the actual market trend, but, more important, gives quite accurate information

on the local variance of the trend, thus giving the chance of optimizing risk management

in short term (⇠ weakly) investments.
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3.2. Macroscopic coarse-graining: From GLE to
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Z

drN
dpN

f(rN
,pN ; t) ⇥ �

@t⇢s(r; t) = �rr · (m�1
s js(r; t)) + w�,s(r; t)

@tjs(r; t) = � rr ·
✓

(m�1
s js(r; t)) ⌦ js(r; t)

⇢s(r; t)

◆
� ⇢s(r; t)


rr

�Fs[⇢s]

�⇢s(r, t)
+ rr

�H
ext
U [⇢s]

�⇢s(r, t)

�

�
Z t

t0

dt
�✓s(t � t

�)js(r; t
�) +

p
⇢s(r; t)Rs(r; t) + wj,s(r; t)

@t⇢s(r; t) = � rr · (m�1
s js(r; t)) + w�,s(r; t)

@tjs(r; t) = � rr ·
✓

(m�1
s js(r; t)) ⌦ js(r; t)

⇢s(r; t)

◆
� ⇢s(r; t)


rr

�F [⇢s]

�⇢s(r, t)
+ rr

�H
ext
U [⇢s]

�⇢s(r, t)

�

+
X

k

Ss,k(r; t) + wj,s(r; t)

@tSs,k(r; t) = Bs,k Ss,k(r; t) � As,k js(r; t) + bk⇠s(r; t)

@t⇢s(r; t) = rr ·
⇢

m
�1
s I


⇢s(r; t)

✓
rr

�Fs[⇢s]

�⇢s(r, t)
+ rr

�H
ext
U [⇢s]

�⇢s(r; t)

◆
+

p
⇢s(r; t)Rs(r; t) + wj,s(r; t)

��
+ w�,s(r; t)

@t⇢s(r; t) = Drr ·
n

kBTm
�1
s rr⇢s(r; t) +

p
⇢s(r; t)R0,s(r; t)

o
+ w�,s(r; t)

@t⇢s(r; t) = � rr · (m�1
s js(r; t)) + w�,s(r; t)

@tjs(r; t) = � rr ·
✓

(m�1
s js(r; t)) ⌦ js(r; t)

⇢s(r; t)

◆
� ⇢s(r; t)


rr

�Fs[⇢s]

�⇢s(r, t)
+ rr

�H
ext
U [⇢s]

�⇢s(r, t)

�

� ✓0,sjs(r; t) +
p

⇢s(r; t)R0,s(r; t) + wj,s(r; t)

Stochastic Reaction-Di↵usion Equation

Extended dynamics for Non-Markovian FDDFT

Generalized Dean-Kawasaki Equation

Non-Markovian FDDFT

Overdamped Non-Markovian FDDFT Overdamped Non-Markovian FDDFT for Ideal Gases

Markovian FDDFT

GLE for Microscopic Number and Momentum Densities

@t⇢̂s(r; t) = � rr · (m�1
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Figure 3.13. Flowchart showing the approach followed to obtain the non-Markovian
FDDFT and its over-damped approximation. Connection to previous formulations are
also included. Arrows denotes the relations among the di↵erent approaches. Thin box-
es/arrows: previous approaches. Thick boxes: main results of this work.

The Langevin approach is still atomistic, and thus essentially equivalent to brute-force

simulations in computational complexity. A continuum framework capable of describing

small-scale systems is o↵ered by dynamical density functional theory (DDFT). Unlike

3This section includes material from A. Russo, M. A. Durán-Olivencia, P. Yatsyshin & S. Kalliadasis.
Non-Markovian dynamical density functional theory for reacting multi-component systems: theoret-
ical framework and finite volume simulations, J. Phys. A: Math. Theor., 53, 445007 (2020).
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the atomistic GLEs, DDFT operates with locally averaged densities and is thus com-

putationally more tractable. DDFT is usually obtained by deriving the Fokker-Planck

equation governing the evolution of the system probability density function, which is

then averaged over all but one degrees of freedom [56, 61, 62, 63]. Recently, several

extensions of DDFT were proposed for multi-component systems [62] to include hydro-

dynamic interactions [56, 63, 64] and e↵ects of particle orientability [65].

The inclusion of fluctuations in the DDFT framework, which is derived through a

mean field approach, has posed many questions [66]. In some studies, such as the work

by Elder et al. [67], an additional noise term was artificially included. Nevertheless,

the physical meaning of this term is dubious. This long standing debate was clarified

by the recent derivation of Duran-Olivencia et al. [68], who derived fluctuating DDFT

(FDDFT) from first principles. In the present section, we extend the derivation by

Duran-Olivencia et al. [68] to include memory e↵ects in FDDFT for multi-component

reacting system.

Our starting point is represented by microscopic GLEs governing the time-evolution of

particles belonging to a multi-phase reacting colloidal system in a thermal bath. We then

derive the non-Markovian FDDFT governing the dynamics of density and momentum

fields. In the overdamped limit, the latter reduces to a single equation for the time-

dependent one-body density field. In general, solving the non-Markovian FDDFT is

computationally quite challenging, due to the memory term and the time-correlated

noise. However, in case of memory terms in the form of decaying exponential series, these

issues are overcome by introducing an additional field, whose time evolution accounts

for memory term and time-correlations in the stochastic term. Such an approach will

be denoted below as extended field dynamics. The resulting non-Markovian DDFT

equations are solved using a finite volumes approach. We consider several applications

to multi-component reacting systems, including binary configurations leading to the

appearance of Turing patterns [198, 199, 200, 201, 202, 203, 204, 205, 206].

The section is organized as follows. In Sect. 3.2.1, we introduce GLEs for an isothermal

multi-component system of particles, which provide the starting point for our derivation.

Sect. 3.2.2 includes the discussion of microscopic density and momentum fields, and the

derivation of the FDDFT equations for a multi-species reacting system. A non-trivial

deconvolution operator has to be defined to take the overdamped limit of the previously

derived FDDFT in Sect. 3.2.3. The computational challenges due to both the memory

term and the correlated noise are overcome by introducing an extended field variables

dynamics framework in Sect. 3.2.4. Finite volume method is then used for the spatio-

temporal discretization of the extended variable dynamics in Sect. 3.2.5. Sect. 3.2.6
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reports several numerical experiments, including a comparison between MD and FH that

validates the main results of the work and a study of memory-driven Turing patterns.

3.2.1. Generalized Langevin equations

Consider an isothermal system, which at time t contains a total of Nt,s particles, across

K di↵erent species. We denote the phase-space coordinates of species s as zs = {rs,ps},

with rs = {r1,s . . . rNt,s} and ps = {p1,s . . .pNt,s} being the particle positions and mo-

menta, respectively. In many cases, such as colloids in suspension, one is interested in

the dynamical evolution of only the first Ns of the original Nt,s particles. These can be

shown to obey the following GLE [34, 40, 43]:

ṙi,s(t) = m
�1

s pi,s(t) , (3.22)

ṗi,s(t) = Fi,s �
Z

t

t0

dt
0✓s(t � t

0)pi,s + Ri,s(t), (3.23)

where Fi,s = �rri,sU(ri,s) is the force experienced by the particle, with U(ri,s) being

the potential of mean force in the form:

U(ri,s, r
N ) =

KX

↵=1,↵ 6=s

N↵X

j=1

V↵(ri,s � rj,↵) +

Ns(t)X

j=1,j 6=i

Vs(ri,s � rj,s) + Uext(ri,s) . (3.24)

The memory kernel tensor ✓s(t�t
0) in the convolution term of Eq. (3.23) accounts for the

e↵ects of the thermal bath on the particle dynamics [37, 38, 39, 40]. The stochastic term

Ri,s(t) in Eq. (3.23) has a Gaussian distribution with mean zero and time correlation

function satisfying the fluctuation dissipation theorem, namely

hRi,s(t)i = 0, (3.25)

hRi,s(t)Ri,s(t
0)i = mskBT✓s(t � t

0) , (3.26)

where kB is the Boltzmann’s constant. It is worth underlying that in Eqs (3.22)-(3.23)

we have assumed that particles belonging to the same species s all have the same mass

ms, memory kernel tensor ✓s and interact via a pairwise potential Us.

Within the Markovian approximation, the characteristic time of the momentum cor-

relation decay is regarded to be much smaller than the typical time scale of the system

dynamics. In this case the memory kernel tensor can be approximated as ✓s(t) = 2✓0�(t),

where �(t) is Dirac’s delta function and ✓0 is constant. When no clear scale separation

between colloidal and bath particles is present, the Markovian hypothesis is inapplicable,
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and one must seek approximating the memory kernel [36, 40, 44, 48].

3.2.2. Non-Markovian FDDFT

The microscopic number and momentum density fields of species s, containing a time-

dependent number of particles Ns(t), can be defined as follows:

⇢̂s(r; t) =

Ns(t)X

i=1

�(r � ri,s) , (3.27)

ĵs(r; t) =

Ns(t)X

i=1

pi,s�(r � ri,s) , (3.28)

where Ns is the number of particles in species s.

In order to obtain the number and momentum densities, Eqs (3.27)-(3.28) must be

di↵erentiated with respect to time, which can be done by applying the discrete Leibniz

integral rule:

@t

Ns(t)X

i=1

f(i; t)�(r � ri,s) =

Ns(t)X

i=1

@t [f(i; t)�(r � ri,s)] + f(Ns; t)�(r � rNs,s)
dNs(t)

dt
.

(3.29)

The second term on the right hand side of Eq. (3.29) represent the reaction contribution,

which is stochastic in nature and can be determined empirically [71].

Applying the time derivative (Eq. (3.29)) to Eqs (3.27) and (3.28), and using Eqs (3.22)

and (3.23), we obtain the time evolution of the number and momentum density fields of

each species s:

@t⇢̂s(r; t) = �rr · (m�1

s ĵs(r; t)) + ŵ⇢,s(r; t) , (3.30)

@tĵs(r; t) = �rr ·
Ns(t)X

i=1

(m�1

s pi,s) ⌦ pi,s�(r � ri,s) +

Ns(t)X

i=1

Fi,s�(r � ri,s)

�
Z

t

t0

dt
0✓s(t � t

0)ĵs(r; t) + ⌘s(r; t) + ŵj,s(r; t) , (3.31)

where ŵ⇢,s and ŵj,s are the contributions to density and momentum due to chemical
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reactions. The local random force ⌘s is given as

⌘s(r; t) =

Ns(t)X

i=1

�(r � ri,s)Ri,s(t) . (3.32)

If reactions can occur only between resolved particles, additionally the conservation of

mass and momentum of the total system must be imposed:

KX

↵=1

ŵ⇢,↵(r; t) = 0 , (3.33)

KX

↵=1

ŵj,s(r; t) = 0 , (3.34)

Finally, we can rewrite the stochastic term without changing its statistical properties

(see Appendix B.2.1) as

⌘s(r; t) =
p

⇢s(r; t)Rs(r; t) , (3.35)

where Rs denotes the spatial-temporal stochastic process satisfying the fluctuation-

dissipation theorem

hRs(r; t)Rs(r
0; t0)i = mskBT✓s(t � t

0)�(r � r0). (3.36)

The first and the second terms on the right-hand side of Eq. (3.31) can be rewritten in

terms of ⇢̂s(r; t) and ĵs(r; t). Specifically, the second term with the force Fi,s, experienced

by the particle can be further rewritten as

Ns(t)X

i=1

rri,sU(ri,s, r
N )�(r � ri,s) = ⇢̂s(r; t)

h
rrUext(r; t)+

KX

↵=1

Z
dr0

rrV↵(r � r0)
�
⇢̂↵(r0; t) � �(r � r0)

� i
.

(3.37)
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Moreover, the convective flux becomes [68, 207]

Ns(t)X

i=1

(m�1

s pi,s) ⌦ pi,s�(r � ri) =

PNs(t)

i=1

PNs(t)

j=1
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⇢̂s(r; t)

=
(m�1

s ĵs(r; t)) ⌦ ĵs(r; t)

⇢̂s(r; t)
.

(3.38)

Thus, the fluctuating momentum equation reads
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p
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(3.39)

The following definition of the internal and external energy functionals

HU [�s] =
1

2

KX

↵=1

ZZ
drdr0

V↵(r � r0)(�s(r)�↵(r0) � �(r � r0)�s(r)) , (3.40)

H
ext

U [�] =
1

2

Z
drUext(r)�(r) , (3.41)

allows us to rewrite Eq. (3.39) in terms of functional derivative of Eq. (3.40) and

Eq. (3.41) as

@tĵs(r; t) = �rr ·
 

(m�1
s ĵs(r; t)) ⌦ ĵs(r; t)

⇢̂s(r; t)
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p

⇢̂s(r; t)Rs(r; t) + ŵj,s(r; t) . (3.42)

Notice that Eq. (3.42) still depends on all particle position and momenta through the

terms ⇢̂s(r; t) and ĵs(r; t). Thus, an ensemble average is required to obtain a mesoscopic

description of the system, as highlighted in [68]. To this end, we introduce a probability

density function f(rN
, pN ; t) for the system at local equilibrium:

f(rN
, pN ; t) = Z�1

e
��H(rN

,pN
;t) (3.43)
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where Z is the partition function, � = (kBT )�1 and H(rN
, pN ; t) is the system Hamil-

tonian given by:

H =
1

2
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dr
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#
�(r � ri).

(3.44)

Hence, the ensemble average of density, momenta and reaction sources gives:
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Ensemble averaging Eq. (3.42), we obtain the mesoscopic FDDFT for species s:

@t⇢s(r; t) = �rr · (m�1

s js(r; t)) + w⇢,s(r; t) (3.46)
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Above we introduced the Helmholtz free-energy functional, defined as sum of ideal and

excess-over-ideal contributions Fs[⇢] = F id
s [⇢s] + Fs[⇢s]ex:

F id
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� 1
�

(3.48)

where ⇤ is the thermal de Broglie wavelength. The excess part of the free-energy satisfies

the relation:

⇢s(r; t)rr
�Fex

s [⇢s]

�⇢s(r, t)
=

⌧
⇢̂s(r; t)rr

�HU [⇢̂s]

�⇢̂s(r, t)

�
=

KX

↵=1

Z
dr0

rrV↵(r � r0)⇢(2)

s,↵(r, r0; t)

(3.49)

where ⇢
(2)

s,↵(r, r0; t) = h⇢s(r; t)⇢↵(r0; t)i is the inter-species pair-correlation function. No-

tice that in local equilibrium, the term containing the Helmholtz free-energy is asso-

ciated with pressure. In fact, the Gibbs–Duhem relation (dp =
P

s
⇢sdµs), and the
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Euler–Lagrange equation of equilibrium DFT (µs = �Fs[⇢s]/�⇢s) lead to the following:

rrp =
X

s

⇢s(r; t)rr
�Fs[⇢s]

�⇢s(r, t)
, (3.50)

which is consistent with the well-known expressions for one-component systems [53, 68].

3.2.3. Markovian and overdamped limits: Connections with DDFT

and reaction-di↵usion equations

In many cases the memory kernel decays to zero on a timescale much smaller than the

characteristic time scale of the density dynamics. Under such circumstances, the density

field relaxes much slower than the momentum field, and it is possible to assume that the

material derivative of the momentum Dtjs ⇠ 0. This approximation allows one to reduce

the equations of fluctuating hydrodynamics to a single evolution equation for the density.

Our system of equations, however, contains a non-Markovian memory term, which has

a convolution structure and thus, makes the derivation more complex. Specifically, we

define the following “deconvolution” operator

I
Z

t

t0

dt
0
�(t � t

0)⇡(r; t), �

�
= ⇡(r; t), (3.51)

which is applied to both sides of the momentum equation (Eq. (3.47)). Assuming that

Dtj ⇠ 0, we obtain the non-Markovian time evolution of the density field of the species

s in a multi-component system:

@t⇢s(r; t) =rr ·
(

m
�1

s I
"
⇢s(r; t)

✓
rr

�Fs[⇢s]

�⇢s(r, t)
+ rr

�H
ext

U
[⇢s]

�⇢s(r, t)

◆

+
p

⇢s(r; t)Rs(r; t) + wj,s(r; t)

#)
+ w⇢,s(r; t)

(3.52)

In general, the operator I may be arbitrarily defined, as long as its definition satisfies

Eq. (3.51). In this work, we can take advantage of the properties of Laplace transform
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and define the operator I as:

I
Z

t

t0

dt
0
�(t � t

0)⇡(r; t), �

�
=L�1

8
<

:
L
hR

t

t0
dt

0
�(t � t

0)⇡(r; t)
i

L [�(t)]

9
=

;

= L�1

⇢
L [�(t)] L [⇡(r; t)]

L [�(t)]

�
= ⇡(r; t)

(3.53)

where L[⇡(r; t)] =
R

1

0
⇡(r; t)e�t/�

dt indicates the Laplace transform of a time depen-

dent field.

Applying the deconvolution operator in Eq. (3.51) for a multi-component system of

ideal gases, one obtains the following non-Markovian time evolution of the density field

of the species s:

@t⇢s(r; t) = rr ·
n

m
�1

s I
h
rrkBT⇢s(r; t) +

p
⇢s(r; t)Rs(r; t) + wj,s(r; t)

io

+ w⇢,s(r; t).
(3.54)

If we neglect the reaction contributions to the momentum and we make use of the

definition of the operator I in Eq. (3.53), we then obtain

@t⇢s(r; t) = rr ·

8
<

:m
�1

s L�1

2

4
L
h
kBTrr⇢s(r; t) +

p
⇢s(r; t)Rs(r; t)

i

L [✓(t)]

3

5

9
=

;+ w⇢,s(r; t).

(3.55)

By defining the function eD(t) = L�1

h
(L [✓(t)])�1

i
, and using the properties of Laplace

transform, we get

@t⇢s(r; t) = eD(t) ⇤ rr ·
n⇣

kBTm
�1

s rr⇢s(r; t) +
p

⇢s(r; t)Rs(r; t)
⌘o

+ w⇢,s(r; t),

(3.56)

where ⇤ stands for a convolution in time.

For a memory kernel in the form ✓s(t) =
P

d

k
As,ke

Bs,kt, the function eD(t) is given by

eD(t) = L�1

2

4
 

dX

k

As,k�

1 � Bs,k�

!�1
3

5 . (3.57)

In the Laplace transform the highest values of � correspond to the lowest frequencies,
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which are usually dominant. This allows us to simplify the above even further:

eD(t) ⇠ L�1

2

4 lim
�!1

 
dX

k

As,k�

1 � Bs,k�

!�1
3

5 =L�1

2

4
 

�
dX

k

As,k

Bs,k

!�1
3

5

= �
 

dX

k

As,k

Bs,k

!�1

�(t).

(3.58)

Finally, Eq. (3.56) reduces to

@t⇢s(r; t) = Deffrr ·
n

kBTm
�1

s rr⇢s(r; t) +
p

⇢s(r; t)Rs(r; t)
o

+ w⇢,s(r; t), (3.59)

where we have introduced the e↵ective di↵usion coe�cient Deff = �
⇣P

d

k

As,k

Bs,k

⌘
�1

.

An alternative derivation of Eq. 3.59 would be to first take the Markovian limit of

an ideal gas model, followed by the overdamped limit, assuming that the momentum

reaction rate wj,s is negligible. In this way Eq. (3.52) would be reduced to the usual

reaction-di↵usion equation for the density [71]:

@t⇢s(r; t) = rr ·
h
kBT (ms✓0,s)

�1 (rr⇢s)
i

+ rr ·
p

⇢s(r; t)R0,s(r; t) + w⇢,s(r; t).

(3.60)

3.2.4. Extended field dynamics

Numerical solution of the non-Markovian equations Eqs (3.46)-(3.47) is non-trivial. For

one thing, it is not obvious how to sample time-correlated noise. Additionally, the

direct evaluation of the convolution integral requires one to keep track of the entire

history of the momentum field, which drives up the computational cost. Within the

so-called extended dynamics approach, additional variables are introduced to capture

the memory and noise e↵ects on the observable [48, 181, 182]. In this section we derive

extended dynamics for non-Markovian FDDFT, generalizing the work by Kawai [182].

For simplicity we assume that the global e↵ects of the bath are isotropic [48] and the

memory kernel can be expressed as an exponential series [181, 182]:

✓s(t) = ✓s(t)I =
dX

k

As,ke
Bs,ktI (3.61)

where I is the identity matrix, As,k and Bs,k are real-valued, and Bs,k  0.
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Convolution decomposition

The extended field variable associated with the k-th mode of the memory term of species

s is defined as:

Zs,k(r; t) =

Z
t

t0

dt
0
As,ke

Bs,k(t�t
0
)js(r; t0) , (3.62)

so that the convolution term can be re-written as
R

t

t0
dt

0
✓s(t� t

0)js(r; t0) =
P

d

k
Zs,k(r; t).

Di↵erentiating Zs,k with respect to t, we obtain the time evolution of the field Zs,k in

form of a stochastic partial di↵erential equation (SPDE):

@tZs,k(r; t) = Bs,k Zs,k(r; t) + As,k js(r; t) . (3.63)

Noise decomposition

The noise term is given by

⌘s(r; t) =
p

⇢s(r; t)Rs(r; t) , (3.64)

where Rs denotes the spatial-temporal noise with correlations hRs(r; t)Rs(r0; t0)i =

kBT✓s(t � t
0)�(r � r0)I. Because of the symmetry between t and t

0 in the fluctuation-

dissipation theorem, ✓s(t) must be an even function of time: ✓s(t) = ✓s(�t). Additionally,

its Fourier transform e✓s(!) =
R

�1

�1
✓s(t)e�i!⌧

dt must be real and even too, when ! is real.

It follows that in the !-plane, the roots and singularities of e✓s(!) must be symmetric

with respect to real and imaginary axes. This allows us to introduce the function e�(!),

such that

e✓s(!) = 2e�(!)e�T (�!), (3.65)

where

e�(!) =
X

k

�i (! + iBs,k)
�1

bs,k (3.66)

with real coe�cients bs,k and Bs,k. The singular points of e��1(!) lie in the lower half of

the complex !-plane. Moreover, we define two function in the Fourier space:

e⇣(!) = e��1(!), (3.67)
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and

ekk(!) = �i (! + iBs,k)
�1

bs,k
e⇣(!), (3.68)

and we denote their Fourier inverse transform with h(t) and kk(t). Combining Eqs (3.66),

(3.67) and (3.68), it follows that:

X

k

ekk(!) = 1 (3.69)

or, equivalently,

X

k

kk(t) = �(t). (3.70)

Moreover, Eq. (3.68) can be rewritten as (i! � Bs,k)ekk(!) = bs,k
e⇣(!), which in the time

domain gives:

d

dt
kk(t) � Bs,kkk(t) = bs,k⇣(t) (3.71)

We introduce two more vector fields, corresponding to a delta correlated stochastic field

(as proved in Appendix B.2.2) and an auxiliary stochastic field, respectively:

⇠s(r; t) =

Z
+1

0

⇣(t � t
0)⌘s(r; t0)dt

0 (3.72)

and

⌘s,k(r; t) =

Z
+1

0

kk(t � t
0)⌘s(r; t0)dt

0
. (3.73)

From Eqs (3.73) and (3.70) it follows that:

dX

k

⌘s,k(r; t) = ⌘s(r; t), (3.74)

while, combining Eq. (3.73) and (3.71), we obtain

@t⌘s,k(r; t) = Bs,k⌘s,k(r; t) + bs,k⇠s(r; t). (3.75)
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Eqs. (3.75) and (3.74) allow us to express the original correlated noise as a function of

the white noise ⇠(t). The discussion of the properties of the process ⇠(r; t) can be found

in Appendix B.2.2.

Non-Markovian FDDFT

After defining an extended field Ss,k(r; t) = �Zs,k(r; t) + ⌘s,k(r; t), the FDDFT equa-

tions can be expressed in the following form:

@t⇢s(r; t) = � rr · (m�1

s js(r; t)) + w⇢,s(r; t) (3.76)

@tjs(r; t) = � rr ·
✓

(m�1
s js(r; t)) ⌦ js(r; t)

⇢s(r; t)

◆
� ⇢s(r; t)


rr

�F [⇢s]

�⇢s(r, t)
+ rr

�H
ext

U
[⇢s]

�⇢s(r, t)

�

+
dX

k

Ss,k(r; t) + wj,s(r; t)

(3.77)

@tSs,k(r; t) = Bs,k Ss,k(r; t) � As,k js(r; t) + bk⇠s(r; t) (3.78)

where ⇠(r1; t1) is a stochastic process with zero mean and correlations h⇠s(r; t1)⇠s(r0; t2)i =

2kBT⇢s(r; t)�(r � r0)�(t1 � t2)I.

The system in Eq. (3.78) can be equivalently re-written in the following vector form:

@tUs(r; t) = �rr · Ms(r; t) + Ns(r; t) + Rs(r; t) + Qs. (3.79)

In the above equation Us is the vector of unknowns, Ms is the conservative flux, and Qs

is the stochastic term for species s:

Us =

0

BBBBBBBBB@

⇢s(r; t)

js(r; t)

Ss,1(r; t)

. . .

Ss,k(r; t)

. . .

1

CCCCCCCCCA

, Ms =

0

BBBBBBBBB@

(m�1
s js(r; t))

(m
�1
s js(r;t))⌦js(r;t)

⇢s(r;t)

0

. . .

0

. . .

1

CCCCCCCCCA

, Qs =

0

BBBBBBBBB@

0

0

b1 ⇠s(r; t)

. . .

bk ⇠s(r; t)

. . .

1

CCCCCCCCCA

. (3.80)
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The source terms are

Ns =

0

BBBBBBBBB@

0

�⇢s(r; t)
h
rr

�F [⇢s]

�⇢s(r,t)
+ rr

�H
ext
U [⇢s]

�⇢s(r,t)

i
+
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d

k
Ss,k(r; t)

Bs,1 Ss,1(r; t) � As,1 js(r; t)

. . .

Bs,k Ss,k(r; t) � As,k js(r; t)

. . .

1

CCCCCCCCCA

, Rs =

0

BBBBBBBBB@

w⇢,s(r; t)

wj,s(r; t)

0

. . .

0

. . .

1

CCCCCCCCCA

.

(3.81)

3.2.5. Finite volume discretization

DFT system of equations and its corresponding deterministic and overdamped counter-

parts have been solved numerically using di↵erent technique, including pseudo-spectral

method [57], and finite volume [71, 208, 209]. Because of its enhanced capability in deal-

ing with non-regular fields and complex geometries, in this work we discretize Eq. (3.79)

by employing finite volume method. For simplicity, we present the discretization for a

one dimensional system, but the generalization to higher dimension is straightforward.

A domain of length L is partitioned in n identical cells of width �x = L/n. The value

of the discretized variable vector for the species s at the cell 1  j  n is then defined

as the following average over the cell volume Vj

Us,j(t) =
1

�x

Z

Vj

Us(x, t)dx (3.82)

Similarly, the time integration is performed by discretizing the total simulation time T in

steps of magnitude �t, such that we can assume Um

s,j
⌘ Us,j(m�t), with 0  m�t  T .

The multiplicative white noise ⇠s(r; t) is discretized, using the following spatio-temporal

average [71, 208]

⇠m

s,j(t) ⌘ 1

�x�t

Z
(m+1)�t

m�t

Z

Vj

⇠(x, t)dx ⇠
r

⇢s,j(t)

�x�t
G (3.83)

where G represents a vector with component independently drawn from a standard Gaus-

sian distribution N (0, 1). In order to implement time stepping, we define the forward

and backward conservative fluxes as:

r · Ms(x; t) =
Ms(x; t)

dx
⇠ Ms,j±1(t) ⌥ Ms,j(t)

�x
(3.84)
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where Ms,j(t) denotes the average value of the field Ms(x; t) at the cell j, i.e.

Ms(Us,j(x; t)) = Ms,j(t). (3.85)

Finally, the source terms are discretized simply as:

Ns(Us,j(x; t)) ⌘ Ns,j(t) (3.86)

Rs(Us,j(x; t)) ⌘ Rs,j(t) (3.87)

Specifically the source term Ns(x; t) contains the gradient of the variation of the free-

energy functional. Within mean-field treatment, the latter takes the following form:

�F [⇢s]

�⇢s(r, t)
⇠ �F id[⇢s]

�⇢s(r, t)
+

KX

↵=1

Z
dr0

V↵(r � r0)⇢↵(r0; t). (3.88)

The above equation can then be discretized as [209]:

✓
�F [⇢s]

�⇢s(r, t)

◆

i

⇠ �F id[⇢s]

�⇢s(r, t)

����
⇢s=⇢s,i

+ �x

KX

↵=1

X

i

V↵,j�i(t)⇢↵,i(t). (3.89)

Finally, we adopt a two-stage MacCormack predictor-corrector time-integrator which

typically performs well for non-linear systems [210]:

eUm

s,j = Um

s,j � �t

�x

�
Mm

s,j � Mm

s,j�1

�
+ �t

�
N m

s,j + Qm

s,j + Rm

s,j

�
(3.90)

Um+1

s,j
=

1

2


Um

s,j + eUm

s,j � �t

�x

⇣
fMm

s,j+1 � fMm

s,j

⌘
+ �t

�
N m

s,j + Qm

s,j + Rm

s,j

��
. (3.91)

3.2.6. Numerical application I: Equilibrium mono-component system

In order to test the numerical stochastic integrator, we consider a non-Markovian FDDFT

model of a system of N non-reacting ideal gas particles with a single-exponential mem-

ory kernel. The particle momentum time-correlation function of the corresponding GLE

can be obtained in a closed analytical form [181, 211]:

Ĉt,i(t) =
hpi(t)pi(0)i
hpi(0)pi(0)i =

8
<

:
e

tB
2

�
cos(⌦t) � B

2⌦
sin(⌦t)

�
⌦ 6= 0,

e
tB
2

�
1 � Bt

2

�
⌦ = 0,

(3.92)

where we introduced a complex-valued parameter ⌦ =
p

A � B2/4.
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Figure 3.14. Comparison between numerical and theoretical momentum time-
correlations for an ideal gas system coupled with a thermal bath at fixed temperature
T = 1 through a single exponential memory kernel [181]. The time-correlation function
is computed in the under-damped limit with A1 = 1 and B1 = 1 (a), in the damped
case with A1 = 1 and B1 = �2 (b) and in the over-damped limit with A1 = 1 and
B1 = �4 (c). We also report the momentum space correlations between every cell and
the middle cell for the overdamped case (d). The system considered is uniform with
initial conditions ⇢̄ = 0.5 and j̄ = 0.0. The domain is discretized in 40 cells of �x = 100

To obtain the time-correlation function for the discretized non-Markovian FDDFT

model, we proceed in the following manner. First, we define the time-correlation function

of the discretized momentum in a cell as:

Ct,j(t) =

*
1

�x2

Z

Vj

dr

Ns(t)X

i=1

pi(t)�(r � ri(t))

Z

Vj

dr0

Ns(t)X

j=1

pj(0)�(r0 � rj(0))

+
. (3.93)
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Next, we employ the independence between pi(t) and ri(t), and between pi(t) and pj(t),

to write

Ct,j(t) =
1

�x2

Z

Vj

dr

Z

Vj

dr0

Ns(t)X

i=1

Ns(t)X

j=1

hpi(t)pj(0)i
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↵

=
1

�x2

Z
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dr
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dr0

Ns(t)X

i=1

hpi(t)pi(0)i
⌦
�(r � ri(t))�(r

0 � ri(0))
↵

(3.94)

Moreover, since all particles are identical and thus have the same momentum correlation,

we introduce Ĉt(t) = Ĉt,i(t). This gives:

Ct,j(t) =
Ĉt(t)

�x2

Z

Vj

dr

Z

Vj

dr0

Ns(t)X

i=1

⌦
�(r � ri(t))�(r
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↵

=

=
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dr

*
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i=1

�(r � ri(t))

Z

Vj

dr0
�(r0 � ri(0))

+ (3.95)

Finally, assuming that both ri(0) and ri(t) belong to the same cell Vj , i.e. that the cell

size is much larger than the particle mean path, we obtain the time-correlation of the

momentum field:

Ct,j(t) =
Ĉt(t)

�x2

Z

Vj

dr

*
Ns(t)X

i=1

�(r � ri(t))

+
=

Ĉt(t)

�x

*
1

�x

Z

Vj

dr⇢̂(r, t)

+
= Ĉt(t)

h⇢ji
�x

(3.96)

We computed the momentum field time-correlation of a uniform ideal gas system

with non-Markovian FDDFT, atomistic simulations (GLE), and theory (Eq. 3.96). The

ideal gas system is coupled with a thermal bath at fixed temperature T = 1 through a

single exponential memory kernel. We analysed systems characterized by three di↵erent

memory kernels, corresponding to under-damped (A = 1 and B = 1), damped (A = 1

and B = �2) and over-damped (A = 1 and B = �4) cases. The domain is discretized

in 40 cells of �x = 100 (in reduced units).

The GLE simulations are run with the gld integrator, which is part of the LAMMPS

package [114, 181]. The data are gathered over 500 independent trajectories, each run-

ning for 104 steps with a time step �t = 0.001.

The non-Markovian FDDFT is integrated with the finite volume scheme discussed

above. The data are averaged over 1000 independent trajectories, each running for 102

steps with a time step �t = 0.1.
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Figures 3.14(a-c) show that the momentum time-correlation functions obtained using

atomistic, continuum and theoretical approaches converge to the same results. It is

worth noticing that only exponentially decaying momentum time-correlation functions

can be obtained in the Markovian approximation, e.g. the time-correlation function in

Fig. 3.14(a) can be recovered only by means of a non-Markovian framework.

We also report the space correlations between every cell and the middle cell for the

overdamped case in Fig. 3.14(d). This shows that our numerical scheme does not intro-

duce any spurious space correlations into the ideal gas.

3.2.7. Numerical application II: Non-equilibrium space transition

The main aims of the following section is to demonstrate the significant role of the

memory kernel and validate the FDDFT algorithm against GLE simulations in non-

equilibrium processes. We study an ideal gas system at temperature T = 1 inside a

double-well potential with the form:

U
ext = C

"✓
x

x0

◆
4

�
✓

x

x0

◆
2
#

(3.97)

with C = 5 and x0 = 200. We analyze the time evolution of the system in two scenarios:

in the under-damped limit, with A1 = 1 and B1 = 1, and in the over-damped limit, with

A1 = 1 and B1 = �4. In order to force mass transport between the two wells, we impose

non-uniform initial conditions with ⇢̄
+ = 10, ⇢̄

� = 5, where ⇢̄
+ refers to the density in

the left well and ⇢̄
� to the density in the right well. As in the previous example, the GLE

simulations are run with the gld integrator. The data are gathered over 10 independent

trajectories, each running for 109 steps with a time step �t = 0.001.

The non-Markovian FDDFT is integrated with the finite volume scheme discussed

above. The data are averaged over 100 independent trajectories, where each was run for

106 steps with a time step �t = 0.1.

In Figs 3.15(a-b) we compare the time-evolution of the mean density profiles ob-

tained with GLE and FDDFT in the underdamped and overdamped cases. Despite

the presence of a sharp gradient, the numerical scheme is able to accurately reproduce

the di↵usion of the density step function and the mass transfer between the two wells.

The time-evolution of the di↵erence between the total mass contained in the left well

m
+(t) and the one in the right well m

�(t) is reported in Fig. 3.15(c). The noticeable

di↵erence between the over-damped and under-damped cases highlights the importance

of the memory e↵ects when modelling out-of-equilibrium systems. This prototypical
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Figure 3.15. Comparison between FDDFT and GLE for a non-uniform ideal gas in
a double-well potential at temperature T = 1. The system is started o↵ with non-
symmetric initial conditions to force mass transport between the two wells. The density
time-evolution is computed in the under-damped limit with A1 = 1 and B1 = 1 (a)
and in the over-damped limit with A1 = 1 and B1 = �4 (b). In (c) we report the
time-evolution of the di↵erence between the total mass contained in the left well m

+(t)
and the mass in the right well m

�(t). The domain is discretized in 40 cells of �x = 10
and periodic boundary conditions are used.

example suggests that, during energy-barrier transitions, including biological transitions

and chemical reactions, the widely adopted Markovian assumption, if not satisfied, could

introduce a significant error in the system model.
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Figure 3.16. Turing patterns for B1,1 = �0.4 characterized by a wave length L ⇠ 70,
which is consistent with the one predicted analytically. The panels (a-c-e-g) and (b-d-f-
h) correspond to the deterministic and stochastic cases, respectively. The panels (a-b)
and (c-d) show the evolution in time of the densities ⇢1 and ⇢2, respectively. The steady
state densities are reported in (c-f). In (g-h) we plot the structure factors of the steady
states.
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Figure 3.17. Same as Fig. 3.16, but for B1,1 = �0.2. This configuration is characterized
by a wave length L ⇠ 70 L ⇠ 50.

3.2.8. Numerical application III: Memory-driven Turing patterns in

binary reacting system

In this section we apply the derived framework to study Turing patterns [198] observed

in multi-species chemical reaction-di↵usion systems. On of our aim is to study Turing
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patterns arising in systems composed of two reacting chemicals characterized by dissimi-

lar memory kernels. Our theoretical and numerical results can be useful in experimental

design when studying Turing patterns. In two-component systems, in order to observe

Turing patterns, one typically needs to use a third substance, which is fixed in space

and reversibly bound to only one of the two component. As a result, the e↵ective di↵u-

sion coe�cient of the binding component is significantly smaller than that of the other

components. Here we analyse a similar scenario, where the binding species consists in a

thermal bath with dissimilar memory kernels for the two reacting component.

In this work we consider systems reacting according to the non-linear kinematic chemi-

cal model proposed by Schnakenberg [199]. This model consists of the following reactions

among the chemicals X1, A, B and X2:

X
k1��*)��
k�1

A, B
k2�! Y, 2X + Y

k3�! 3X. (3.98)

with k�1, k1, k2 and k3 representing the reaction rate constants. Let us define the

densities of X1, A, B and X2 as ⇢1, ↵, � and ⇢2, respectively. According to the law of

mass action, the time-evolution of the system components is given by:

w⇢1
(r; t) = k�1↵ � k1⇢1(r; t) + k3⇢

2

1(r; t)⇢2(r; t), (3.99)

w⇢2
(r; t) = k2� � k3⇢

2

1(r; t)⇢2(r; t), (3.100)

w↵(r; t) = k1⇢1(r; t) � k�1↵, (3.101)

w�(r; t) = �k2�. (3.102)

If the reactions are performed in an environment with abundance of A and B, then ↵

and � can be assumed constant. It follows that w↵(r; t) ⇠ w�(r; t) ⇠ 0 and the following

system of continuity equations governs the time-evolution of the system:

@t⇢1(r; t) = � rr · (m�1

s j1(r; t)) + w⇢1
(r; t) (3.103)

@t⇢2(r; t) = � rr · (m�1

s j2(r; t)) + w⇢2
(r; t) (3.104)

In our numerical simulations we employ the following parameters: k�1↵ = 1.0, k1 = 0.02,

k2� = 2.0, k3 = 10�6.

Turing patterns are observed when a uniform dynamical system is stable in the absence

of di↵usion, but becomes unstable to perturbation in presence of non-uniform di↵usion.

In our analysis, we use the one-dimensional overdamped density equation Eq. (3.59) in
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the weak noise limit:

@t⇢1(x; t) = d1@
2

x⇢1(x; t) + w⇢1
(x; t) (3.105)

@t⇢2(x; t) = d2@
2

x⇢1(x; t) + w⇢2
(x; t) (3.106)

where we defined d1 = kBTDeff,1m
�1

1
and d2 = m

�1

2
kBTDeff,2. First, we compute the

stationary states of the system by setting:

8
<

:
w⇢1

(r; t) = 0

w⇢2
(r; t) = 0

. (3.107)

Schnakenberg’s model has an unique uniform stationary state given by:

⇢
b

1 =
k2� + k�1↵

k1

⇠ 150 (3.108)

⇢
b

2 =
k2�k

2

1

k3(k2� + k�1↵)2
⇠ 89. (3.109)

The Jacobian matrix for the reaction-only system evaluated at the stationary state, i.e.

with components Ji,j =
@w⇢i
@⇢j

���
⇢

b
i

is given by:

J =

0

BB@
k1

k2� � k�1↵

k2� + k�1↵

k3

k
2

1

(k2� + k�1↵)2

2k2�K1

k2� + k�1↵
�k3

k
2

1

(k2� + k�1↵)2

1

CCA (3.110)

The reaction parameters chosen in this study satisfy the following conditions:

TrJ = J11 + J22 ⇠ �0.0158 < 0 (3.111)

DetJ = J11J22 � J12J21 ⇠ 0.0004 > 0 (3.112)

which ensure the stability of the reaction-only system, as required for the appearance of

the Turing patterns (see Sect. B.2.3 for more details).

The Jacobian matrix of the reaction-di↵usion system is given by Jk = J �k
2[d1, d2]I.

The e↵ective di↵usion parameters d1 and d2 are functions of the memory kernels, as

shown in Sect. 3.2.3. We consider two cases both with single exponential memory kernels,

with parameters A1,1 = 1.0, A2,1 = 1.0 and B2,1 = �20.0. The two cases di↵er due to

B1,1, which is set to = �0.4 in case (a) and to �0.2 in case (b). The respective values of

d1 are 0.4 and 0.2. Note that in both cases the Turing instability conditions are satisfied
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because DetJkm < 0 (see Sect. B.2.3 for more details). The minimum wave-number for

which Turing instability occurs is given by:

km =

r
d1J22 + d2J11

2d1d2

. (3.113)

Such value corresponds to a wave-length L = 2⇡/km.

Figure 3.16 shows the time-evolution of the density for case (a) obtained from deter-

ministic and stochastic formulations. The characteristic wave-length for such a system

L ⇠ 70, theoretically predicted by Eq. (3.113), is recovered in both deterministic and

stochastic solutions. In the stochastic evolution the instability is enhanced by the noise,

thus the patterns arise sooner. The structure factor, discussed in Sect. B.2.4, exhibits a

clear peak at about the predicted wave number. However, in the stochastic case, higher

frequency contributions due to the correlated noise are also visible.

Figure 3.17 shows the deterministic and stochastic density evolution for case (b). Also

in this case, the wave-length L ⇠ 50 observed in the simulations is consistent with the one

predicted by the theoretical analysis. However, the evolution of this system shows the

presence of secondary peaks with low intensity, as is also suggested by the corresponding

structure factor.

In this chapter we have derived a theoretical framework (FDDFT) for describing

reacting multi-species fluid systems. In the next chapter we propose and test numerical

schemes for solving DDFT with additional complexities: (1) DDFT with the stochastic

term and (2) DDFT with non-homogeneous di↵usion.
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Numerical methods for DDFT

with additional complexities

The Markovian limit of the previously derived non-Markovian FDDFT recovers the

system of equations for density ⇢ and velocity v fields of colloidal fluids in a thermal

bath derived by Durán-Olivencia et al. [68]:

@t⇢(r, t)+rr ·
�
m

�1
⇢(r, t)v(r, t)

�
= 0 (4.1)

@t (⇢(r, t)v(r, t)) +rr · (⇢(r, t)v(r, t) ⌦ v(r, t)) + ⇢(r, t)rr
�E [⇢]

�⇢(r, t)

+ ⇢(r, t)✓0(r, t)v(r, t) +
p

kBTm⇢(r, t)✓0(r, t)W(r, t) = 0

(4.2)

where m is the atomic mass of the colloidal particles, E [⇢] is the density-dependent free-

energy functional, ✓0(r, t) is the friction tensor accounting for the interactions between

colloidal and bath particles, and W is a vector of Gaussian stochastic processes delta-

correlated in space and time, i.e.

hW(r, t)i =0, (4.3)

hW(r, t),W(r0
, t

0)i =2�(t � t
0)�(r � r0). (4.4)

In the over-damped limit (m�1✓0 ! 1), the characteristic time scale of the momentum

dynamics is much shorter than the density one [52, 68]. Thus, in first approximations,

the contributions of the terms rr · (⇢v ⌦ v) and @⇢v
@t

can be neglected. As a result, one
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obtains the stochastic time-evolution equation for the density field [68, 70]:

@t⇢(r, t) = rr ·
✓

✓0
�1

⇢(r, t)rr
�E [⇢]

�⇢(r, t)

◆
+ rr ·

✓q
kBT⇢(r, t)✓0

�1
W(r, t)

◆
. (4.5)

where E [⇢] denotes the free-energy of the system, satisfying

E [⇢] =

Z

Rd
f(⇢)dr +

Z

Rd
V (r)⇢ dr +

1

2

Z

Rd

Z

Rd
K(r) ? ⇢ dr, (4.6)

with f(⇢) describing the free-energy part dependent on the local density field ⇢, V (r)

accounting for external potentials, and K(r) modelling the inter-particle interacting

potential. The constant � is defined as � = (kBT )�1. As discussed in details later in

this work, for the simple ideal-gas free-energy functional E [⇢] = ⇢ (log ⇢ � 1), it reduces

to the stochastic di↵usion equation [71]. However, the presence of the functional E [⇢]

allows for the introduction of non-linear di↵usion, external force fields and non-local

interactions.

In Section 4.1 we develop a finite volume scheme to integrate in time the stochastic

Eq. (4.5) embedded with the constant parameters m = 1 and ✓0 = 1. The presence of

the stochastic flux brings an additional layer of complexity to the problem which requires

a proper discretization.

In Section 4.2 we propose a numerical scheme to simulate the deterministic version of

Eq. (4.5). Our study focuses specifically on the e↵ects of a time- and space-dependent

✓0 on the time evolution of the density field.

4.1. Overdamped FDDFT: Numerical methods and

applications 4

A numerical methodology able to simulate Eq. (4.5) equipped with a general free-energy

functional is missing. However, previous works have simulated thermal fluctuations in

fluid systems modelled with similar stochastic equations. Specifically, numerical method-

ologies have been proposed to solve the Landau-Lifshitz-Navier-Stokes (LLNS) equations,

4This section includes material from A. Russo, S. P. Perez, J. Carrillo, M. A. Durán-Olivencia, P.
Yatsyshin & S. Kalliadasis. A finite-volume method for fluctuating dynamical density functional
theory, J. Comp. Phys., 428, 109796 (2021).
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which can be expressed as:

@t⇢+rr ·
�
m

�1
⇢v
�

= 0 (4.7)

@t (⇢v) +rr · (⇢v ⌦ v + pI) = rr · (⌧ + S) (4.8)

@tE+rr · (vE + pv) = rr · (⌧ · v + rrT + Q + v · S) (4.9)

where p is the pressure, ⌧ = ⌘
�
rrv + rrvT � 2

3
Irr · v

�
is the stress tensor, and ⌘

and  are coe�cients of viscosity and thermal conductivity, respectively. Moreover, the

stochastic tensors S and Q are Gaussian processes delta-correlated in space and time,

i.e.

hSij(r, t),Skl(r
0
, t

0)i =2kB⌘T

✓
�
K

ik
�
K

jl
+ �

K

il
�
K

jk
� 2

3
�
K

ij �
K

kl

◆
�(t � t

0)�(r � r0), (4.10)

hQi(r, t),Qj(r
0
, t

0)i =2kBT
2
�
K

ij �(t � t
0)�(r � r0) (4.11)

with �
K

ij
denoting the Kronecker delta. One of the first works on LLNS was developed by

Garcia et al. [75] and it employs a finite di↵erence scheme to treat the numerical fluxes

of the stochastic di↵usion equation. Further works by Bell et al. [76, 77] propose explicit

Eulerian discretizations of the LLNS equations coupled with a third-order Runge-Kutta,

with the objective of adequately reproducing the fluctuations in density, energy, and

momentum. Donev and co-workers [208] introduce the analysis of the structure factor

(equilibrium fluctuation spectrum) to construct optimal finite volume schemes to solve

the LLNS and study the accuracy for a given discretization at di↵erent wavelengths.

The same group also constructed methods to solve LLNS via staggered grids [78]. Other

works have proposed implicit-explicit predictor-corrector [79] or two-level leapfrog [80]

temporal integrators. Additionally, hybrid schemes have been developed to couple LLNS

with MD [81, 82, 83] or with MC [84, 85] simulations. Moreover, LLNS equations have

also been employed in numerical studies of reactive multi-species fluid mixtures [212].

Further works have studied numerical methods for particular application of the over-

damped FDDFT (Eq. (4.5)). Specifically, in Refs [71, 86] the authors develop numerical

methods for reaction-di↵usion equations, obtained by adding reaction terms to Eq. (4.5)

equipped with the ideal-gas free-energy functional.

All these works have contributed to better understand the e↵ects of thermal fluctua-

tions in fluid systems. In spite of these e↵orts, a numerical methodology able to simulate

Eq. (4.5) equipped with a general free-energy functional is still missing. Such method-

ology would be needed to study a wide range of non-equilibrium phenomena, which can

be studied within the field of FDDFT. Relevant examples of these physical phenomena
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include dynamic evolution of confined systems and phase transitions, such as nucleation.

In this section, we propose a possible approach to develop such numerical schemes, and

we provide exhaustive tests in order to elucidate their strengths and weaknesses. Ini-

tially, in Sect. 4.1.3 we conduct simulations of purely-di↵usive ideal-gas free-energy with

noise and without external potentials, given that the theoretical results for these sys-

tems are analytically available. This allows us to compare variance, time-correlations,

space-correlations and structure factor from our numerical schemes against the theoret-

ical results. The results of these tests justify the choice of the Runge-Kutta temporal

integrator Eq. (4.45) and linear approximation of the stochastic flux Eqs (4.34)-(4.35) as

the most accurate and e�cient numerical techniques to simulate our SPDE Eq. (4.16).

This choice is maintained to simulate the following examples. Secondly, we study ideal

gases confined by external potential V (x). Mean, variance, spatial correlation of den-

sity and decay of the discrete free-energy in time are compared against MD simulations

results. Finally, we study the homogeneous vapor-liquid transition of a Lennard- Jones

fluid.

4.1.1. Governing equations and related properties

In the present work, we analyse the following general stochastic partial di↵erential equa-

tion, based on the overdamped FDDFT in Eq. (4.5) with m = 1 and ✓0 = 1,

8
><

>:

@t⇢(r; t) = rr ·

⇢(r; t)rr

�E [⇢]

�r⇢(r; t)

�
+ rr ·

hp
⇢(r; t)/�W(r; t)

i
r 2 Rd

, t > 0,

⇢(r; 0) = ⇢0(r),

(4.12)

Eq. (4.12) may be seen as a stochastic version of the gradient flow equation previously

studied in Refs [72, 73]. In fact, the deterministic version of Eq. (4.12) has received a

great deal of attention in the context of gradient flows. As discussed in Ref. [68], in the

weak noise limit, the most-likely path followed by the system minimizes the Lagrangian

defined as L = k@t⇢ � rr ·
⇣
⇢(r; t)rr

�E[⇢]

�⇢

⌘
k(��⇤)�1 , where � is the operator acting on

the noise W(r; t). Thus, the most-likely solution h⇢i(r; t) satisfies

@th⇢i(r; t) = rr ·
✓

h⇢irr
�E [h⇢i]
�h⇢i

◆
. (4.13)

Eq. (4.13) has a gradient flows structure [72, 213], and it has applications in a variety

of contexts such as granular media [73], material science of biological swarming [214].
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The fundamental property of Eq. (4.13) is that the free-energy (Eq. (4.6)) is minimized

following the decay rate

d

dt
E [h⇢i] = �

Z

Rd
h⇢i

����
�E [h⇢i]
�h⇢i

����
2

dr, (4.14)

where the variation of the free-energy E [⇢] with respect to the density ⇢ in the case of

Eq. (4.6) satisfies
�E [⇢]

�⇢
= f

0(⇢) + V (r) + K ⇤ ⇢. (4.15)

This property however is not satisfied by the stochastic gradient flow in Eq. (4.12),

where punctual increases in the free-energy during the dynamical evolution can take

place. Precisely, this jumps allow the system to overcome energy barriers, leading to

phenomena such as phase transitions.

4.1.2. Numerical methods

Equation (4.12) (in one-dimension) can be re-written as

@t⇢ = @xFd(⇢) + @xFs(⇢, W), (4.16)

where Fd and Fs denote the deterministic and stochastic fluxes respectively,

Fd = ⇢@x

�E [⇢]

�⇢
, Fs =

p
⇢/�W. (4.17)

The finite volume discretization of Eq. (4.16) is obtained as follows. First, we divide

the domain into grid cells Cj = [x
j�

1

2

, x
j+

1

2

], each of length �x = xj+1/2 �xj�1/2. Then

the cell average of ⇢ is defined as

⇢j(t) =
1

�x

Z
xj+1/2

xj�1/2

⇢(x, t)dx. (4.18)

Subsequently, Eq. (4.16) in integrated in space over each cell. Finally Gauss divergence

theorem leads to the semi-discrete equation for the temporal evolution of the cell average

density,
d⇢j

dt
=

Fd,j+1/2 � Fd,j�1/2

�x
+

Fs,j+1/2 � Fs,j�1/2

�x
, (4.19)

where Fd,j+1/2 and Fs,j+1/2 denote the evaluation of the deterministic and stochastic

fluxes Eq. (4.17) at the boundary xj+1/2, respectively. This separation of the physical

flux in two fluxes, deterministic and stochastic, has been e↵ectively applied in previous
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studies [76, 208].

Space discretization of the deterministic flux

The deterministic flux at the cell boundaries Fd,j+1/2 is evaluated following a hybrid

method, which employs a central or upwind approximation depending on the relative

local variation of the density. Specifically, a central high-order scheme is adopted in

the parts of the domain where no sharp gradients of the density are found. An upwind

scheme, instead, is employed in the regions of the domain with high density gradients,

in order to prevent the spurious oscillations from central high-order schemes. This is

a common technique in deterministic fluid dynamics as it allows to construct high-

resolution and oscillation-free schemes [215].

Previous works in the field of fluctuating hydrodynamics [71, 76, 208] approximate the

deterministic flux with a simple second-order central di↵erence approach. However, the

hybrid scheme proposed here aims to avoid possible spurious oscillations. In fact, the

previous literature focuses mainly on fluctuating hydrodynamics with a deterministic

flux in the form Fd(⇢) = @x⇢. The discretization of the flux with central approximation

schemes works well for some simple scenarios discussed in the literature, but it can cause

spurious oscillations for certain density profiles as shown in Fig. 4.1.

In the case of Eq. (4.16), the inclusion of a stochastic flux prevents the density profile

from being smooth. Thus, the proposed hybrid scheme evaluates the local gradient

in the density with respect to the neighbouring gradients. When the local gradient is

significantly larger than the neighbouring gradients, an upwind approximation is chosen.

If not, the central approximation prevails. As a result, our proposed hybrid scheme for

the deterministic flux satisfies:

Fd,j+1/2 =
�
1 � �(rj+1/2)

�
F

c

d,j+1/2
+ �(rj+1/2)F

u

d,j+1/2
, (4.20)

where �(rj+1/2) is a flux limiter with a threshold parameter k, defined as

�(rj+1/2) =

8
<

:
0, if rj+1/2  k

1, if rj+1/2 > k

and rj+1/2 is a quotient measuring the relative local total variation of the density

rj+1/2 =
|⇢j+1 � ⇢j |P

w

l=�w
|⇢l+1 � ⇢l|

, (4.21)
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with w indicating the number of neighbouring cell used to compute the total variation. A

value w = 5 is employed in the numerical experiments of this work, since it gives a good

compromise between conservation of local information and e↵ects of the fluctuations.

The threshold parameter k plays a key role and has to be carefully selected. When

k is small, the di↵usive upwind scheme is selected more frequently, leading to di↵usive

behaviours which dampens the statistical values of the structure factor and the variance

(as will be shown later). On the contrary, for large values of k, the central scheme is

predominant, and spurious oscillations may occur. In Figure 4.1 we report the results

of a numerical example run for di↵erent values of k.

Firstly, Figs 4.1(a-b) are obtained by simulating Eq. (4.16) with a free-energy satisfying

�E/�⇢ = log ⇢ + 0.1x. The initial density profile presents two discontinuities, as shown

in Fig. 4.1(a). Under these conditions, the numerical solution evolves as a di↵usive

travelling wave, with the two discontinuities in the initial density triggering spurious

oscillations. These oscillations diminish by reducing k (e.g. for k = 0, which corresponds

to a purely upwind flux, the di↵usion eliminates any oscillations). However, a low value

of k critically dampens the variance, due to the di↵use nature of the upwind flux, as

shown in Fig. 4.1(b).

Secondly, Fig. 4.1(c) comes from simulating Eq. (4.16) with a free-energy satisfying

�E/�⇢ = log ⇢ and starting from an equilibrium density profile. For this case, the theo-

retical value of the structure factor is known and is given by Eq. (C.19), meaning that the

dampening behaviour of the upwind scheme could be directly evaluated from Fig. 4.1(c).

It is clear again that the upwind scheme dampens the statistical properties of the system

due to the numerical di↵usion. As a result, an intermediate value of k needs to be taken

in order to find a balance between both numerical flaws. Based on the examples above,

such value is chosen to be k = 3 in this work.

The central and upwind deterministic fluxes in Eq. (4.20) are built as follows:

1. The upwind discretization of the deterministic flux is constructed as proposed

in [209], where a first- and second-order finite-volume method for nonlinear equa-

tions with gradient flow structure is constructed. The authors propose to firstly

reconstruct the density profile in each cell Cj as a constant profile for the first-order

scheme, or as a linear profile for the second-order scheme,

e⇢j(x) =

8
<

:
⇢j , x 2 Cj , for the first-order scheme,

⇢j + (⇢x)
j
(x � xj), x 2 Cj , for the second-order scheme,

(4.22)

where the east and the west density values ⇢
E

j
and ⇢

W

j
at the cell interfaces x

j+
1

2
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Figure 4.1. (a) Mean density and (b) standard deviation for a moving and di↵using
initial step function evolving under Eq. (4.12), with �E/�⇢ = log ⇢ + u0x with u0 = 0.1.
For clarity, also the structure factor for a uniform system is reported in (c). IC: initial
condition, CA: central approximation (k = 1), UW: upwind approximation (k = 0).

and x
j�

1

3

are approximated as

⇢
E

j = ⇢j +
�x

2
(⇢x)

j
,

⇢
W

j = ⇢j � �x

2
(⇢x)

j
.

(4.23)

The numerical derivatives (⇢x)
j

at every cell Cj are computed by means of an

adaptive procedure which ensures that the point values Eq. (4.23) are second-order
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and non-negative, i.e.

(⇢x)
j

= minmod

✓
✓

⇢j+1 � ⇢j

�x
,
⇢j+1 � ⇢j�1

2�x
, ✓

⇢j � ⇢j�1

�x

◆
, (4.24)

where

minmod (z1, z2, . . .) =

8
>>><

>>>:

min (z1, z2, . . .) , if zi > 0 8i,

max (z1, z2, . . .) , if zi < 0 8i,

0, otherwise.

The parameter ✓ controls the numerical viscosity and it is taken to be ✓ = 2 in this

work. After completing the density discretization, the deterministic flux F
u

d,j+1/2

is evaluated with an upwind scheme as

F
u

d,j+1/2
= u

+

j+1/2
⇢

E

j + u
�

j+1/2
⇢

W

j+1, (4.25)

where

u
+

j+1/2
= max

�
uj+1/2, 0

�
and u

�

j+1/2
= min

�
uj+1/2, 0

�
. (4.26)

and uj+1/2 is computed as

uj+1/2 = �

✓
�E
�⇢

◆

j+1

�
✓

�E
�⇢

◆

j

�x
. (4.27)

In the latter equation, the discrete variation of the free-energy with respect to the

density

✓
�E
�⇢

◆

j

is evaluated from Eq. (4.15) as

✓
�E
�⇢

◆

j

= �x

X

i

K(xj � xi)⇢i + F (⇢j) + V (xj). (4.28)

Additional details on the discrete convolution term
P

i
K(xj � xi)⇢i in Eq. (4.28)

are given in Ref. [209].

2. The central approximation of the deterministic flux is a common way to treat

the deterministic flux in fluctuating hydrodynamic [71, 76, 208]. Specifically the

central deterministic flux is evaluated as

F
c

d,j+1/2
= uj+1/2 ⇢j+1/2, (4.29)
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where uj+1/2 is computed as in Eq. (4.27) and ⇢j+1/2 is the average density of the

adjacent cells

⇢j+1/2 =
⇢j + ⇢j+1

2
. (4.30)

The classical hybrid schemes employ a high-order approximation for the central

approximation of the deterministic flux. For this work, however, we just consider

the low-order di↵erences Eqs (4.27)-(4.30), given that the presence of the stochastic

flux limits the spatial order of accuracy. This is in line with previous works in the

literature, e.g. [71, 76, 208].

Space discretization of the stochastic flux

Several approximations for the stochastic flux have been put forward in the literature [71,

76]. Firstly, due to the nature of the white noise, which cannot be evaluated point-wise

in time and space, the component W of the stochastic flux is discretized by means of a

spatio-temporal average as in Ref. [208], i.e.

Wj =
1

�x�t

Z
t+�t

t

Z
x

j+1

2

x
j� 1

2

W(x, t)dx dt. (4.31)

The expression above is equal to a normal distribution with zero mean and variance

(�x�t)�1, so that

Wj = N (0, 1)/
p

�x�t. (4.32)

By employing the latter equation, here we propose four di↵erent approximations for

the stochastic flux:

1. Forward approximation:

Fs,j�1/2 =

✓r
⇢

�
W
◆

j�1/2

=

r
⇢j

�
Wj . (4.33)

2. Linear approximation:

Fs,j+1/2 =

✓r
⇢

�
W
◆

j+1/2

=

r
⇢j+1/2

�
Wj+1/2, (4.34)

where

⇢j+1/2 =
⇢j + ⇢j+1

2
, Wj+1/2 =

Wj + Wj+1

2
. (4.35)

152



Chapter 4. Numerical methods for DDFT with additional complexities

3. Parabolic approximation:

Fs,j+1/2 =

✓r
⇢

�
W
◆

j+1/2

=

r
⇢j+1/2

�
Wj+1/2, (4.36)

where
⇢j+1/2 = ↵1

�
⇢j�1 + ⇢j+2

�
+ ↵2

�
⇢j + ⇢j+1

�
,

Wj+1/2 = ↵1

�
Wj�1 + Wj+2

�
+ ↵2

�
Wj + Wj+1

�
,

↵1 = (1 �
p

3)/4, ↵2 = (1 +
p

3)/4.

(4.37)

The coe�cients ↵1 and ↵2 are selected in order to preserve both average and

variance in each time step as in Ref. [76].

4. Upwind approximation where Wj is taken as the stochastic velocity, so that a

similar expression to the deterministic flux in Eq. (4.25) is obtained,

Fs,j+1/2 =

✓r
⇢

�
W
◆

j+1/2

=

s
⇢

E

j

�
W+

j+1/2
+

s
⇢

W

j+1

�
W�

j+1/2
, (4.38)

where

W+

j+1/2
= max

�
Wj+1/2, 0

�
, W�

j+1/2
= min

�
Wj+1/2, 0

�
, (4.39)

and Wj+1/2 = (Wj + Wj+1)/2. The east and west density values ⇢
E

j
and ⇢

W

j
are

computed as in the deterministic flux.

Stochastic time integrator and adaptive time steps

The derivation of the temporal integrator for the semi-discrete equation Eq. (4.19) is

achieved by first re-writing the time-evolution equation of the density in the following

vectorial form

d⇢(t) = µ(⇢(t)) dt + �(⇢(t))W dt, (4.40)

where the vectors ⇢(t) and W contain the cell averages defined in Eqs (4.18)-(4.31)

respectively, i.e. ⇢(t) = (⇢1(t), ⇢2(t), . . . , ⇢n(t)) and W(t) = (W1(t), W2(t), . . . , Wn(t)).

The vector µ(⇢(t)) and the matrix �(⇢(t)) depend on the density cell averages ⇢(t), and

their structure depends on the discretization of deterministic and stochastic fluxes.

From the vectorial equation Eq. (4.40) one can employ Itô’s lemma to expand the

two functions µ(⇢(t)) and �(⇢(t)). Then, after integrating in time, one obtains the
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Taylor expansion of the stochastic process. Truncating that expansion with an error

O(dt
1/2) and integrating between t and t + �t, one can derive the following family of

implicit-explicit Euler-Maruyama integrator, which component-wise form satisfies [216]

⇢j(t + �t) = ⇢j(t) + [(1 � ✓) µj(⇢(t)) + ✓ µj(⇢(t + �t))] �t +
nX

k=1

�jk(⇢(t))W k(t)�t.

(4.41)

The parameter ✓ allows to select an explicit (✓ = 0), implicit (✓ = 1) or semi-implicit

(✓ = 0.5) temporal integrator. Euler-Maruyama is the highest order integrator for which

no multiple stochastic integrals have to be computed, but it has only 0.5 strong and 1.0

weak order of convergence.

Keeping in the expansion all the terms up to the order O(dt), and using a Runge-

Kutta approach to approximate the derivative of �, one obtains a derivative-free family

of implicit-explicit Milstein integrators with strong order 1.0 [216]. The component-wise

version of this scheme reads

⇢j(t + �t) =⇢j(t) + [(1 � ✓) µj(⇢(t)) + ✓ µj(⇢(t + �t))] �t +
nX

k=1

�jk(⇢(t))W k(t)�t

(4.42)

+
1p
�t

nX

l,m=1

[�jm(⌥l(t)) � �jl(⇢(t))] Il,m(t) (4.43)

where the l-th row of the matrix ⌥ is defined as

⌥l(t) = ⇢(t) + µ(⇢(t))�t + �l(⇢(t))
p

�t, (4.44)

and the multiple stochastic integrals are defined as Il,m(t) =
R

t+�t

t
W l Wm

dt, where Wl

and Wm are two white noises (for more details see Appendix C.1.1).

Stochastic time integration schemes with higher strong order have also been proposed

in the literature [216]. However, these schemes are very computationally expensive due

to the presence of high order multiple stochastic integrals to be solved. Moreover, in

many physical applications, the convergence in probability, also called weak convergence,

is more relevant than the strong convergence. For this reason, as last time integration
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scheme we will employ here is the following explicit weak order 2.0 Runge-Kutta scheme:

e⇢j(t + �t) = ⇢j(t) +
1

2
[µj(⌥(t)) + µj(⇢(t))] �t + �(t)

⇢j(t + �t) = ⇢j(t) +
1

2
[µj(e⇢(t + �t)) + µj(⇢(t))] �t + �(t)

(4.45)

where the vector s�(t) and ⌥ are reported in Appendix C.1.1)

The order of that convergence for the temporal integrators above can be measured in

strong and weak sense. Specifically, strong and weak errors at a particular time ⌧ and

for a group of trajectories � = {�1, �2, . . . , �m} are defined as

✏s = h|⇢�(⌧) � ⇢�

exact
(⌧)|i

� 2 �
and ✏w =

���h⇢�(⌧)i
� 2 �

� h⇢�

exact
(⌧)i

� 2 �

��� , (4.46)

where ⇢�(⌧) refers to the numerical density cell averages at time ⌧ following the �

trajectory, ⇢�

exact
(⌧) denotes the exact (or reference) solution of the stochastic equation,

the ensemble average h·i is taken over the trajectories � 2 �, and |·| denotes the L
1-

norm.

In Fig. 4.2 we test strong and weak convergence for the described stochastic integrators

for a simple scenario. Specifically, we simulate the system in Eq. (4.40) in the case of a

geometric Brownian motion, for which µ(⇢(t)) = �⇢(t) and �(⇢(t)) = 0.5⇢(t). In this

scenario, the temporal evolution of the density in a cell j, which is independent from the

rest of cells, follows

d⇢j(t) = �⇢jdt + 0.5⇢jWjdt, (4.47)

with the cell averaged white noise Wj defined as in Eq. (4.31). For the simulation we

select ⇢j(0) = 1. The geometric Brownian motion is chosen to compute strong and weak

errors since its exact solution is known [217]. The results in Figs 4.2(a-b) depict the

strong and weak order of convergence for the previous temporal integrators. Regarding

the strong order of convergence, the Euler-Maruyama presents an order of 0.5, while

Milstein an order of 1.0. Runge-Kutta is expected to have a strong order of at least 0.5,

and in the plot it approaches a value of 1.0.

On the weak order, the whole families of Euler-Maruyama and Milstein integrators

are expected to have an order of 1.0, while the Runge-Kutta an order of 2.0. This is

validate numerically for all the schemes, with the semi-implicit methods outperforming

and showing an order between 1.0 and 2.0.

Fig. 4.2(c) shows the relation between CPU time and number of cells n for the temporal

integrators. The Euler-Maruyama accounts for O(n) computations, the Milstein for

O(n2), and the Runge-Kutta for O(n3). However, for n < 100 we can observe a lower
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CPU time for Runge-Kutta, if compared with all the other integrators except for the

explicit Euler-Maruyama.
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Figure 4.2. Strong (a) and weak (b) errors convergence for geometric Brownian motion.
In (c) we report the CPU time for each time-integration scheme as a function of the
number of cells n. In the legend EM, MI and RK stand for Euler-Maruyama, Milstein
and Runge-Kutta, respectively.

Positivity of the density through an adaptive time step

Previous works in the literature have developed di↵erent techniques to addressed the

issue of density positivity. In the context of fluctuating hydrodynamics, Kim et al. [71]

have proposed a smoothed Heaviside cutting function which reduces the chances of

density to become negative. However, despite reducing the chances of having negative
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density values, this approach does not guarantee positive densities.

A di↵erent way to preserve density positivity relies on the concept of Brownian bridge,

introduced to solve stochastic di↵erential equations with variable time steps [218]. Unlike

deterministic di↵erential equations, stochastic equations requires to follow the Brownian

path that is formed after evaluating the normal distributions Eq. (4.32). Specifically,

when advancing from a time t by �t1 in our simulation, if the numerical density in one

of the nodes j becomes negative, one cannot just simply repeat the time step with a

shorter �t2 < �t1 in order to preserve its positivity. The Brownian path generated after

the first trial of advancing �t1 is to be preserved. Brownian bridge allows to take the

statistical information at t+�t into account when repeating the time step [219, 220]. In

fact, it provides a way to compute Wj (Eq. (4.31)) at an intermediate time step t+�t/2,

by means of the formula:

Wj

✓
t +

�t

2

◆
� Wj(t) =

Wj (t + �t) � Wj (t)

2
+ N

✓
0,

�t

4

◆
. (4.48)

Consequently, in our simulations we employ adaptive time steps. If the density becomes

negative after a time step, �t is halved to compute the intermediate time step with

the Brownian bridge in Eq. (4.48). If that intermediate state leads to further negative

densities, the Brownian bridge is applied again, and so on. A pseudo code to implement

the Brownian bridge is written in Algorithm 1.

Algorithm 1: Adaptive time step algorithm adopted to preserve density pos-

itivity.
Input: ⇢(t)

Output: ⇢(t + �t)

1 NegativeDensity=True;

2 �t = �t0;

3 partitions = 0;

4 while (NegativeDensity==True) do

5 NegativeDensity=False;

6 ⇢tmp = ⇢;

7 for i 0 to 2
partitions

do

8 compute Brownian bridge;

9 update ⇢tmp;

10 if (any(⇢tmp) < 0) then

11 NegativeDensity=True;

12 end

13 end

14 �t �t/2 ;

15 partitions partitions + 1;

16 end

17 ⇢(t + �t) ⇢tmp;

18 return ⇢(t + �t);
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Boundary conditions

Here we discuss the numerical implementation of boundary conditions in periodic sys-

tems, confined systems and open systems. Periodic boundary conditions along the di-

rection ↵ satisfy

⇢
↵

0 = ⇢
↵

N (4.49)

An hard wall locate at the cell i, with normal direction ↵, is modelled with the following

no-flux conditions:

F
↵

i ± 1/2 = S
↵

i ± 1/2 = 0. (4.50)

Open systems in thermal and chemical equilibrium with an external reservoir are consis-

tent with a µV T ensemble, with constant grand potential ⌦[⇢(r)] = F [⇢(r)]+
R

V (r)⇢(r)dr�
µ
R

⇢(r)dr, where F [⇢(r)] is the Helmholtz free-energy functional, V (r) is the external

potential acting on the system and µ is the chemical potential. Using the fact that

the functional derivative of ⌦ with respect to ⇢(r is null at equilibrium, we obtain
�F [⇢(r)]

�⇢(r) + V (r) = U = µ. Since the system is assumed to be in contact (at equilibrium)

with a reservoir at temperature T and chemical potential U , the corresponding boundary

condition is then translated in the following constrains:

U
↵

i = µres, (4.51)

⇢
↵

i = ⇢res, (4.52)

with µres and ⇢res being chemical potential and density of the reservoir, respectively.

Some of the boundary conditions discussed are employed in the numerical applications

below.

4.1.3. Numerical application I: Ideal-gas system in equilibrium

As a first system, we solve Eq. (4.12) embedded with a classical ideal-gas free-energy

E [⇢] =

Z
⇢/� (ln(⇢) � 1) dx. (4.53)

This leads to a di↵usive equation with multiplicative noise of the form

@t⇢ = �⇢/� + r ·
hp

⇢/�W(x, ⇢)
i
. (4.54)
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In this system configuration we compare the di↵erent spacial and temporal numerical

methods by focusing on the following statistical properties at equilibrium: variance,

space-correlation, time-correlation and structural factor. These metrics are commonly

employed in the literature to validate stochastic numerical schemes for fluctuating hy-

drodynamics [71, 76, 221].

The density fluctuations of a system with a fixed volume V can be computed as

h�⇢2i = ⇢
2h�N2i/N2, where N and h�N2i denote average and variance of the number of

particles in V , respectively. As shown in Ref. [74], the variance is given by:

h�N2i = �T
N̄

2

V 2

✓
@V

@p

◆

T

(4.55)

with T and p being temperature and pressure of the system, respectively. For an ideal

gas, employing the equation of state (in reduced units) pV = NT , we obtain h�N2i = N .

In case of infinite systems, the fluctuations of an ideal gas are spatially uncorrelated,

namely h�⇢i(t)�⇢j(t)i = h�⇢2i�K

ij
. However, for finite systems the conservation of mass in-

troduces some correlations [76]. Expressing the space correlations of density fluctuations

as h�⇢i(t)�⇢j(t)i = A�
K

ij
+ B, then the conservation of mass gives

P
i
h�⇢i(t)�⇢j(t)i = 0,

which corresponds to the constrain B = �A/n, with n being the total number of cells.

Moreover, in the limit n 7! 1 the fluctuations for an infinite system have to be recov-

ered, thus A = h�⇢2i. It follows that the spacial correlation for the closed system can be

expressed as:

h�⇢i(t)�⇢j(t)i = h�⇢2i
✓

�
K

ij � 1

n

◆
. (4.56)

Standard deviation As shown above, the theoretical standard deviation of the dif-

fusion SPDE Eq. (4.54) applied in finite systems in equilibrium satisfies

p
h�⇢2i

theory
=

h⇢ip
Nc

r
1 � 1

n
. (4.57)

Despite the fact that
p

h�⇢2i
theory

holds for all Nc, previous studies [208, 221] have

pointed out that there should be a minimum of 5-10 particles per cell to recover the

microscopic statistical properties by means of a continuum approach. This is due to

the fact that, with a such low number of particles per cell, particle fluctuations are not

accurately modelled with the multiplicative noise in Eq. (4.54).

In Fig. 4.3 we report the comparison between di↵erent temporal (a) and spatial (b)

discretizations against the theoretical standard deviation in Eq. (4.57) and the one com-
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Figure 4.3. The standard deviation
p

h�⇢2i is plotted against the number of particles
per cell Nc, for an ideal-gas system at equilibrium. (a) Temporal integrators. EM:
Euler-Maruyama, MI: Milstein, RK: Runge-Kutta, MD: Molecular dynamics. Explicit
(✓ = 0), semi-implicit (✓ = 0.5) and implicit (✓ = 1). (b) Spatial discretizations of
the stochastic flux. FO: Forward Eq. (4.33), UW: Upwind Eqs (4.38)-(4.39), LI: Linear
Eqs (4.34)-(4.35), PR: Parabolic Eqs (4.36)-(4.37), MD: Molecular dynamics.

puted from molecular dynamics. In both plots we can observe that all the schemes

approximate well the standard deviation for Nc > 5. However, below that number of

particles per cell the numerical standard deviation deviate from the expected ones. This

result chimes with the minimum number of 5 � 10 particles per cell necessary to re-

cover the statistical properties in fluctuating hydrodynamics. There are no remarkable

di↵erences between the temporal integrators or spatial discretizations for the stochastic

flux.

Time correlations The objective of this test is to measure the time-correlation of the

density in a cell of the domain. The normalized time correlation function is defined as

CT (t) =
h�⇢i(t)�⇢i(0)i
h�⇢i(0)�⇢i(0)i , (4.58)

where �⇢i(t) = ⇢i(t) � ⇢. This is expected to decay in time for the di↵usion equation

Eq. (4.54) in equilibrium, although no explicit theoretical expression is known in the

literature. Previous studies [76] have compared the numerical results with the Fourier

transform of the time correlation Eq. (4.58), which is denoted as the spectral density and

for which there are explicit expressions available. In spite of this, these exact expressions

for the spectral density do not take into account the finite-size e↵ects from the numerical

simulations, leading to a lack of agreement in the results in Ref. [76]. For this reasons we
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Figure 4.4. Decay of the normalized time-correlation CT (Eq. (4.58)) for an ideal-gas
system in equilibrium (a) Temporal integrators. EM: Euler-Maruyama, MI: Milstein,
RK: Runge-Kutta, MD: Molecular dynamics. Explicit (✓ = 0), semi-implicit (✓ = 0.5)
and implicit (✓ = 1). (b) Spatial discretizations of the stochastic flux. FO: Forward
Eq. (4.33), UW: Upwind Eqs (4.38)-(4.39), LI: Linear Eqs (4.34)-(4.35), PR: Parabolic
Eqs (4.36)-(4.37), MD: Molecular dynamics.

compare the results obtained from the numerical schemes against MD simulations, which

indeed take into account the finite-size e↵ects of the numerical simulation. The results

are displayed in Fig. 4.4. Regarding the temporal integrators, the explicit ones (✓ = 0)

tend to behave closer to the MD simulation for the initial short times, while the implicit

ones (✓ = 1) provide a better approximation in the long-time regimes. Moreover, for

di↵erent spatial discretizations of the stochastic flux the upwind one deviates the most

from the MD simulation, while the rest of them behaves similarly.

Spatial correlations This test aims to understand whether the proposed numerical

schemes satisfy the exact spatial correlation for finite-size systems

h�⇢i(t)�⇢j(t)i =
h⇢i
�x

✓
�ij � 1

n

◆
. (4.59)

Contrary to the infinite-domain case, where there are no spatial correlations between

adjacent cells, for the finite-size case there is an extra term 1/n which decreases as the

number of cells n increases. Fig. 4.5 shows the normalized spatial correlation

CS(t) =
h�⇢i(t)�⇢j(t)i
h�⇢i(0)�⇢i(0)i (4.60)
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Figure 4.5. Normalized spatial correlation Eq. (4.60) for an ideal-gas system in equilib-
rium. (a) Temporal integrators. EM: Euler-Maruyama, MI: Milstein, RK: Runge-Kutta,
MD: Molecular dynamics. Explicit (✓ = 0), semi-implicit (✓ = 0.5) and implicit (✓ = 1).
(b) Spatial discretizations of the stochastic flux. FO: Forward Eq. (4.33), UW: Upwind
Eqs (4.38)-(4.39), LI: Linear Eqs (4.34)-(4.35), PR: Parabolic Eqs (4.36)-(4.37), MD:
Molecular dynamics.

with �⇢i(t) = ⇢i(t) � ⇢, plotted for each of the numerical schemes, the MD simulation

and the exact expression (Eq. (4.59)). Most of the temporal integrators and spatial

discretizations approximate adequately the theoretical expression Eq. (4.59), as it is

depicted in Fig. 4.5. The fully explicit and implicit Euler-Maruyama and Milstein slightly

deviate with respect to the theoretical spatial correlation in the cells adjacent to the

central cell, while the corresponding semi-implicit schemes perform well.

Structure factor The structure factor S at equilibrium fo an ideal gas at equilibrium

is known and can be used to evaluate the accuracy of temporal integrators and spatial

discretizations. Its theoretical expression for an ideal gas without external potential is

given by Eq. (C.19), i.e. S/ h⇢i = 1. The discrete spatial Fourier transform of the density

satisfies

⇢̂(�) =
1

n

X

j

⇢je
�i�xj . (4.61)

Subsequently, the structure factor is computed as

S(�) =
h�⇢̂(�) �⇢̂

⇤(�)i
n�x

, (4.62)

where �⇢̂(�) = ⇢̂(�) � h⇢̂(�)i, and ⇢̂
⇤ denotes the complex conjugate of ⇢̂ (more details

at Appendix C.1.4).
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Figure 4.6. Structure factor Eq. (4.62) for an ideal-gas system in equilibrium. (a)
Temporal integrators. EM: Euler-Maruyama, MI: Milstein, RK: Runge-Kutta, MD:
Molecular dynamics. Explicit (✓ = 0), semi-implicit (✓ = 0.5) and implicit (✓ = 1).
(b) Spatial discretizations of the stochastic flux. FO: Forward Eq. (4.33), UW: Upwind
Eqs (4.38)-(4.39), LI: Linear Eqs (4.34)-(4.35), PR: Parabolic Eqs (4.36)-(4.37), MD:
Molecular dynamics.

We report the structure factor at equilibrium computed numerically in Fig. 4.6. The

theoretical value of the structure factor, along with the performed MD simulation, al-

lows to evaluate the accuracy of the temporal integrators and spatial discretizations.

Fig. 4.6(a) shows that the explicit Euler-Maruyama and Milstein temporal integrators

overestimate the structure factor for large �, while their implicit versions underesti-

mate it for large �. However, the semi-implicit and Runge-Kutta schemes are able to

accurately approximate the expected structure factor, and the small damping in the

numerical structure factor for all � is due to the choice of the hybrid deterministic flux,

as it was explained from Fig. 4.1. Regarding the spatial discretizations of the stochastic

flux, a significant error is introduced by the upwind scheme. In addition, the forward

discretization introduces some error at lower �. The rest of discretizations approximate

the theoretical value correctly, with the small damping already mentioned.

Discussion on temporal integrators and spatial discretization of the stochas-

tic flux Based on the previous tests, here we discuss the temporal integrator and

spatial discretization of choice for the next numerical applications. Regarding the tem-

poral integrators, both the fully explicit and implicit Euler-Maruyama and Milstein

show significant deviations in time correlation (Fig. 4.4), spatial correlation (Fig. 4.5)

or structure factor (Fig. 4.6). Their semi-implicit versions and the Runge-Kutta behave

similarly in all the tests, and approximate adequately the theoretical and MD results.

163



Chapter 4. Numerical methods for DDFT with additional complexities

Their computational costs is compared in Fig. 4.2. Runge-Kutta scales as O(n3), while

the semi-implicit Euler-Maruyama and Milstein as O(n2). However, the comparison

clearly shows how for n < 100 the Runge-Kutta cost is lower than the semi-implicit

schemes, while for n > 100 is higher. As a result, since in the simulations of this work

n < 100, we select the Runge-Kutta temporal integrator.

On the spatial discretization of the stochastic flux, the upwind choice does not ap-

proximate well time correlation and structure factor, while the forward approximation

shows a significant error in the structure factor for short �. Thus the best performing

choices are the linear and parabolic approximations, which behave similarly in all the

test cases. We select the linear approximation due to its lower computational cost.

4.1.4. Numerical application II: Ideal-gas system out of equilibrium

Here we consider a system in a double well potential, i.e. with free-energy:

E [⇢] =

Z
⇢/� (ln(⇢) � 1) dx +

Z
V (x)⇢ dx, (4.63)

with external potential satisfying

V (x) = 5

"✓
x

n�x/2

◆
4

�
✓

x

n�x/2

◆
2
#

. (4.64)

This is similar to the numerical applications for deterministic gradient flow equations

in Ref. [209]. We compare the numerical scheme for the FDDFT Eq. (4.16) against

MD simulations. For the sake of completeness, we also include a comparison with the

corresponding deterministic equation obtained in the mean field limit [68].

Figure 4.7(a) shows the average density profile at di↵erent times. Results for FDDFT,

DDFT and MD are consistent, confirming that both FDDFT and DDFT are able to accu-

rately model the average density profile. Regarding the standard deviation (Fig. 4.7(b)),

FDDFT results matches with MD and theory (Eq. (4.57)), while the DDFT, being de-

terministic, does not provide any information on the standard deviation. Figure 4.7(c)

shows the spatial correlation computed as in Eqs (4.59)-(4.60). Both MD and FDDFT

results approximate correctly the finite-size theoretical expression. As expected, DDFT

does not have any spatial correlation due to the lack of fluctuations. Finally, Fig. 4.7(d)

exhibits the time-evolution of the free-energy functional, which depends on the ensemble

average density. For DDFT a monotonous decay in time is visible, while for MD and

FDDFT there are short increases of the free-energy triggered by the fluctuations, in spite
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Figure 4.7. Time evolution of mean density (a) and density standard deviation (b)
computed with FDDFT, DDFT and MD simulations. A comparison in terms of steady-
state spatial correlations is reported in (c). In (d), we report the decrease in time of the
energy functional of the mean density.

of the fact that during the evolution there is a general decay in the free-energy.

4.1.5. Numerical application III: Homogeneous nucleation of

Lennard-Jones systems

In this section we employ FDDFT to study the homogeneous vapor-liquid transition of a

Lennard- Jones fluid. In the framework of DFT, the density profiles of a one-dimensional

open system that can exchange particles with a reservoir at constant temperature and

chemical potential µ, can be obtained from a numerical minimization of the grand free-
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Figure 4.8. Panel (a) shows the bulk phase diagram for the discretized LJ system.
Panel (b) shows the grand free-energy landscape as function of the system density for
some supersaturation ratios adopted in this study. In (c) we provide an example of
free-energy landscape for systems with a non-uniform density field, with two varying
densities e⇢1 and e⇢2. The dotted black line denotes the curve corresponding to bulk
uniform systems.

energy functional

⌦[⇢(x)] = F [⇢(x)] +

Z
(V (x) � µ) ⇢(x) dx. (4.65)

For an system of interacting particles, F [⇢(x)] is not analytically derivable from first

principle, except in few cases, i.e. hard spheres fluids. In the remaining cases, F [⇢(x)] is

either numerically obtained from atomistic simulations or is approximated by means of
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s = 1.8

s = 2.2

Figure 4.9. Homogeneous nucleation of a vapour LJ system in metastable conditions
with supersaturation ratio s. We report on the left column the mean field evolution of
density, while on the right a single realization of the stochastic dynamics. The colour
map refers to density values.

perturbation expansions around a known free-energy [49]. Similarly to previous works on

DDFT [55, 59], we approximate F [⇢(x)] of a Lennard-Jones fluid according to the first

order Barker–Henderson perturbation theory expansion around the hard-sphere fluid
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Figure 4.10. On panel (a), we report the evolution in time of the average system
density for the supersaturation ratios adopted in this study. Panel (b) shows the time-
evolution of the system free-energy for the supersaturation ratios adopted in this study.
In (c), the nucleation growth rate J is plotted against the free-energy barrier �E .

free-energy [222], namely as

F [⇢(x)] =

Z
{fID[⇢(x)] + fHS[⇢(x)]} dx +

1

2

Z Z
⇢(x)⇢(x0)W (x, x

0) dx dx
0 (4.66)

where fID, fHS and W (x, x
0) denote ideal gas, hard sphere repulsive interactions and LJ

attractive contributions, respectively. The free-energy of an ideal gas is given by

fID[⇢(x)] = kBT⇢
�
ln
�
�

3
⇢
�

� 1
�
, (4.67)
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where � is the thermal de Broglie wavelength. The hard sphere free-energy density fHS

is obtained from the Carnahan–Starling equation of state [125]

fHS [⇢(x)] = kBT

✓
4⌘ � 3⌘

2

(1 � ⌘)2

◆
, with ⌘ =

⇡

6
⇢�

3 (4.68)

with � being the hard sphere diameter (set to 1 in this work). Finally the LJ (attractive)

contributions are taken into account by the following expression:

W (x, x
0) =

8
<

:
�1.2 ⇡ ✏ if | x � x

0 | 1

⇡ ✏
�
0.8 | x � x

0 |�10 �2 | x � x
0 |�4

�
otherwise

(4.69)

which is derived by integrating along y and z the 12-6 LJ potential [59].

In order to analyse the vapor-liquid phase transitions, first we compute the coexisting

density profiles. The coexisting values of vapor and liquid density (on the binodal line)

are denoted as ⇢v and ⇢l respectively, and are obtained by solving the following system

of equations:

8
<

:

@⌦

@⇢

���
⇢v

= @⌦

@⇢

���
⇢l

= 0

⌦ [⇢v] � ⌦ [⇢l] = 0
(4.70)

The meta-stable regions are delimited by the binodal and spinodal lines. The spinodal

lines correspond to the inflection points of the grand free-energy, hence are evaluated by

solving:

@
2⌦

@⇢2

����
⇢v

=
@

2⌦

@⇢2

����
⇢l

= 0 (4.71)

Finally, the bulk critical point is given by the intersection between binodal and spinodal

lines, and thus is computed as

@⌦

@⇢

����
⇢c,Tc

=
@

2⌦

@⇢2

����
⇢c,Tc

= 0 (4.72)

In Fig. 4.8(a), we report the bulk phase diagram obtained from the discretized grand free-

energy of the LJ fluid. Solid curves depicts the binodal, i.e. the locus of liquid–gas coex-

istence, while dashed curves depicts the spinodal, i.e. the boundary between metastable

and unstable regions. The black circle designates the bulk critical point at ⇢c ⇠ 0.3 and

Tc ⇠ 1.35.
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The supersaturation ratio is defined as s = ⇢/⇢v with ⇢v denoting the vapor coexistence

density at a certain temperature. Here we simulate the nucleation of vapor systems

di↵erent initial supersaturation ratios. Figure 4.8(b) shows the free-energy landscape

as a function of the bulk density for such systems. Coexistence (s = 1) corresponds to

two stable basins, which means that the system has equal probability of being either

in the vapor or liquid phase. Increasing the supersaturation ratio, the high-density

basin (corresponding to the liquid phase) enhances its stability, thus leaving the vapor

density in a metastable condition. Moreover the energy barrier that the system has to

overcome to pass from vapor to liquid phase decreases with s, until it becomes null at a

supersaturation corresponding to the spinodal line. In such condition only one minimum

of the grand free-energy exists.

A physical description of the phase transition would consist of an initial and final

uniform system densities, but also of a non-uniform density field during the transition.

This means that the bulk grand free-energy in Fig. 4.8(b), being only valid for uni-

form densities, describes the system only in the initial and final stages, but it does not

provide information on the transition path. The grand free-energy for non-uniform sys-

tems is in general a function of each cell density, i.e. it is an n-dimensional manifold.

As an example, in Fig. 4.8(c) we report our LJ grand free-energy for a non uniform

system, constrained to have only two varying densities e⇢1 =
�
⇢1 = · · · = ⇢n/2

 
and

e⇢2 =
�
⇢n/2+1 = · · · = ⇢n

 
. The bulk free-energy is then recovered for e⇢1 = e⇢2 (dotted

black line).

A single trajectory of the vapour to liquid transition, at di↵erent supersaturation

ratios, is shown in Fig. 4.9. For comparison purpose, we perform simulations of the

FDDFT and its mean field (deterministic) counterpart. In order for the transition to

occur, the system free-energy has to overcome an energy barrier. Such passage requires

a local injection of energy that is triggered by fluctuations. As a consequence, the mean

field approach fails to describe this transition. As expected, by looking at the energy

barrier in Fig. 4.8, the transition is favoured by higher supersaturation ratios.

This trend is quantitatively analysed in Fig. 4.10, where we report the results obtained

performing the average of 10 nucleation trajectories for each supersaturation ratio. Fig-

ure 4.10(a) shows the average density increase as a function of time. The initial and

final average system densities are consistent with the vapour and liquid bulk densities

predicted by the grand free-energy analysis. Moreover, the values of the free-energy

evaluated at each time as function of the average density is reported in Fig. 4.10(b).

The initial free-energy value, corresponding to the vapour metastable basin, evolves in

time until it reaches the more stable liquid basin, as predicted by Fig. 4.8(b). It is
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interesting to notice that the passage between the two basin implies a slight increase in

the free-energy due to the energy barrier overcome by the density field fluctuations. The

average density kinetic is characterized by three main stages: 1) an initial latency period,

2) a growth period and 3) an asymptotic relaxation towards a plateau, corresponding

to the liquid phase density. The growth period exhibits a linear-like trend, with slopes

representing the nucleation growth rate J . As reported in the plot in Fig. 4.10(c), an

Arrhenius-like relation is observed between J and the grand free-energy barrier �E , i.e.

J / exp
�
��E

T

 
.

The numerical applications above highlight the importance of fluctuations in the study

of key phenomena, such as nucleation. In the next section we will propose numerical

methods for the deterministic variation of FDDFT embedded with additional complex-

ities, mainly non-homogeneous di↵usion.
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4.2. Non-homogeneous DDFT: A finite volume approach 5
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Figure 4.11. Time evolution of the density of a 2-D system characterized by a nonlocal
attraction kernel and non uniform di↵usion simulated using our finite-volume scheme.

The deterministic version of the time-evolution equation for the density field in Eq. 4.5 [68,

70] reads:

8
><

>:

@t⇢(r; t) = rr ·

✓�1

0
⇢(r; t)rr

�E [⇢]

�r⇢(r; t)

�
r 2 Rd

, t > 0,

⇢(r; 0) = ⇢0(r),
(4.73)

This gradient-flow equation (Eq. (4.73)) has an important property, that the value free-

energy E(⇢) decreases monotonically over time [72, 73]. For Eq. (4.73) this can be shown

by taking the time-derivative of the free-energy:

d

dt
E(⇢) =

Z

Rd
(V + f

0(⇢) + K ? ⇢)
@⇢

@t
dr

=

Z

Rd
(V + f

0(⇢) + K ? ⇢)r · (✓�1

0
⇢r(f 0(⇢) + V + K ? ⇢))dr

= �
Z

Rd
r(V + f

0(⇢) + K ⇤ ⇢)T ✓�1

0
⇢r(V + f

0(⇢) + K ? ⇢)dr

= �
Z

Rd
⇢vT ✓�1

0
vdr < 0,

(4.74)

where v can be interpreted as the velocity in the gradient flow Eq. (4.73) and satisfies

5This section is based on a joint work with Julien Mendes, who materially produced the figures of
this section. It includes material from J. Mendes, A. Russo, S. P. Perez & S. Kalliadasis. A finite-
volume scheme for gradient flow equations with non-homogeneous di↵usion, Comput. Math. Appl.,
89, 150–162 (2021). The specific contributions of the author to this thesis include conceptualization,
methodology development, supervision and validation.
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v = �r (f 0(⇢) + V + K ? ⇢).

The structure of Eq. (4.73) is similar to the gradient-flow equations considered in

previous works [209, 223, 224, 225, 226, 227, 228]. However in this work the di↵usion

parameter ✓�1

0
is considered, in general, non-constant in space and time. Here we propose

a finite-volume scheme to solve gradient flow equations with non-homogeneous di↵usion

of the form Eq. (4.73), obtained in the framework of DDFT. The scheme allows us

to study systems in non-homogeneous thermal baths and with a general free-energy

functional accounting for external fields and inter-particle potentials. Specifically, we

adopt a first- and second-order upwind approach for the space discretization in both one-

and two-dimensional cases. Moreover, we prove that our scheme satisfies the discrete

analogy of the free-energy decay in Eq. (4.74), thanks to the upwind formulation. We

exemplify our scheme through several case studies of systems with underlying thermal

baths characterized by anisotropic, space-dependent and time-dependent properties.

4.2.1. Numerical methods

The 1D version of Eq. (4.73) can be written as

@t⇢ = @x

�
✓�1

0
⇢@x

�
f

0(⇢) + V + K ? ⇢
��

, (4.75)

where ✓�1

0
is a positive function that in general depends on time t, space x and density

⇢. The finite-volume formulation of Eq. (4.75) is obtained by dividing the computational

domain [0, L] in N cells Ci = [xj�1/2, xj+1/2], all with uniform size �x = L/N , so that

the centre of the cell satisfies xj = (j � 1)�x/L + �x/2, j 2 {1, . . . , N}. In each of

the cells we define the density cell average ⇢j as ⇢j(t) = 1

�x

R
Cj

⇢(x, t)dx. Thus, after

integrating Eq. (4.75) over a cell Cj , one obtains the usual finite-volume discretization

d⇢j

dt
= � 1

�x
(Fj+1/2 � Fj�1/2), (4.76)

where Fi±1/2 denote the numerical fluxes. Their evaluation follows an upwind approach

similar to the one proposed by Carrillo and coworkers [209], i.e.

Fj+1/2 = u
+

j+1/2
⇢j + u

�

j+1/2
⇢j+1, (4.77)

where the velocity ui+1/2 satisfies

uj+1/2 = �
�
✓�1

0

�
j+1/2

⇠j+1 � ⇠j

�x
, (4.78)
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and

u
+

j+1/2
= max(uj+1/2, 0), u

�

j+1/2
= min(uj+1/2, 0). (4.79)

If ✓�1

0
depends only on x or t, than

�
✓�1

0

�
j+1/2

is evaluated explicitly at the inter-

face xj+1/2. Otherwise, if it depends on ⇢, than it is approximated as
�
✓�1

0

�
j+1/2

=
�
✓�1

0
(⇢j) + ✓�1

0
(⇢j+1)

�
/2.

The profile in each cell Cj is reconstructed as a constant for the first-order scheme, or

as a linear function for the second-order scheme,

e⇢j(x) =

8
<

:
⇢j , x 2 Ci, for the first-order scheme,

⇢j + (⇢x)
j
(x � xj), x 2 Cj , for the second-order scheme,

(4.80)

so that the east and the west values ⇢
E

j
and ⇢

W

j
at the cell interfaces xj+1/2 and xj�1/2,

respectively, are approximated as

8
<

:
⇢

E

j
= ⇢j , ⇢

W

j
= ⇢j for the first-order scheme,

⇢
E

j
= ⇢j + �x

2
(⇢x)

j
, ⇢

W

j
= ⇢j � �x

2
(⇢x)

j
for the second-order scheme.

(4.81)

The numerical derivatives (⇢x)
j

at every cell Cj are computed by means of an adaptive

procedure which ensures that the point values Eq. (4.81) are second-order and non-

negative, i.e.

(⇢x)
j

= minmod

✓
✓

⇢j+1 � ⇢j

�x
,
⇢j+1 � ⇢j�1

2�x
, ✓

⇢j � ⇢j�1

�x

◆
,

where

minmod (z1, z2, . . .) =

8
>>><

>>>:

min (z1, z2, . . .) , if zj > 0 8j,

max (z1, z2, . . .) , if zj < 0 8j,

0, otherwise.

The parameter ✓ controls the numerical viscosity and it is taken to be ✓ = 2. The no-flux

conditions are numerically implemented by taking the numerical flux Eq. (4.77) to be

zero at the boundaries,

F
n+1

j�1/2
= 0 for j = 1,

F
n+1

j+1/2
= 0 for j = N,

(4.82)

As discussed in details in Ref [229], the above scheme satisfies density positivity and
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decay of the discrete free-energy defined as

E�(⇢) = �x

X

j

 
Vj⇢j + H(⇢j) +

1

2
�x

X

i

Kj�i⇢i⇢j

!
. (4.83)

Similarly to 1D, the 2D version of the scheme is discussed in Appedix C.2.1 In the next

sections, we present various numerical experiments for di↵erent test cases. The aim is to

show the impact of a variable coe�cient ✓�1

0
on the dynamical evolution of the solutions,

as opposed to a constant ✓�1

0
. The boundary conditions in all simulations are taken as

no-flux and the temporal integrator scheme is the third order TDV Runge-Kutta method

[230].

4.2.2. 1D case studies

1D case studies: Order of convergence

First, we numerically test the convergence of the first- and second-order schemes by

studying a system satisfying the following governing equation:

@⇢

@t
=

@

@x

✓
✓�1

0
⇢

@

@x
(log(⇢) + V )

◆
, (4.84)

where V (x) = x
2

2
. Here we test the convergence both for a constant ✓�1

0
= 1 and for a

non-homogeneous di↵usion with a spatial dependency of the form ✓�1

0
(x) = �x<0 + 0.5.

The computational domain is [�5, 5] and we choose a Gaussian initial condition ⇢0(x) =
M

p

2⇡�2
exp

⇣
� x

2

2�2

⌘
with M = 0.1 and � = 0.3.

The order-of-convergence analysis is performed by running the numerical simulation

for di↵erent number of cells, each of them being twice the one of the previous simulation.

Hence, the cell size �x is halved after each run. We then compute the L
1 error of the

numerical solution ⇢�x as ✏(�x) = k⇢�x(x, T )�⇢
⇤(x, T )kL1 , where ⇢

⇤ is an approximate

exact solution computed using a rather refined mesh (with 12, 800 cells). Finally the

order of convergence is obtained from the error as:

o(�x) = log2

 
✏(�x)

✏
�

�x

2

�
!

. (4.85)

Our results for the homogeneous di↵usion with ✓�1

0
= 1 are depicted in Table 4.1, while

the ones for ✓�1

0
(x) = �x<0 +0.5 are shown in Table 4.2. They clearly indicate the first-

and second-order convergence for the proposed numerical schemes.
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Table 4.1. Accuracy test for ✓�1

0
= 1 with the first and second-order schemes

Number of
cells

First-order Second-order
L

1 error order L
1 error order

25 1.4135E-02 - 3.9482E-04 -
50 7.8529E-03 0.85 2.8628E-04 0.46
100 4.1668E-03 0.91 7.5858E-05 1.92
200 2.1453E-03 0.96 2.1434E-05 1.82

Table 4.2. Accuracy test for ✓�1

0
(x) = �x<0 + 0.5 with the first and second-order

schemes

Number of
cells

First-order Second-order
L

1 error order L
1 error order

25 1.47581E-04 - 1.39116E-04 -
50 7.98831E-03 0.89 1.24210E-04 0.16
100 4.25173E-03 0.91 3.61261E-05 1.78
200 2.18779E-03 0.96 1.23742E-05 1.55

Nonlinear di↵usion equation in a radially symmetric inhomogeneous

medium

(a)

0.0 0.5 1.0

x

0.0

0.5

1.0

�

�x

�x/2

�x/4

Exact Solution

(b)

0.0 0.5 1.0

x

0.0

0.5

1.0

�

FV t = 0.16

FV t = 0.64

FV t = 1.12

FV t = 1.6

Exact t = 0.16

Exact t = 0.64

Exact t = 1.12

Exact t = 1.6

Figure 4.12. (a) Convergence towards the exact solution for Eq. (4.87) at the final
computational time t = 1.6sec; (b) Comparison between the finite-volume (FV) scheme
and the exact solution. Parameter values: M1 = 0.5, a = 1, b = 3, D0 = 1, r0 = 0.1,
�x = 0.042 in (a) and �x = 0.01 in (b).

In this numerical application we simulate a system in a radially symmetric inhomoge-

neous medium [231]. Consider the following ⌫-dimensional nonlinear di↵usion equation

176



Chapter 4. Numerical methods for DDFT with additional complexities

in polar coordinates: 8
>>>>>>><

>>>>>>>:

@⇢

@t
=

1

r⌫�1

@

@r
(r⌫�1

D
@⇢

@r
),

R
r0

0
!⌫r

⌫�1
⇢(r, 0)dr = M1,

J1(0, t) = 0, t > 0,

⇢(r, t) ! 0, r ! 1, t > 0,

(4.86)

where r is the radius r = kxk, D(r, ⇢) = D0r
a
⇢

b is the di↵usion coe�cient (0 < a < 2,

b > 0 ), J1(r, t) = �!⌫Dr
⌫�1 @⇢

@r
is the di↵usive flux. This problem describes the

evolution of an initial distribution of a di↵using substance. In [231], an analytical solution

for this system is derived,

⇢(r, t) =

8
><

>:
C0(t)


1 �

⇣
r

rf (t)

⌘
2�a

� 1

b

if r < rf (t),

0 otherwise,

(4.87)

where C0(t) is the solution at the origin r = 0 and rf (t) denotes the front position.

In the 1D scenario we have that r = |x| , ⌫ = 1 and !⌫ = 1. We can then re-formulate

the problem as:
@⇢

@t
=

@

@r

✓
D0r

a
⇢

@

@r

✓
⇢

b

b

◆◆
. (4.88)

Eq. (4.88) is a particular case of Eq. (4.75) with ✓�1

0
(r) = D0r

a, f
0(⇢) =

⇢
b

b
, V = 0 and

K = 0. The conditions in Eq. (4.86) can be considered as Dirichlet (⇢(r, t) ! 0 when

r ! 1) and Neumann (J1(0, t) = 0). The mass conservation is ensured due to the

nature of the finite-volume schemes.

The results for this example are displayed in Fig. 4.12. Figure 4.12(a) depicts the

convergence towards the exact solution Eq. (4.87). The discontinuous derivative at

the front prevents the numerical solution for larger �x to approach the exact solution.

However, as the mesh is refined the numerical solution converges to the exact one. On

the other hand, Fig. 4.12(b) plots the numerical solution at di↵erent times comparing

to the exact solution Eq. (4.87). Evidently the radial di↵usion enlarges the compact

support of the solution in time making the front advance.

System with a space-dependent di↵usion coe�cient in an external field

In this numerical application, we compare the time-evolution of a system embedded with

constant and space-dependent ✓�1

0
. The governing equation for the analysed system
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satisfies:
@⇢

@t
=

@

@x

✓
✓�1

0
⇢

@

@x

�
⌫⇢

m�1 + V (x)
�◆

, (4.89)

with an external potential satisfying V (x) = x
4

4
� x

2

2
and m = 3. Simulations are

performed on a domain with boundaries [�3, 3], �x = 0.06 and ⌫ = 1.48. Moreover we

employ ✓�1

0
= 1 in a first system and ✓�1

0
(x) = �x<0 +0.5 in a second one. The first case

corresponds to the one reported also in [209]. Initial conditions for the system density

satisfy ⇢0(x) = M
p

2⇡�2
e
�

x2

2�2 with M = 0.1 and �
2 = 0.2.

The time-evolution of the density for systems with constant and space-dependent ✓�1

0

are reported in Fig. 4.13. First, Fig. 4.13(a) shows that for a constant ✓0v
�1 the density

evolution in time remains spatially symmetric, and, due to the shape of the external

potential V (x), the steady state is characterized by two compactly-supported peaks.

This is in agreement with the steady-state solution of Eq. (4.89) for ✓�1

0
= 1, satisfying

[209]

⇢1(x) =

✓
C(x) � V (x)

⌫

◆ 1

m�1

+

,

where C(x) is a piecewise constant.

Figure 4.13(b) shows the time evolution of the density for ✓�1

0
(x) = �x<0 + 0.5. An

asymmetric solution characterize the temporal evolution of the density. However the

steady state eventually approaches the same solution of the case with ✓�1

0
= 1. It is

worth noticing that the evolution of the density in the left region of the domain is faster

due to the higher value of the local di↵usion ✓�1

0
(x).

Finally, in Fig. 4.13(c) we report the discrete free-energy in Eq. (C.25). It monoton-

ically decreases in time for both choices of ✓�1

0
. Interestingly the space-dependent ✓�1

0

has a faster time convergence towards the steady state value compared to the constant

✓�1

0
.

Nonlinear di↵usion with non local attraction kernel

In this section we analyse systems with constant and space-dependent ✓�1

0
, as in the

previous example. However here we include non-local interactions, i.e.

@⇢

@t
=

@

@x

✓
✓�1

0
⇢

@

@x

�
⌫⇢

m�1 + K(x) ? ⇢
�◆

. (4.90)

This models is characterized by the competition between non-uniform di↵usion and

non-local attraction. As in the previous section, a first system has ✓�1

0
= 1 (as in

Ref [209].), while a second one has ✓�1

0
(x) = �x<0 + 1. Density initial conditions satisfy
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Figure 4.13. Numerical solution with ✓�1

0
= 1 (a) and ✓�1

0
(x) = �x<0 +0.5 (b). Decay

of the discrete free-energy in (c).

⇢0(x) = �[�1.5,1.5]/4.

The time evolution of the density for these examples are displayed in Fig. 4.14. Fig-

ure 4.14(a) shows results for a constant ✓�1

0
. It dan be observes that initially two identical

bumps are formed but they eventually merge into a single one when reaching the steady

state. in this case the solution remains symmetric for all times. Figure 4.14(b) shows the

time evolution for the space-dependent ✓�1

0
. We observe that the dynamics are similar

to Fig. 4.14(a), but here the two bumps are no longer symmetric. Specifically the density

evolution in the left region of the domain occurs faster due to the larger value of the

di↵usion coe�cient. Eventually the solution recovers the steady state of 4.14(a).

In Fig. 4.14(c) we report the discrete free-energy decay (Eq. (C.25)). The solution of

in case of the space-dependent ✓�1

0
converges faster to the steady-state. Moreover, for

✓�1

0
= 1 two characteristic intermediate asymptotic behaviours are observed correspond-

ing to two straight lines with di↵erent slopes: the first one corresponds to the merging
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Figure 4.14. (a) Numerical Solution with ✓�1

0
= 1, (b) Numerical Solution with

✓�1

0
(x) = 1 + �x<0, (c) Decay of the discrete free-energy. Parameter values: ⌫ = 0.5,

m = 3, K(x) = �(1 � |x|)�|x|<1,�x = 0.08.

of the two bumps, while the second one to the formation of a single mass cluster. In the

case of space-dependent ✓�1

0
, the free-energy has a single exponential decays in time,

and the overall evolution is faster.

Time-dependent di↵usion coe�cient ✓�1

0
(t)

Here we study the heat equation @⇢

@t
= @

@x

�
✓�1

0

@

@x
(⇢)

�
, embedded with the following

time-dependent di↵usion coe�cient ✓�1

0
:

✓�1

0
(t) =

8
<

:
1 if cos(2⇡t) > 0.5,

0 otherwise.
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The initial density for the simulations is ⇢0(x) = 1
p

2⇡
e
�

x2

2 , the spatial domain is [�3, 3]

and �x = 0.06.
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Figure 4.15. Heat equation with a time-dependent di↵usion ✓�1

0
. (a) Three-

dimensional plot of the numerical solution and (b) Ddcay of the discrete free-energy.

The time-evolution of the density profile is shown in Fig. 4.15. This is characterized

by a discontinuous time evolution which can be analysed as follows. Let us define

I as a union of intervals Ip such that 8t 2 I : ✓�1

0
(t) = 1. The density evolution

varies according to the time interval. For t 2 Ip =: [t2p, t2p+1], the time-evolution

of the density follows the usual di↵usion evolution. For t /2 I, we have a stationary

problem: @⇢

@t
= 0 8t 2 [t2p+1, t2p+2], and thus ⇢(x, t) = ⇢(x, t2p+1) 8t 2 [t2p+1, t2p+2].

Fig. 4.15(b) shows that this discontinuous time evolution is observed also in the free-

energy decay.

4.2.3. 2D case studies

✓0
�1 constant matrix

In 2D applications, ✓�1

0
in Eq. (4.73) becomes a 2 ⇥ 2 matrix. Let us consider the

following anisotropic di↵usion problem embedded with a constant ✓�1

0
matrix:

@⇢

@t
= r · (✓�1

0
r⇢) on ⌦ = [�A, A]2. (4.91)

An analytical solution of Eq. (4.91) can be obtained by employing 2D Fourier series.

Specifically if the time-evolution of the system density is periodic in space at all times,
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Figure 4.16. Di↵usion in (1, 0) direction. (a) Numerical solution, (b) approximate
(Fourier series) solution.
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Figure 4.17. Di↵usion in (1,1) direction. (a) Numerical solution, (b) approximate
(Fourier series) solution.

than its density Fourier expansion can be written as:

⇢(x, y, t) =
X

k,l

Ck,l(t)e
i

⇡
A (kx+ly)

. (4.92)

182



Chapter 4. Numerical methods for DDFT with additional complexities

where the Fourier coe�cients satisfy:

dCk,l

dt
(t) = �

⇣
⇡

A

⌘
2

↵k,lCk,l(t), (4.93)

with ↵k,l = ((✓�1

0
)T (k, l)T ).((k, l)T ). It follow that Ck,l(t) = Ck,l(0) exp

⇣
�
�

⇡

A

�
2
↵k,lt

⌘
,

with the coe�cients Ck,l(0) being the Fourier coe�cients of the initial conditions. In

this case, we can approximate ⇢ with a truncated Fourier series:

⇢(x, y, t) ⇡
X

|k|+|l|N

Ck,l(t)e
i

⇡
A (kx+ly)

. (4.94)

Here our objective is to compare the numerical simulation of Eq. (4.91) against the

approximated exact solution obtained with the truncated Fourier series. In order to

show the e↵ect of ✓0 on the di↵usion directions, we consider systems characterized by

the following two ✓0 matrices:

✓(1)

0
=

"
10 0

0 1

#
, ✓(2)

0
=

"
1 0.5

0.5 1

#
. (4.95)

If ✓0 is diagonal, the main di↵usion direction corresponds to the highest coe�cient of

✓�1

0
. However, in general the di↵usion direction is given by the eigenvector associated

with the highest eigenvalue. If the two eigenvalues are equal, then heat is di↵used along

both eigenvectors directions with the same speed.

The initial density field is a normalized Gaussian distribution, and the numerical

domain is [6 ⇥ 6] with �x = �y = 0.2. Simulations result for ✓(1)

0
and ✓(2)

0
are reported

in Fig. 4.16 and Fig. 4.17, respectively. As expected, in Fig. 4.16 the main di↵usion

direction is parallel to the horizontal axis, while in Fig. 4.17 it is diagonal and aligned

with the direction of the highest eigenvalue. Finally, the numerical and Fourier time-

evolution of the density are in good agreement.

Space-dependent di↵usion

Here we simulate the non-homogenous di↵usion problem ✓�1

0

@⇢

@t
= r · (✓�1

0
r⇢). (4.96)
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Figure 4.18. (a)-(c) 3D plots of the numerical solution and (d)-(f) slices of the nu-

merical solution for y = 0. Parameter values: ✓�1

0
(x, y) = 1 + 100| cos

⇣
2⇡

T

p
x2 + y2

⌘
|,

(T = 1.5), �x = �y = 0.2.

embedded with the following space-dependent ✓�1

0
:

✓�1

0
(x, y)

 
1 0

0 1

!
= 1 + 100

����cos

✓
2⇡

T

p
x2 + y2

◆����

 
1 0

0 1

!
, (4.97)

which varies sinusoidally in space. The initial density is a normalized Gaussian distri-

bution, while the numerical domain is [6 ⇥ 6] with �x = �y = 0.2.

In Figs 4.18(a-b-c) we plot the 2D numerical solution, while in Figs 4.18(d-e-f) we

depict specific slices of the numerical solution as well as of ✓�1

0
at y = 0. Figures 4.18(e-

f) shows that the slopes of the solution vary following the space-dependency of ✓�1

0
.

Eventually ⇢ spreads out due to the di↵usion.
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Figure 4.19. (a): 3-D plot of the numerical solution, (b): Slices of numerical solution
and exact solution for y = 0. Parameter values: a = 1, b = 3, D0 = 0.01, �x = �y =
0.08, r0 = 0.14, M1 = 0.5.

Nonlinear di↵usion equation in a radially-symmetric inhomogeneous

medium in 2D

Here we analyse the 2D extension of the 1D problem in Eq. (4.86). Here we choose:

✓�1

0
(x, y) = D0r

a
⇢

b

 
1 0

0 1

!
, (4.98)

and we select the rest of parameters as ⌫ = 2, r =
p

x2 + y2 and w⌫ = 2⇡. The

initial condition for the simulations is ⇢0(r) = C0(0)
�
1 � (r/r0)2�a

� 1

b where a = 1,

b = 3, r0 = 0.14, and C0(0) satisfies the conservation of mass, with M1 = 0.5. The

computational domain is [�1, 1]2 with �x = �y = 0.08.

In Figs 4.19(a-b-c) we plot the numerical solution obtained from our finite-volume

scheme. We can observe how the compactly-supported density spreads out in time due

to di↵usion. In Figs 4.19(d-e-f) we compare slices at y = 0 of the numerical and the

exact solutions Eq. (4.87) derived in Ref. [231]. Evidently the two methods are in good

agreement at all times.
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Figure 4.20. (a)-(d): 3-D plot of the numerical solution with ✓(1)

0
, (e)-(h): 3-D plot

of the numerical solution with ✓(2)

0
, (i): Decay of the discrete free-energy. Parameter

values: m = 3, �x = �y = 0.05, ⇢0(x, y) = 1

4
�[�3,3]2(x, y).

Nonlinear di↵usion with nonlocal attraction in 2D

In this final example we consider the gradient flow in Eq. (4.73) with a non zero attraction

kernel K(x, y) = � 1

⇡
e
�x

2
�y

2

:

@⇢

@t
= r ·

�
✓�1

0
⇢r ·

�
⌫⇢

m�1 + K(x, y) ? ⇢
��

. (4.99)
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The aim of this example is to compare the dynamical evolution with two di↵erent ✓�1

0

matrices:

✓(1)

0
=

"
10 0

0 1

#
, ✓(2)

0
=

"
1 0.5

0.5 1

#
.

The eigenvectors of the matrices above determine di↵erent directions of di↵usion during

the time-evolution of the density. The space domain taken in the simulations is [�3, 3]2

meshed with �x = �y = 0.03, and the initial conditions satisfy 1

4
�[�3,3]2(x, y).

Figures 4.20(a-b-c-d) depict the evolution with ✓(1)

0
. We observe a similar dynamics to

the ones in the 1D example Fig. 4.2.2(a). In this case four identical bumps are formed,

eventually merging into a single one. The non-local attraction (convolution) dominates

the di↵usion during the dynamical evolution, until the steady state is approached, and

the dynamics is symmetric with respect to (0, 0).

Figures 4.20(e-h) show the results with ✓(2)

0
. The steady state is identical to the case

✓(1)

0
, however the merging of the peaks is accomplished at two di↵erent timescales. This

is due to the di↵erent eigenvectors of ✓(1)

0
and ✓(2)

0
. Indeed, the discrete free-energy plot

in Fig. 4.20(i) shows that for ✓(1)

0
a plateau is reached before a drastic decrease of free-

energy. For ✓(2)

0
in Figure 4.20(i) that there are two distinct phases during the decrease

of the free-energy due to the two merging that take place during the time-evolution of

the density.
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Conclusions and Outlook

In this final Chapter, we summarize this work and discuss future investigations on some

of the analysed topics. Moreover, we include a dedicated section on additional research

topics to be investigated in future projects as an extension of the present work.

5.1. Summary and conclusions

5.1.1. Molecular dynamics simulation of liquid-solid, liquid-vapor and

liquid-liquid interfaces

In the present work, we used MD to obtain a microscopic description of confined LJ sys-

tems and extract macroscopic relations from simulations data. A detailed analysis of the

density profile at the interfaces for several conditions of the system is provided. Further-

more, the non-homogeneous stress tensor and its kinetic an potential contributions are

discussed. Hence, the shear viscosity profile of the system is investigated, and modelled

as function of density, temperature and wall interactions via local and non-local models.

Specifically, also by leveraging a theoretical framework proposed in Ref [25], we propose

and test relations between viscosity and density variation at interfaces, which constitute

a generalization of the purely data-driven model proposed by Morciano et al. [30]. Such

relations are tested against MD simulations in a wide range of interfacial conditions and

temperatures, showing a good agreement.

Our models can be employed in continuous numerical methods for mesoscopic fluid

flows, such as DDFT, to improve their accuracy at fluid-solid interfaces. In future
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works on the topic, the proposed relations should be further generalized to additional

inter-particle potentials. Also, a detailed analysis of fluid properties for various wall ge-

ometries, shapes and roughness would be of great interest for the engineering community

and is still missing.

5.1.2. Low dimensional models

GLE

In this work, we have propose a novel methodology to parametrize a GLE dynamics of an

observable by means of a multi-layers perceptron. By using machine learning to eliminate

the unknowns from GLEs, our methodology outperforms previous approaches in terms

of e�ciency and robustness. Di↵erently from traditional approaches employing Laplace

transform, we have shown that the presented methodology does not su↵er random data

fluctuations typically present in real system data-sets. The general applicability of our

approach, guaranteed by the universal approximation theorem, makes its use appealing

in a variety of applications. In fact, our methodology is tested against several prototyp-

ical examples, from colloidal systems to particle chains in a bath, to climatology and

financial assets. In all cases, we report a good agreement between actual and modelled

dynamics of the observables under consideration. Thus, coupling deep learning with the

most general equation of statistical physics, namely GLE, opens the doors for a new way

of modelling and understanding complex systems. Future developments of our method

will involve MLPs equipped with complex exponential functions, since this may lead to

enhanced approximations of oscillatory memory kernels.

Non-Markovian FDDFT

Here we have derived a theoretical framework for describing colloidal reacting multi-

species fluid systems. From Newton’s equations of motion, applying Mori-Zwanzig

projection-operator techniques, one can obtain a system of GLEs, describing the mo-

tion of a relevant part of the original system only. Unlike most approaches, GLEs have

a stochastic non-Markovian form, with a memory term, given in the form of a time-

convolution. Defining the local number and momentum density fields, we obtain the

corresponding non-Markovian Navier-Stokes like system of microscopic fluctuating hy-

drodynamics. Introducing the free-energy functional from classical density-functional

theory, we obtain a non-Markovian fluctuating dynamical density functional theory for

reacting multi-species systems, which is the main result of the present work. By in-

troducing a proper deconvolution operator and taking the overdamped limit, we also
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obtained the corresponding limiting case expression for the non-Markovian overdamped

evolution of the density field. Additionally, we proposed a finite volume scheme to

discretize the non-Markovian FDDFT, and we provided several numerical applications.

These include ideal gas in and out of equilibrium, and a two-species reacting system

exhibiting memory-driven Turing patterns.

The theoretical and numerical framework developed in this work can be adopted to

investigate many physical phenomena in both active and passive matter. In fact, we

showed that memory, by inducing time-correlations and variations of the fluid mobility

that alter the transition path of the system, have a significant role in the dynamical

evolution of systems undergoing state transitions. As a result, in general the treatment

of the memory term requires a great attention. Thus, an interesting extension of the

present work would include the usage of our framework to the study of phase transi-

tions in biological fluids, where memory e↵ects should play an important role. Such

systems are often characterized by space- and time-scales not accessible with atomistic

simulations [167, 168]. Another possible line of investigation could include the analysis

of geometrical confinement on colloidal systems [55, 232, 233].

5.1.3. DDFT with additional complexities

In this work we also proposed and tested finite volume numerical schemes for solving

gradient flow equations derived in the framework of FDDFT. We considered DDFT

with two di↵erent complexity: (1) DDFT with the stochastic term and (2) DDFT with

non-homogeneous di↵usion.

Regarding stochastic DDFT, while previous works have developed numerical method-

ology only applicable to a limited range of free-energies (e.g. ideal gas free-energy in

Refs [71, 221]), our proposed scheme e↵ectively deals with general free-energy function-

als, including external fields and inter-particle potential components. This contributes

to a better understanding the e↵ects of thermal fluctuations in relevant physical phe-

nomena. Our numerical scheme relies on a hybrid space discretization based on central

and upwind schemes. This approach provides an optimal compromise between statistical

properties of the stochastic field and spurious oscillations. Moreover, an adaptive time-

step based on Brownian bridge technique is employed to ensure the non-negativity of the

density. We validated the proposed scheme by means of several numerical applications.

First, we analysed variance, temporal and spatial correlations, and structure factor of

ideal gas at equilibrium, comparing the results of our finite volume solver with both MD

and theoretical results. Consistently with previous works, we showed that a minimum

number of 5 � 10 particle per cell is required in order for FDDFT to match atomistic
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simulations results. Then, we examined the out of equilibrium evolution of a system in

a double well potential. As expected in this case, our stochastic solver accurately re-

produced local mean density, local density fluctuations and spatial correlations obtained

with MD simulations. We also highlighted that, in this specific case, the deterministic

the outcomes from DDFT simulations, which do not include thermal fluctuations, are

consistent with the FDDFT and MD results. Finally, we simulated homogeneous nucle-

ation kinetics of a fluid consisting of particles interacting through a Lennard-Jones like

potential. The outcome of these simulations matches the theoretical results predicted by

the phase diagram, and illustrate the crucial role of fluctuations to surmount free-energy

barriers. Moreover, an Arrhenius-like law is observed for the nucleation growth rate as

function of the metastable free-energy barrier.

It is worth highlighting that the approach employed here to preserve density posi-

tivity may not be applicable to simulations requiring the solution of both density and

momentum fields. This could be employed, for instance, in research studies of bubble

nucleation and collapse.

Regarding the numerical schemes for DDFT with non-homogeneous di↵usion, we de-

veloped an accurate, e�cient and robust finite-volume scheme to solve gradient-flow

equations with non-homogeneous properties. Our numerical methodology extends the

state-of-art in the finite-volume literature [209] by accounting for spatio-temporal de-

pendence of the friction tensor ✓0. We propose 1D and 2D first- and second-order finite-

volume schemes satisfying density positivity (under a certain CFL condition) as well as

the discrete-energy decay. The order of the scheme is tested for both homogeneous and

non-homogeneous friction tensors demonstrating first- and second-order spatial conver-

gence. moreover, our approach is applied to simulate several prototypical systems with

thermal baths characterized by anisotropic, space-dependent and time-dependent prop-

erties, both in 1D and 2D. The dynamical evolution of density profile and the decay of

discrete free-energy allow us to scrutinise how the particular spatio-temporal dependency

of ✓0 a↵ects the dynamical evolution of the numerical solutions. We also performed sev-

eral numerical experiments showing non-trivial dynamical evolution arising from the

particular choice ✓0 which in turn strongly influences the characteristic timescales of the

system and decay rates of the discrete free-energy.

5.2. Additional open directions and future research topics

In this section we discuss some topics to be investigated in future research studies to

extend the work in this thesis.
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5.2.1. Volume (or bulk) viscosity for inhomogeneous fluids

A general fluid flow can be described by using two transport coe�cients, shear and

volume (or bulk) viscosities. They are related to the irreversibility of a generic process

acting on the fluid. The shear viscosity ⌘ accounts for shape deformations, while the

bulk viscosity ⌘b is related to size deformations. Since in many physical systems, such

as incompressible fluids or dilute monoatomic gases, changes in shape are predominant,

the e↵ects of bulk viscosity are often neglected. However, when dealing with phenomena

involving fluids compressions or expansions, such as shockwaves, bulk viscosity plays a

key role. Moreover, in confined fluids, bulk viscosity is in general non-uniform throughout

the domain, thus a methodology to investigate its local value is required. A generic stress

tensor can be expressed as:

� = �peqI +
�
⌘b � 2

3
⌘s

�
r · uI + ⌘s

�
ru + ruT

�
(5.1)

where � is the stress tensor out of equilibrium, peq = �(�eq,xx + �eq,yy + �eq,zz)/3 is

the pressure, ⌘ is the shear viscosity, u is the velocity and ⌘b is the bulk (or volume)

viscosity, which equal to zero for dilute monatomic gases and strictly positive for the

other cases. The bulk viscosity is an empirical coe�cient depending on the nature of

the fluid and is usually quite di�cult to compute locally.

We propose to employ MD simulations in future studies to estimate local bulk viscosity.

Specifically, Green-Kubo formulation provides a relation between bulk viscosity and

pressure fluctuation �p(t) = p(t) � p̄ for an NVE ensemble [234], namely

⌘b =
V

kBT

Z
1

0

< �p(0)�p(t) > dt (5.2)

where V is the volume, kB is the Boltzmann’s constant, T is the temperature, t is the time

and < �p(0)�p(t) > indicates the average autocorrelation of �p(t). This expression has

been widely used for hard-sphere, Lennard-Jones [235, 236, 237] and liquid water [238].

Non-equilibrium approaches to the computations of the bulk viscosity are di�cult since,

as Hoover et al. [237] state, “a steady-state measurement, possible in case of shear

(viscosity), is impossible. At best the bulk viscosity can be measured a cyclic compression

and expansion”. However, cyclic compressions and expansions would be di�cult to

implement for systems confined between solid interfaces, like the ones we are interested

in.

We performed some preliminay MD simulations on this analysis. A fluid is confined

between two solid parallel walls. For each fluid particle i
th, the potential Ui is computed
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as:

U(ri)fluid =

NfX

j=1

ULJ(rij)fluid�fluid +
NwX

j=1

ULJ(rij)solid�fluid (5.3)

where Nf and Nw are the total number of respectively fluid and wall particles within

a distance lower than its cutting radius rc. Walls particles are maintained fixed in

their lattice positions. The fluid is modelled as mono-atomic particles interacting by

a 12-6 Lennard-Jones potential ULJ . The simulation box (wall excluded) measures

[30�] ⇥ [30�] ⇥ [30�]. Periodic boundary conditions are imposed along x and y axes,

while non-periodic,shrink-wrapped conditions contains the system in the z direction. The

system is equilibrated with a a Nosé-Hoover thermostat to a temperature Tkb/✏ = 1.0,

and simulations are carried out in an NVE ensemble. The data are gathered by following

the approach in [239]: the pressure autocorrelations to be averaged are computed from

subset of a single trajectory, with interval between the time origins of 30nsteps.

Figure 5.1 reports the average autocorrelation function and the bulk viscosity for the

whole domain evaluated along the confined direction. It can be noticed that ⌘b tends

to a constant value in the bulk fluid and increases close to the walls (as expected due

to the density layering [239]). In this preliminary investigation, we compute the bulk

viscosity inside each bin with a relation that is rigorously valid only for NVE ensembles.

However, a relation for grand-canonical ensembles is also available and takes the following

form [234]:

⌘b =
V

kBT

Z
1

0

< �p(0)�p(t) > dt (5.4)

where �p(t) = p(t) � p̄corr and p̄corr can be expressed as:

p̄corr = p̄ +
@p̄

@E(t)

�
E(t) � Ē

�
+

@p̄

@N(t)

�
N(t) � N̄

�
(5.5)

with E(t) and Ē being the instantaneous and average total energies respectively, and

N(t) and N̄ being the instantaneous and average number of particle in the system

respectively. Specifically, an equilibrium NVT system could be simulated, such that we

can consider volume, temperature and chemical potential to be constant within each

bin (for su�ciently large bins). Then, the Green-Kubo formulation for grand-canonical

ensembles could be employed to accurately estimate the local bulk viscosity. It is worth

mentioning however that one would need to simulate the system at di↵erent energy and

density values to evaluate for each bin the two derivatives @p̄

@E(t)
and @p̄

@N(t)
in Eq. 5.5.
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Figure 5.1. (a)Density profile, (b) average autocorrelation of the pressure fluctuation
and (c) local bulk viscosity ⌘b(y) evaluated in the simulated domain.
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[42] Turgut Baştuğ, Po-Chia Chen, Swarna M. Patra, and Serdar Kuyucak. Potential of

mean force calculations of ligand binding to ion channels from jarzynski‘s equality

and umbrella sampling. J. Chem. Phys., 128(15):155104, 2008.

[43] Robert Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press,

2001.

[44] Alexandre J. Chorin, Ole H. Hald, and Raz Kupferman. Optimal prediction and

the mori–zwanzig representation of irreversible processes. PNAS, 97(7):2968–2973,

2000.

[45] Eric Darve, Jose Solomon, and Amirali Kia. Computing generalized langevin

equations and generalized fokker–planck equations. PNAS, 106(27):10884–10889,

2009.

[46] Alexis Torres-Carbajal, Salvador Herrera-Velarde, and Ramón Castañeda Priego.
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in Gewissen verdichteten gasen und flüssigkeiten. Almqvist & Wiksells boktryckeri-

a.-b., 1922.

204



Bibliography

[110] Junfang Zhang, B. D. Todd, and Karl P. Travis. Viscosity of confined inhomoge-

neous nonequilibrium fluids. J. Chem. Phys., 121(21):10778–10786, 2004.

[111] H. Hoang and G. Galliero. Shear viscosity of inhomogeneous fluids. J. Chem.

Phys., 136(12):124902, 2012.

[112] H. Hoang and G. Galliero. Local shear viscosity of strongly inhomogeneous dense

fluids: from the hard-sphere to the lennard-jones fluids. J. Phys. Condens. Matter,

25(48):485001, 2013.

[113] Peter A. Thompson and Mark O. Robbins. Shear flow near solids: Epitaxial order

and flow boundary conditions. Phys. Rev. A, 41:6830–6837, Jun 1990.

[114] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. J.

Comput. Phys., 117(1):1 – 19, 1995.

[115] Loup Verlet. Computer ”experiments” on classical fluids. i. thermodynamical prop-

erties of lennard-jones molecules. Phys. Rev., 159:98–103, 1967.

[116] Peter A. Thompson and Sandra M. Troian. A general boundary condition for

liquid flow at solid surfaces. Nature, 389:360–362, 1997.

[117] S. Hess. Structure and nonlinear flow behavior of simple and complex fluids. Int.

J. Thermophys., 23(4):905–920, Jul 2002.

[118] Remco Hartkamp, B. D. Todd, and Stefan Luding. A constitutive framework for

the non-newtonian pressure tensor of a simple fluid under planar flows. J. Chem.

Phys., 138(24):244508, 2013.

[119] Thomas Soddemann, Burkhard Dünweg, and Kurt Kremer. Dissipative particle

dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dy-

namics simulations. Phys. Rev. E, 68:046702, Oct 2003.

[120] Laurent Joly, Christophe Ybert, Emmanuel Trizac, and Lydéric Bocquet. Hydro-

dynamics within the electric double layer on slipping surfaces. Phys. Rev. Lett.,

93:257805, 2004.

[121] Pierre-Andre Cazade, Remco Hartkamp, and Benoit Coasne. Structure and dy-

namics of an electrolyte confined in charged nanopores. J. Phys. Chem. C,

118(10):5061–5072, 2014.

205



Bibliography

[122] Eliodoro Chiavazzo, Matteo Fasano, Pietro Asinari, and Paolo Decuzzi. Scaling

behaviour for the water transport in nanoconfined geometries. Nat. Commun.,

5:3565, 2014.

[123] Baotong Li, Jun Hong, and Xiangyang Tian. Generating optimal topologies for

heat conduction by heat flow paths identification. Int. Commun. Heat Mass Trans-

fer, 75:177 – 182, 2016.

[124] Johann Fischer and Michael Methfessel. Born-green-yvon approach to the local

densities of a fluid at interfaces. Phys. Rev. A, 22:2836–2843, Dec 1980.

[125] Norman F. Carnahan and Kenneth E. Starling. Equation of state for nonattracting

rigid spheres. J. Chem. Phys., 51(2):635–636, 1969.

[126] S Morioka. The dense gas-like model of the viscosity for liquid metals. J. Non-

Cryst. Solids, 341(1):46 – 52, 2004.

[127] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird. Molecular theory of gases and

liquids. Wiley, New York, 1954.

[128] Philip D. Neufeld, A. R. Janzen, and R. A. Aziz. Empirical equations to calculate

16 of the transport collision integrals for the lennard-jones (12-6) potential. J.

Chem. Phys., 57(3):1100–1102, 1972.

[129] I. Bitsanis, J. J. Magda, M. Tirrell, and H. T. Davis. Molecular dynamics of flow

in micropores. J. Chem. Phys., 87(3):1733–1750, 1987.
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of the interface of partially miscible fluids: An application to ionic liquids. J. Phys.

Chem. C, 119(51):28448–28461, 2015.

[153] Stanislav Iatsevitch and Frank Forstmann. Density profiles at liquid-vapor and

liquid-liquid interfaces: An integral equation study. J. Chem. Phys., 107(17):6925–

6935, 1997.

[154] Markus Rauscher. Dynamic density functional theory (ddft). In Dongqing Li,

editor, Encyclopedia of Microfluidics and Nanofluidics, pages 428–433. Springer

US, Boston, MA, 2008.

208



Bibliography

[155] Antonio Russo, Miguel A. Durán-Olivencia, Peter Yatsyshin, and Serafim Kalli-

adasis. Memory e↵ects in dynamic density functional theory with fluctuation:

Theory and simulations. J. Phys. A, 2020.

[156] Antonio Russo, Miguel A. Durán-Olivencia, Serafim Kalliadasis, and Remco

Hartkamp. Macroscopic relations for microscopic properties at the interface be-

tween solid substrates and dense fluids. J. Chem. Phys., 150(21):214705, 2019.

[157] Ahmed E. Ismail, Gary S. Grest, and Mark J. Stevens. Capillary waves at

the liquid-vapor interface and the surface tension of water. J. Chem. Phys.,

125(1):014702, 2006.

[158] Scott W. Sides, Gary S. Grest, and Martin-D. Lacasse. Capillary waves at liquid-

vapor interfaces: A molecular dynamics simulation. Phys. Rev. E, 60:6708–6713,

1999.

[159] M. Rao and D. Levesque. Surface structure of a liquid film. J. Chem. Phys.,

65(8):3233–3236, 1976.

[160] J.P.R.B. Walton, D.J. Tildesley, J.S. Rowlinson, and J.R. Henderson. The pressure

tensor at the planar surface of a liquid. Mol. Phys., 48(6):1357–1368, 1983.

[161] William G. Hoover. Canonical dynamics: Equilibrium phase-space distributions.

Phys. Rev. A, 31:1695–1697, Mar 1985.

[162] Shiang-Tai Lin, Mario Blanco, and William A. Goddard III. The two-phase

model for calculating thermodynamic properties of liquids from molecular dynam-

ics: Validation for the phase diagram of lennard-jones fluids. J. Chem. Phys.,

119(22):11792–11805, 2003.

[163] Hiroshi Watanabe, Nobuyasu Ito, and Chin-Kun Hu. Phase diagram and uni-

versality of the lennard-jones gas-liquid system. J. Chem. Phys., 136(20):204102,

2012.

[164] Shaofan Li and Ni Sheng. On multiscale non-equilibrium molecular dynamics

simulations. Int. J. Numer. Met. Engng, 83:998–1038, 2010.

[165] Brad Lee Holian, Arthur F. Voter, and Ramon Ravelo. Thermostatted molecular

dynamics: How to avoid the toda demon hidden in nosé-hoover dynamics. Phys.
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Chapter A

Chapter 2: Additional details

and results

A.1. MD simulations of a single fluid in a confined

geometry

A.1.1. Global density

Using the partition of the fluid domain into an interface region and a bulk region, we

propose an analysis of the averaged fluid property in these regions. Such an approach

can be generalized to any confined fluid system and can thus present a practical tool

for the design of engineering nano-devices. First, we define the volume of the confined

region for a channel with cross surface S as Vc = �(T, ✏LJ,f,w)S, and consequently the

free volume as Vf = Vtot � Vc, where Vtot is the total volume of the channel. Thus,

we compute the average confined density as ⇢c = 1

Vc

R
Vc

⇢(y)dV and the average free

density as ⇢f = 1

Vf

R
Vf

⇢(y)dV . The study of this quantities normalized with respect

to the bulk density ⇢b is reported in Fig. A.1. It emerges that the average free density

is approximately equal to the bulk density, regardless of the fluid temperature or the

fluid-wall interaction strength. On the contrary, the e↵ect of the layering at the walls

is important when considering ⇢c/⇢b = ⇢c/⇢b(T, ✏). Within the range of conditions

examined here, a satisfactory estimation of the dependency is given by the relation

⇢c/⇢b(T, ✏) ⇠ A+ BWa
p

T , with A and B being two constant parameters. This relation
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allows us to compute the average density of the channel ⇢̄ as function of the bulk density:

⇢̄ ⇠ ⇢b


h � 2�

h
+

2�

h

⇣
A + B Wa

p
T

⌘�
, (A.1)

with A and B being fitting parameters with values A ⇠ 0.8 and B ⇠ 0.1.
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Figure A.1. Normalized average free density ⇢f/⇢b (dashed lines) and normalized av-
erage confined density ⇢c/⇢b (solid lines) for several temperatures and walls interactions.
The ratio ⇢f/⇢b does not show a significant dependency on the system conditions and
is close to unity, while ⇢c/⇢b exhibits a dependency well approximated by the relation
⇢c/⇢b(T, ✏) ⇠ A + BWa

p
T , with A and B being constant parameters.

A.1.2. Derivation of the viscosity of a dense inhomogeneous

hard-sphere fluid from kinetic theory

For dense inhomogeneous hard sphere system, Din and Michaelides [25] derived an ex-

pression for the shear viscosity directly from Boltzmann equation. In this section we

report the main steps of the procedure, and we suggest the reader to refer to the original

work for more details. The starting point is to consider the revised Enskog equation for
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the singlet probability density function W1(r1,u1, t) of inhomogeneous dense fluid [240]:

@W1

@t
+

@W1

@r1

u1 +
@W1

@u1

u̇1 =
Z Z

k·u21>0


g(r1, r1 + �HSk)W1(r1,u

0
1, t)⇥

⇥ W1(r1 + �HSk,u0
2, t) � g(r1, r1 � �HSk)W1(r1,u1, t)⇥

⇥ W1(r1 � �HSk,u2, t)

�
�

2

HS (k · u21) d k d u21,

(A.2)

where �HS is the hard sphere diameter, u21 = u2 � u1 is the relative velocity between

two particles, k = (r2 � r1) / | r2 � r1 | is a unit vector connecting two particles, and

u0
1 = u1 + (k · u21)k and u0

2 = u2 � (k · u21)k are the post-collision velocities of the

two particle. In order to solve the previous equation for a steady-state Couette flow, the

singlet pdf is assumed to have the following form:

W1(r1,u1) = W
(0)

1
(r1,u1 � u) [1 + �(r1,u1 � u)] , (A.3)

where W
(0)

1
is the equilibrium distribution given by

W
(0)

1
(r1,u1 � u) = n(r1)

✓
m

2⇡kBT

◆
3/2

e
�

m(u1�u)
2

2kBT , (A.4)

and �(r1,u1 � u) is a perturbation function due to non-equilibrium e↵ects. After some

algebraic manipulation, it turns out that the perturbation function can be expressed as

a function directly proportional to the velocity gradient, namely:

�(r1,u1 � u) = �b(r1)

✓
m

2kBT

◆
⇥

⇥
⇥
(u1 � u) (u1 � u) � | u1 � u |2 1/3

⇤
: rr1u.

(A.5)

By using W1(r1,u1), it follows that the kinetic component of the viscosity can be written

as:

⌘
k

HS(y) =
16

5
⌘

0
⇢(y)b⇤(y), (A.6)

where ⌘
0 = 5(kBTm/⇡)1/2

/(16�
2

HS
) is the zero-density viscosity, and b

⇤(y) =
q

⇡kBT/4m�
2

HS
b(y)

is a dimensionless space-dependent function, that can be evaluated by solving numeri-
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Figure A.2. Free viscosity (dashed lines) and confined viscosity (solid lines) normalized
with respect to the viscosity in the bulk region.

cally the following integral equation:

4b
⇤(y)

Z
�HS

��HS

g(y, y + y
0)⇢(y + y

0)dy
0

� 25

3

Z
�HS

��HS

⇥
b
⇤(y + y

0) � b
⇤(y)

⇤
g(y, y + y

0)⇢(y + y
0)dy

0

=
5

2
+

⇡

3

Z
�HS

��HS

g(y, y + y
0)⇢(y + y

0)dy
0
.

(A.7)

Moreover, the potential contribution to the viscosity for a hard sphere fluid is given by:

⌘
v

HS(y) =
8⇡

5
⌘

0

Z
�HS

��HS

y
0
sin

3
�
arccos

�
y

0
��

I(y, y
0) dy

0
, (A.8)

where I(y, y
0) is given by the infinite series:

I(y, y
0) = y

0

1X

1

(�y
0s�1)

s!

@
s�1

@s�1y

⇢
g(y, y + y

0)⇢(y)⇢(y + y
0)

⇥
⇥
2 + b

⇤(y + y
0) + b

⇤(y)
⇤�

.

(A.9)

A.1.3. Global shear viscosity for a fluid in a confined geometry

Following the same approach of Sect. A.1.1, we define the confined viscosity ⌘c =
1

Vc

R
Vc

⌘(y)dV and the free viscosity ⌘f = 1

Vf

R
Vf

⌘(y)dV . With prior knowledge of ⌘c

220



Appendix A. Chapter 2: Additional details and results

and ⌘f , the average viscosity of the system in the channel ⌘̄ can then be expressed as:

⌘̄ = ⌘b

✓
Vf

Vtot

⌘f

⌘b

+
Vc

Vtot

⌘c

⌘b

◆
. (A.10)

where the boundary of the confinement region is defined through �. This expression

can be then parametrized, knowing the variations of ⌘c and ⌘f as function of the tem-

perature and the fluid-wall interaction. Figure A.2 shows that the free viscosity can be

considered approximately equal to the viscosity in the bulk region, regardless of the fluid

temperature and the fluid-wall interaction strength. Conversely, the ratio ⌘c/⌘b varies

(approximately linearly) with ✏LJ,f,w (and does not show strong dependencies on T for

the analysed systems). Based on these observations, Eq. (A.10) can be approximated

as:

⌘̄ ⇠ ⌘b


h � 2�

h
+

2�

h
(A⌘ + B⌘ ✏LJ,f,w)

�
, (A.11)

with A⌘ and B⌘ being some fitting parameters. Specifically, the values A⌘ ⇠ 1.3 and

B⌘ ⇠ 0.5 lead to a discrepancy between Eq. (A.11) and MD results lower than 10%.

Eq. (A.11) represents an useful tool in engineering nano-devices design, since it allows

to predict the average viscosity in a channel based on its geometry (through h), on the

fluid-wall coupling thermodynamic parameter �, and on the fluid viscosity in the bulk,

which can be accurately modelled with formulas developed for homogeneous fluids (i.e.

as in Sect. 2.2.7 or as in Ref. [111]).

A.2. MD simulations of multi-phase systems

A.2.1. LV interface vs shear rate

Fluid interfaces in non-equilibrium systems can be a↵ected and its structure modified

when the system is sheared. Since this e↵ect is expected to be more relevant at high

shear rates, we tested the system under various shear rates. As shown in Fig. A.3, shear

rates above 0.1 are already high enough to introduce a significant deviation of the density

profile.

A.2.2. Stability of the LL interface in time

In order to measure the e↵ects of the repulsive potential, the LL systems analysed in

this work are composed of two partially miscible fluids. Being not in-miscible, the two
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Figure A.3. Density profile at the LV interface for di↵erent shear rates.
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Figure A.4. Density profiles in time at the LV interface.

fluids will start mixing if the system is simulated long enough. For this reason, we

gathered data for each trajectory by performing multiple simulations for a limited time.

To measure what is the maximum time allowed before mixing becomes important, we

observed the average density profile evaluated in di↵erent time windows. As shown in

Fig. A.3, for time windows within t < 1250 no di↵erence can be seen in the density

profiles.

222



Chapter B

Chapter 3: additional details and

results

B.1. GLE

B.1.1. Theoretical background

Mori-Zwanzig’s formalism Let us consider the following (linear of non-linear) de-

terministic dynamical system:

8
<

:

dz
dt

= f (z)

z(0) = z0

(B.1)

where z 2 Rn is a vector of independent variables. For the system in Eq. (B.1), it can

be defined a set of observables O(z, t) = �(z(t)), where � represent the transformation

map between z and O. By using the chain rule, it is easy to show that the evolution

equation of O(z, t) can be written as:

8
<

:

@O

@t
(z, t) = LO

O(z, 0) = O0

(B.2)
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where it was introduced the operator L = f (z) · rz. It follows that the solution of

Eq. (B.2) can be written as:

O(z, t) = e
Lt
O0 (B.3)

where the exponential has to be intended as the power series that defines the exponential

map between matrices.

If we are only interested in the dynamics of some observables O, rather then the

whole solution z(t), we can define a projection operator P, which maps functions of z

into function of O. It is worth underlining that, in general, the set of observables O may

be defined by a linear or nonlinear transformation of z, but in any case the evolution of O

is supposed to be unitary, i.e. | O(t) |2=| O(0) |2. A simple, but still important, scenario

is given by O being a subset of z. As we will see later, this case plays a fundamental

role in dimensional reductions of multi-component systems, i.e. colloidal particles in a

thermal bath. Given a projection operator P, namely a transformation from a vector

space to itself such that P2 = P, one can follow Mori-Zwanzig’s formalism [33, 34, 35]

to obtain a form of Eq. (B.2) suitable for system dimensionality reduction. Note that at

this point no constrain is put on the form of the projection operator. After defining the

operator Q = 1 � P, orthogonal to P, Eq. (B.2) can be rewritten as:

@O

@t
(z, t) = Le

Lt
O0 = e

LtPLO0 + e
LtQLO0 (B.4)

Duhamel-Dyson’s formula allows to rewrite the exponential term e
Lt as:

e
Lt = e

Qt +

Z
t

0

e
L(t�⌧) P e

Q⌧
d⌧ (B.5)

and, consequently, Eq. (B.4) becomes the so called Mori-Zwanzig’s equation:

@O

@t
(z, t) = e

LtPLO0 +

Z
t

0

e
L(t�⌧)PLe

Q⌧QLO0 d⌧ + e
QLtQLO0 (B.6)

The first term is the Markovian contribution, the second constitutes the memory term

and the last one is often interpreted as the noise. It is worth noticing that, at this stage,

Eq. (B.6) is exactly equivalent to Eq. (B.1) and is valid independently from the specific

choice of the projection operator P. Mori and Zwanzig [34, 35, 43] proposed two di↵erent

projection operators leading to di↵erent forms of GLE, that we will briefly discuss in

next sections.

If we name the noise term R(t) = e
QLtQLO0, then the following dynamical system
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remains determined:

8
<

:

@R

@t
(O0, t) = QLR(O0, t),

R(O0, t) = QLO0.

(B.7)

Projecting Eq. (B.7) according to P, it follows:

8
<

:
P @R

@t
(O0, t) = PQLR(O0, t) = 0,

PR(O0, t) = PQLO0 = 0,

(B.8)

where we have used the property of the projection operator PQ = 0. This shows that

R(t) is orthogonal to the range of P at any time t. However, in order to express R(t)

as a stochastic process, it is necessary to have either time scale separation or weak

coupling between resolved and unresolved variables [241]. When at least one of such

conditions occurs, at least asymptotically, the influence of the unresolved variables may

be interpreted as sum of many uncorrelated events, and consequently can be treated with

Central Limit Theorem [242]. Thus, it is the Central Limit Theorem that determines

the Gaussian shape for the distribution of R(t), while its time correlation follows from

the fluctuation dissipation theorem, as shown in what follows.

Mori’s projection operator The projection operator introduced by Mori [34], when

applied to a general variable A(z), is given by:

PA(z) = hA,O0ihO0,O0i�1
O0 (B.9)

where the inner product hA,Bi is defined as

hA,Bi =

Z
⇢(z)A(z)B⇤(z) dz (B.10)

with ⇢(z) being a normalized probability density function defined in the phase space of

the original system and B⇤ the conjugate transpose of B. In case of systems with Hamil-

tonian H in a canonical ensemble, the probability density function is ⇢(z) = Z
�1

e
��H(z),

where Z is the partition function and � = kBT . Employing Mori’s operator in Eq. (B.6),

we obtain the Markovian term:

e
LtPLO0 = hLO0,O0ihO0,O0i�1

O(t). (B.11)
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Moreover, from the definition of R(t), we obtain the memory term:

Z
t

0

e
L(t�⌧)PLe

Q⌧QLO0 d⌧ = �
Z

t

0

✓(⌧)O(t � ⌧) d⌧ (B.12)

where the memory kernel is defined as ✓(t) = �hLR(t),O0ihO0,O0i�1. Since QR(t) =

R(t), and L is an anti-Hermitian operator [43], it follows that hLR(t),O0i = �hR(t), LO0i =

�hR(t), QLO0i = �hR(t),R(0)i. Hence, we obtain the following relation:

✓(t) = hR(t),R(0)ihO0,O0i�1
, (B.13)

which constitutes the fluctuation dissipation theorem.

Zwanzig projection operator As Zwanzig pointed out, Mori’s projection operator

leads to a linearised GLE [43]. Zwanzig [33, 43] defined the projection operator applied

to the variable A(z) through the following conditional expectation:

PA(z) =

R
⇢(z) A(z) �(O � �(z)) dzR

⇢(z) �(O � �(z)) dz
, (B.14)

where �(O � �(z)) =
Q

j
�(Oj � �j).

In molecular dynamics, the set of observables is often defined as a subset of the original

coordinates, namely O ✓ z. In this case, Zwanzig’s projection operator allows to express

the Markovian term in Eq. (B.6) as function of the potential of mean force. To show

this, let us consider an isothermal Hamiltonian system of N particles with coordinates

z = {r,p}, where r = {r1 . . . rN} and p = p1 . . .pN are position and momenta, respec-

tively. With f (z) = �rzV (z), Eq. (B.1) gives the Newton’s equations of motion for

a system of interacting particles. Suppose one is interested in the dynamical evolution

of only n of the original N particles, whose coordinates (called relevant variables) and

are indicated as z̃ = {r1 . . . rn,p1 . . .pn}. The remaining variables, called unresolved

variables, are denoted by ẑ = {rn+1 . . . rN ,pn+1 . . .pN}. Hence, inserting Zwanzig’s

operator in Eq. (B.6), we obtain the Markovian term in the form:

PLz̃ =

R
�rzV (z)e��H(z)

�(z � z̃) dzR
e��H(z) �(z � z̃) dz

= �rz̃V
PMF(z̃) (B.15)

where V
PMF is known as potential of mean force. Moreover, the memory term can be
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written in terms of the noise term as:

Z
t

0

e
L(t�⌧)PLR(⌧) d⌧. (B.16)

Ref. [40] has shown that the term in Eq. (B.16) is null for the position coordinates r,

while can expressed for the momentum coordinates p as:

�
Z

t

0

✓(⌧)p(t � ⌧)d⌧ (B.17)

B.1.2. GLE integration

The integration of the GLE dynamics is a not-trivial task for two reasons: first, the

convolution integral depends on the full history of the observable, and second, the noise

term correlations have to be consistent with the fluctuation dissipation theorem. Several

approaches based on the introduction of a set of auxiliary variable have been proposed

to face these issues, i.e. Refs [48, 181, 182]. In the present work, we take advantage of

the exponential structure of ✓(t) to implement an integration algorithm, which, for a

scalar memory kernel, reduces to the one proposed in Ref. [182].

Convolution decomposition The history-dependent convolution term is written as a

sum of the additional variable vectors Zk(t), whose components are Zk,i(t) =
R

t

0
Ak,ije

Bk,ij(t�⌧)
Oj(⌧)d⌧ .

Applying Leibniz’s integral rule, and taking advantage of the symmetry of the matrices

Bk it follows that the time evolution of Zk(t) can be expressed as:

Żk(t) = BkZk(t) � AkO(t) (B.18)

Hence, the original GLE is rewritten in form of the equivalent system:

8
<

:
@tO(t) = PLO �

P
k
Zk(t) + R(t)

@tZk(t) = BkZk(t) + AkO(t)
(B.19)

Random force decomposition In this section we provide the theoretical derivation

of the random force decomposition for a general real tensor function ✓(t). It is worth

noticing that such formulation is valid for any form of the memory kernel, not just

exponential ones. First, let us notice that, because of the symmetry between t and t
0 in

the fluctuation dissipation theorem, ✓(t) is an even function of time, i.e. ✓(t) = ✓(�t).

We define the Fourier transform of ✓(t) as e✓(!) =
R

�1

�1
✓(t)e�i!⌧

dt. Since ✓(t) is real
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and even in time, also e✓(!) is real and even for real !. It follows that both zeros and

singular points of e✓(!) are symmetric with respect to both real and imaginary axis in

the !-plane. Then we introduce the function e�(!) given by

e�(!) =
X

k

�i
�
!1 + iB0

k

�
�1

bk (B.20)

where the real matrices bk and B0
k are such that:

e✓(!)hO,Oi = 2e�(!)e�T (�!), (B.21)

and the singular points of e��1(!) lie in the lower-half complex !-plane. Moreover, we

define the two matrices:

e⇣(!) = e��1(!), (B.22)

and

ekk(!) = �i
�
!1 + iB0

k

�
�1

bk
e⇣(!), (B.23)

and we denote their Fourier inverse transform with h(t) and kk(t). Combining Eqs (B.20),

(B.22) and (B.23), it follows that:

X

k

ekk(!) = 1 (B.24)

or, equivalently,

X

k

kk(t) = 1�(t). (B.25)

Moreover Eq. (B.23) can be rewritten as (i!1 � B0
k) ekk(!) = bk

e⇣(!), that in the time

domain gives:

d

dt
kk(t) � B0

kkk(t) = bk⇣(t) (B.26)

Finally, the following vector variables are introduced:

⇠(t) =

Z
+1

0

⇣(t � t
0)R(t0)dt

0 (B.27)
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and

Rk(t) =

Z
+1

0

kk(t � t
0)R(t0)dt

0
. (B.28)

From Eqs (B.28)-(B.25) it follows that:

X

k

Rk(t) = R(t), (B.29)

while, combining Eqs (B.28)-(B.26)

d

dt
Rk(t) = B0

kRk(t) + bk⇠(t). (B.30)

Eqs (B.30)-(B.29) are the main result of the section since they allow to express the

correlated noise of the original GLE as a function of white noises ⇠(t).

In what follows, we discuss the properties of the stochastic process ⇠(t). First, since

all the singularities of e⇣(!) = e��1(!) lie in the lower-half complex !-plane, then for

⌧ > 0:

⇣(⌧) =
1

2⇡

Z
1

�1

d!e⇣(!)ei!⌧ = lim
a!1

1

2⇡

Z
a

�a

d!e⇣(!)ei!⌧ =

=
1

2⇡

I

C+

d!e⇣(!)ei!⌧ � lim
a!1

1

2⇡

Z

arc(a!�a)

d!e⇣(!)ei!⌧ = 0
(B.31)

where
H
C+ d! indicates the integral over a closed contour C

+ that goes along the real line

from �a to a and then along a semicircle centred at 0 from a to �a, while
R
arc(a!�a)

d!

is the integral along an arc centred at 0 from a to �a. Hence, for t > 0 we can write

⇠(t) =

Z
+1

0

⇣(t � t
0)R(t0)dt

0 =

Z
+1

�1

⇣(t � t
0)R(t0)dt

0 (B.32)
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Thus, the correlation function of ⇠(t) at t1 and t2 is given by:

⌦
⇠(t1)⇠

T (t2)
↵

=

=

⌧Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)R(t01)
⇥
⇣(t2 � t

0

2)R(t02)
⇤
T

�
=

=

Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)
⌦
R(t01)R

T (t02)
↵
⇣T (t2 � t

0

2) =

=

Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)✓(t01 � t
0

2)hO,Oi⇣T (t2 � t
0

2)

(B.33)

where we used the fluctuation dissipation theorem. Using the definition of Fourier trans-

form of ✓, it follows

⌦
⇠(t1)⇠

T (t2)
↵

=

=

Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)
1

2⇡

Z
+1

�1

d!e✓(!)ei!(t
0
1
�t
0
2
)

hO,Oi⇣T (t2 � t
0

2) =

=

Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)
1

2⇡

Z
+1

�1

d!e✓(!)ei!(t
0
1
�t
0
2
)

hO,Oi⇣T (t2 � t
0

2)e
�i!(t1�t2)

e
i!(t1�t2) =

=
1

2⇡

Z
+1

�1

d!

Z
+1

�1

dt
0

1⇣(t1 � t
0

1)e
�i!(t1�t

0
1
)e✓(!)hO,Oi

Z
+1

�1

dt
0

2⇣
T (t2 � t

0

2)e
i!(t

0
2
�t
0
2
)
e
i!(t1�t2)

(B.34)

Applying the definition of Fourier transform of ⇣(t), and taking advantage of Eqs (B.21)-

(B.22), we finally obtain:

⌦
⇠(t1)⇠(t2)

T
↵

=
1

2⇡

Z
+1

�1

d!e⇣(!)e✓(!)hO,Oie⇣T (�!)ei!(t1�t2) = (B.35)

=
1

2⇡

Z
+1

�1

d!e⇣(!)2e�(!)e�(�!)T e⇣T (�!)ei!(t1�t2) = (B.36)

=
1

2⇡

Z
+1

�1

d!21e
i!(t1�t2) = 2�(t1 � t2). (B.37)

It follows that ⇠(t) is a delta correlated stochastic process.

Since we adopted a approximation of ✓(t) whose components are in the exponential
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form ✓i,j(t) =
P

k
Ak,ije

Bk,ij(t), its Fourier transform is given by:

e✓(!) =
X

k

[�iAk ↵ (!J + iBk) + iAk ↵ (!J � iBk)] (B.38)

where ↵ indicates the Hadamard division and J is the n ⇥ n matrix of ones. Now ✓(t)

is a real and even function of t, then e✓(!) has to be real and even for real values of !.

As a consequence, the singular points of e✓(!) has to be symmetrical with respect to the

real and imaginary axes, namely in the form of pairs ±iBk. For the same reason, the

roots of e✓(!) have to be symmetric with respect to the real and imaginary axes. Thus,

putting Eq. (B.38) into a common denominator, factorizing, and calling �n and �⇤
n the

conjugate matrices containing the zeros of the numerator, we obtain:

e✓(!) = K�
 
Y

n

(!J � �n) � (!J � �⇤

n)

!
↵ (B.39)

 
Y

k

(!J + iBk) � (!J � iBk)

!
(B.40)

where � is the Hadamard product, K is a matrix of positive real numbers and it is

assumed that Im(�n) > 0 and Im(�⇤
n) < 0. It is worth noticing that, since e✓(!) is

non-negative, then K contains only positive values [182]. Now we define the function

e�(!) as:

e�(!) =
K1/2

p
2

� hO,Oi�1/2 �
Y

n

i (!J � �⇤

n) ↵
Y

k

i (!J + iBk) =

=
X

k

�i (!1 + iBk)
�1 bk

(B.41)

Eq. (B.41) has to be solved to find the matrices bk.

In case of diagonal memory kernel matrix, bk can be easily found by solving the easier

relation:

K1/2

p
2

hO,Oi1/2
Y

n

i (!1 � �⇤

n)
Y

k

i (!1 + iBk)
�1 =

=
X

k

�i (!1 + iBk)
�1 bk

(B.42)

Finally, for a one dimensional GLE the presented formulation reduces to the one

derived by Kawai [182], therefore the coe�cients bk can be evaluated from the following
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Table B.1. Results of the augmented Dickey–Fuller(ADF) test for modified global
temperature.

ADF Statistic: �21.377945
p-value: < 10�16

lags: 54
Critical Values:

1%: �2.566
5%: �1.941
10%: �1.617

relation:

hO,OiAk = �2bk

X

n

bn

Bk + Bn

(B.43)

obtained by Eqs (B.20), (B.21) and (B.38).

Extended dynamics and integration algorithm For a general ✓(t), the extended

dynamics is then expressed as:

8
<

:
@tO(t) = PLO �

R
t

0
✓(⌧)O(t � ⌧)d⌧ +

P
k
Rk(t)

@tRk(t) = B0
kRk(t) + bk⇠(t)

(B.44)

where the convolution can be decomposed in di↵erent ways depending on the structure

of ✓(t). In our case ✓(t) has an exponential form, thus B0
k = Bk and the variables

Sk(t) = �Zk(t) + Rk(t) can be defined, so that the GLE can is rewritten in following

form:
8
<

:
@tO(t)O = F(O(t)) +

P
Nn
k=1

Sk(t)

@tSk(t) = BkSk(t) � AkO(t) + bk⇠(t),
(B.45)

with F(O(t)) = PLO accounting for the conservative mean force contributions.

B.1.3. Modelling global temperature: Additional results

In order to test the statistical properties ot Ta, we adopted some qualitative and quan-

titative tests. Figure B.1(a) shows the QQ (quantile-quantile) plot, which compares the

data distribution against the normal one for each quantile. It emerges that the time

series data are well approximated by a normal distribution, especially in the theoretical
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Figure B.1. (a) QQ-plot for Ta(t) = T (t) � Ty(t). (b) Mean evaluated for 5 di↵erent
data windows in time (blue dots) and corresponding standard deviations represented
as red error bars. (c) Average time correlation function (blue dots) and standard error
evaluated at each time from the time correlations of 5 di↵erent data windows.

quantile range �3 < Q < 3. Some tail e↵ects are visible, but the overall agreement is

quantitatively verified by the R-squared test, which gives a value R
2 = 0.9955.

To test the stationarity of mean variance, and time correlations, we split the data in 5

windows. Figure B.1(b) shows that, assuming the stationarity of the series, we commit

maximum errors for mean and standard deviation of 0.0183 and 0.0430, respectively.

Moreover, as reported in Fig. B.1(c), the maximum standard error between the windows

time correlation and their mean is 0.0246.

Additionally, to test the stationarity of the modified time series, also the augmented

Dickey–Fuller (ADF) test is adopted [243]. ADF test is useful to establish if a unit root

233



Appendix B. Chapter 3: additional details and results

Table B.2. Results of the augmented Dickey–Fuller(ADF) test for modified Nikkei
index.

ADF Statistic: �29.805726
p-value: < 10�16

lags: 10
Critical Values:

1%: �2.566
5%: �1.941
10%: �1.617

is present in the stochastic data series. Specifically, the null hypothesis of a unit root

is rejected in favour of the stationary alternative if the test statistic is more negative

than some critical values. The results of the ADF test reported in Table B.1 allows us

to reject the unit root hypothesis with a probability higher than 99%.

B.1.4. Modelling Nikkei index: Additional results

Figure B.2(a) shows the QQ (quantile-quantile) plot. The time series distribution is well

approximated with a normal distribution in the theoretical quantile range �2.5 < Q <

2.5. Heavy tails e↵ects are present. This means that the Gaussian approximation, and

consequently the GLE for NI(t), remains valid as long as extreme market events, such

as market crashes or crisis, are not considered. The overall agreement is quantitatively

verified by the R-squared test, which gives R
2 = 0.9894.

In order to test the stationarity of mean variance, and time correlations, we split

the data in 5 equally sized sets and, for each one, we analyse the statistical properties.

Figure B.2(b) shows that, assuming the stationarity of the series, we commit maximum

errors for mean and standard deviation of 0.2787 and 0.0234, respectively. Moreover,

as reported in Fig. B.2(c), the maximum standard error between the windows time

correlation and their mean is 0.1082. The results of the ADF test reported in Table B.2

allows us to reject the unit root hypothesis with a probability higher than 99%.

B.2. Non-Markovian FDDFT

B.2.1. Derivations of noise in FDDFT

The noise term in Eq. (3.31) is ⌘s(r; t) =
PNs(t)

i=1
�(r � ri,s)Ri,s(t), where Ri,s(t) has

zero mean and correlation function hRi,s(t)Ri,s(t0)i = kBT✓s(t � t
0). It follows that the
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Figure B.2. (a) QQ-plot for NIa(t) = NI(t)�NIy(t). (b) Mean evaluated for 5 di↵er-
ent data windows in time (blue dots) and corresponding standard deviations represented
as red error bars. (c) Average time correlation function (blue dots) and standard error
evaluated at each time from the time correlations of 5 di↵erent data windows.

spatio-temporal correlations of ⌘s can be expressed as:

h⌘s(r; t)⌘s(r
0; t0)i =

*
Ns(t)X

i=1

�(r � ri,s)

Ns(t)X

i=1

�(r0 � ri,s)Ri,s(t)Ri,s(t
0)

+
. (B.46)

Using the property of the Dirac delta function

Ns(t)X

i=1

�(r � ri,s)

Ns(t
0
)X

i=1

�(r0 � ri,s) =

Ns(t)X

i=1

�(r � ri,s)�(r � r0) =

Ns(t)X

i=1

�(r0 � ri,s)�(r � r0),

(B.47)
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the spatio-temporal correlations of ⌘s can be rewritten as:

h⌘s(r; t)⌘s(r
0; t0)i =

*
Ns(t)X

i=1

�(r � ri,s)�(r � r0)Ri,s(t)Ri,s(t
0)

+

=
⌦
⇢s(r; t)�(r � r0)kBT✓s(t � t

0)
↵
.

(B.48)

Thus, introducing a spatio-temporal noise satisfying hRs(r; t)Rs(r0; t0)i = kBT✓s(t �
t
0)�(r � r0), the local fluctuation term can be rewritten as

⌘s(r; t) =
p

⇢s(r; t)Rs(r; t) , (B.49)

B.2.2. Extended field dynamics in Non-Markovian FDDFT

In this section, we discuss the properties of the stochastic process ⇠(r; t). First, since all

the singularities of e⇣(!) = e��1(!) lie in the lower-half complex !-plane, then for ⌧ > 0:

⇣(⌧) =
1

2⇡

Z
1

�1

d!e⇣(!)ei!⌧ = lim
a!1

1

2⇡

Z
a

�a

d!e⇣(!)ei!⌧ =

=
1

2⇡

I

C+

d!e⇣(!)ei!⌧ � lim
a!1

1

2⇡

Z

arc(a!�a)

d!e⇣(!)ei!⌧ = 0
(B.50)

where
H
C+ d! indicates the integral over a closed contour C

+ that goes along the real line

from �a to a and then along a semicircle centred at 0 from a to �a, while
R
arc(a!�a)

d!

is the integral along an arc centred at 0 from a to �a. Hence, for t > 0 we can write

⇠s(r; t) =

Z
+1

0

⇣(t � t
0)⌘s(t

0)dt
0 =

Z
+1

�1

⇣(t � t
0)⌘s(t

0)dt
0 (B.51)

Thus, the spatio-temporal correlation function of ⇠s(r; t) is given by:

⌦
⇠s(r; t1)⇠s(r

0; t2)
↵

=

=

⌧Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)⌘s(r; t01)
⇥
⇣(t2 � t

0

2)⌘s(r
0; t02)

⇤
T

�
=

=

Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)
⌦
⌘s(r; t01)⌘

T

s (r0; t02)
↵
⇣(t2 � t

0

2)

(B.52)

where we used the fluctuation dissipation theorem.

Employing the definition of Fourier transform of ✓s and ⇣(t), together with Eqs (3.65)-
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(3.67), we obtain:

⌦
⇠s(r; t1)⇠s(r

0; t2)
↵

=

= kBT⇢s(r; t)�(r � r0)I

Z
+1

�1

dt
0

1

Z
+1

�1

dt
0

2⇣(t1 � t
0

1)⇣(t2 � t
0

2)✓s(t
0

2 � t
0

1) =
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Z
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�1

dt
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1

Z
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�1

dt
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1
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⇥
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d!e✓s(!)ei!(t
0
1
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⇥
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0
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= kBT⇢s(r; t)�(r � r0)I
1
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Z
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�1

d!e⇣(!)e✓s(!)e⇣(�!)ei!(t1�t2) =

= kBT⇢s(r; t)�(r � r0)I
1

2⇡

Z
+1

�1

d!e⇣(!)2e�(!)e�(�!)e⇣(�!)ei!(t1�t2) =

= kBT⇢s(r; t)�(r � r0)I
1

2⇡

Z
+1

�1

d!2e
i!(t1�t2)

= 2kBT⇢s(r; t)�(r � r0)�(t1 � t2)I.

(B.53)

It follows that ⇠s(r; t) is delta correlated in space and time, and consequently can be

easily generated, i.e. as in Ref. [208].

B.2.3. Linear stability analysis for reaction-di↵usion systems

Turing patterns are observed when an uniform system is stable in absence of di↵usion,

but become unstable to perturbation with di↵usion. For the analysis, we consider the

1D density equation:

@t⇢1(x; t) = d1@
2

x⇢1(x; t) + w⇢1
(x; t) (B.54)

@t⇢2(x; t) = d2@
2

x⇢1(x; t) + w⇢2
(x; t) (B.55)
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with stationary states given by:

w⇢1
(r; t) = 0 (B.56)

w⇢2
(r; t) = 0. (B.57)

Hence, we study the linear stability of the system around the stationary state for both

the corresponding reacting-only system and for the full system. The time evolution of

the infinitesimal perturbations �⇢1 and �⇢2 is given by:

@t�⇢1 = d1@
2

x�⇢1 + J11�⇢1 + J12�⇢2 (B.58)

@t�⇢2 = d2@
2

x�⇢1 + J21�⇢1 + J22�⇢2 (B.59)

where the coe�cients of the Jacobian matrix evaluated at the stationary state Ji,j =
@w⇢i
@⇢j

���
⇢

b
i

are introduced. A particular solution is given by

 
�⇢1

�⇢2

!
=

 
�⇢

0

1

�⇢
0

2

!
e
�kt

e
ikx (B.60)

Combining Eq. (B.59) and Eq. (B.60), we obtain the eigenvalue problem:

(Jk � kI)

 
�⇢1

�⇢2

!
= 0 (B.61)

where

Jk =

 
J1,1 � d1k

2
J1,2j

J2,1 J2,2 � d2k
2

!
(B.62)

The uniform stationary solution is stable if both eigenvalues �k,i at a wave number k

have negative real part. Such a condition is verified if:

TrJk = J11 + J22 � (d1 + d2)k
2

< 0 (B.63)

DetJk = (J11 � d1k
2)(J22 � d2k

2) � J12J21 > 0 (B.64)

Turing patterns arises when a reaction-only system, corresponding to d1 = d2 = 0, is

stable, but the corresponding reaction-di↵usion system is unstable. The reaction-only
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system is stable when the following two conditions are satisfied:

TrJ = J11 + J22 < 0 (B.65)

DetJ = J11J22 � J12J21 > 0 (B.66)

The reaction-di↵usion system is unstable when at least one of Eqs (B.63)-(B.64) is

not verified. Because of Eq. (B.65), TrJk < TrJ < 0, thus Eq. (B.63) is always verified.

Thus, instability occurs if and only if DetJk < 0 for at least a value of k. The minimum

value of k for which such a condition occurs is given by:

km =

r
d1J22 + d2J11

2d1d2

(B.67)

which corresponds to a wave number Lk = 2⇡/k. It directly follows that the correspond-

ing DetJkm < 0 when:

DetJkm = J11J22 � J12J21 � d1J22 + d2J11

4d1d2

< 0 (B.68)

B.2.4. Structure factor

As shown in previous works [71, 208], the structure factor is useful not only to study

the stability of the numerical integrator, but also in multi-phase systems to obtain the

frequency components characterizing the system. If we consider a periodic domain of

volume V , the spatial Fourier transform of the number density for the species s is given

by

⇢̂s,k(t) =
1

V

Z

V

⇢s(r, t)e
�ik·r

dr. (B.69)

Thus, the structure factor is defined as the variance of the Fourier transform of the

density fluctuations of species s,

S(k) = V h�⇢̂s,k�⇢̂
⇤

s,ki (B.70)

with the Fourier transform of the density fluctuations being �⇢̂s,k = ⇢̂s,k�h⇢̂s,ki. In case

of uniform ideal gases, the structure factor is computed as [71]:

S(k) = ⇢̄s (B.71)
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Chapter C

Chapter 4: Additional details

and results

C.1. Overdamped FDDFT

C.1.1. Time integrators

Milstein The multiple integrals in Milstein’s integrator do not have a simple analytical

solutions, thus are approximated as function of the white noise cells average in Eq. (4.31)

as in Ref. [220]:

Il,m(t) =

8
>>>><

>>>>:

1

2

⇣
W

l
⌘

2

� 1

�
�t if l = m

1

2
W

l
W

m
�t +

p
kp �t('lW

m � 'mW
l
)

+ 1

2⇡

P
p

r=1

1

r

h
⇣lr(

p
2 W

m
p

�t + ⌘m) � ⇣mr(
p

2 W
l
p

�t + ⌘l)
i

otherwise

(C.1)

where 'l, ⇣lr and ⌘m are pairwise independent variables with distribution N (0, �t) and

kp is given by

kp =
1

12
� 1

2⇡2

pX

1

1

r2
. (C.2)
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The value p determines the accuracy of the multiple stochastic integral approximation,

and then of the scheme. A value of p = k/�t for some constant k is enough to preserve

the accuracy of the scheme [216].

Runge-Kutta The explicit weak order 2.0 Runge-Kutta scheme reads

e⇢j(t + �t) = ⇢j(t) +
1

2
[µj(⌥(t)) + µj(⇢(t))] �t + �(t)

⇢j(t + �t) = ⇢j(t) +
1

2
[µj(e⇢(t + �t)) + µj(⇢(t))] �t + �(t)

(C.3)

where the vector �(t) has components

�j(t) =
1

4

nX

l=1

[�lj(⇤l+(t)) + �lj(⇤l�(t)) + 2�lj(⇢(t))] W
l
(t)

p
�t

+
1

4

nX

l=1

nX

r=1,r 6=l

[�lj(⌅r+(t)) + �lj(⇤r�(t)) � 2�lj(⇢(t))] W
l
(t)

+
1

4

nX

l=1

[�lj(⇤l+(t)) � �lj(⇤l�(t))]

⇣
W

l
(t)
⌘

2

� 1

�p
�t

+
1

4

nX

l=1

nX

r=1,r 6=l

[�lj(⌅r+(t)) � �lj(⌅r�(t))]
h
W

l
(t)W

r
(t) + Vr,j

ip
�t

(C.4)

and supporting values

⌥ = ⇢(t) + µ(⇢(t))�t +
nX

j=1

�j(⇢(t))�Wj(t) (C.5)

⇤l± = ⇢(t) + µ(⇢(t))�t ± �l(⇢(t))
p

�t (C.6)

⌅l± = ⇢(t) ± �l(⇢(t))
p

�t (C.7)

(C.8)

The random matrix V is defined as:

Vr,j(t) =

8
>>><

>>>:

±1 with p = 1

2
if r < j

�1 if r = j

�Vj,r(t) if r > j

(C.9)
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where p indicates the probability.

C.1.2. MD simulations details

MD simulations are performed using the Large-Scale Atomic/Molecular Massively Par-

allel Simulator (LAMMPS). Particle positions and velocities are integrated in time using

the velocity-Verlet algorithm, with a time-step of dt = 0.001⌧ . The system is simulated

at constant temperature and volume, so that particle coordinates are consistent with the

canonical ensemble (NVT). Specifically, the temperature T = 1 is kept constant during

the simulations using a Langevin thermostat. All the physical quantities are expressed

in reduced units, i.e. they are nondimensionalized with the fundamental quantities �,

✏ and m, representing distance, energy and mass, respectively. Further, without loss of

generality, �, ✏, m and the Boltzmann constant kB are set equal to unity.

As discussed extensively in [156], a macroscopic field X(r, t) can be extracted from

particle coordinates as X(r, t) =
P

i
�i�(ri(t)�r), where �i is the information of interest

of particle i at position ri at time t, and � is a kernel function(commonly a piecewise

constant, Gaussian, or polynomial function). In this work, we adopt a piecewise constant

function defined as:

�(y) =

8
<

:

1

�x
for kyk < �x/2,

0 otherwise ,

(C.10)

with �x being the width of each bin. In each comparison, we match the �x for MD

simulations with the one for the discretized FDDFT. Using the above, the instantaneous

macroscopic density profile for a single trajectory is computed as:

⇢(x, t) =
X

i

mi�(xi(t) � x), (C.11)

where mi is the mass of the particle i.

Equilibrium simulations MD simulations of ideal gas fluids in equilibrium are per-

formed using a fixed number of particles (1, 000) in a 1D domain of length 2, 000 (in

reduced units) with periodic boundary conditions. The system is equilibrated and then

a run of 2⇥ 107 time steps is performed, during which fluid particle positions and veloc-

ities are stored every 104 time steps for analysis. The process is repeated 103 times to

generate independent trajectories.
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Figure C.1. Standard deviation
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h�⇢2i as a function of the initial time-step �t0 for
an ideal gas in equilibrium. Temporal integrators. EM: Euler-Maruyama, MI: Milstein,
RK: Runge-Kutta, MD: Molecular dynamics. Explicit (✓ = 0), semi-implicit (✓ = 0.5)
and implicit (✓ = 1), MD: Molecular dynamics, Theory: Eq. (4.57).

Non-equilibrium simulations MD simulations of ideal gas fluids in non-equilibrium

conditions are performed using a fixed number of particles (200) in a one-dimensional

(1D) domain of length 200 (in reduced units) with periodic boundary conditions, under

an external potential:

V (x) = 5

⇣
x

200

⌘
4

�
⇣

x

200

⌘
2
�

. (C.12)

A run of 2 ⇥ 106 time steps is performed, during which fluid particle positions and

velocities are stored every 103 time steps for analysis. The process is repeated 103 times

with di↵erent (random) initial conditions to generate independent trajectories and gather

statistics.

C.1.3. Time integrators stability analysis

Both stability and accuracy of the di↵erent time-integrators are relevant, given that large

time-steps are required in many applications (for instance, for transitions occurring over

long time-scales). In the main text, we focused on the accuracy of the schemes comparing

finite-volume schemes, MD and theoretical results. Here we analyze the stability of the

di↵erent time integrators with respect to the time-step size. Specifically, in Fig. C.1 we

report a comparison of the fluctuations standard deviation obtained with some selected
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time integrators and the MD-theoretical results for varying time step sizes �t0. It is

worth underlying that, because of the adaptive time step adopted in the simulations,

�t0 represents only the initial time-step and the e↵ective time-step may not be constant

throughout the simulations, i.e. it may be lower than �t0. The system considered here

is the same ideal gas system (with average density ⇢̄ = 0.5) used for the analyses in the

main text. The cell size adopted is �x = 50, corresponding to a number of particles

per cell Nc = 25. Moreover, we do not report the results for the Milstein schemes,

since in previous tests we did not observe any relevant di↵erence between the Milstein

scheme and the Euler-Maruyama one as far as the mean, variance and correlations are

concerned. Figure C.1 shows that the semi-implicit scheme outperforms both explicit

and implicit schemes at high �t0/ (�x)2, becoming the time-integrator of choice for

computations requiring large time-steps. Moreover, the explicit Runge-Kutta scheme

shows an enhanced stability compared to both implicit and explicit Euler-Maruyama.

C.1.4. Structure factor

As shown in previous works [71, 208], the structure factor represents an important mea-

sure of the stochastic properties of the system. It can be not only to study the stability

of the numerical integrator, but also to compare di↵erent schemes. In this work, we

derive an expression of the structure factor from the linearised FDDFT. If we consider

a periodic domain of volume V , the spatial Fourier transform of the density is given by

⇢̂� =
1

V

Z

V

⇢(r, t)e�i�·r
dr. (C.13)

The structure factor is defined as the variance of the Fourier transform of the density

fluctuations,

S(�) = V h�⇢̂��⇢̂
⇤

�i (C.14)

with the Fourier transform of the density fluctuations being �⇢̂� = ⇢̂� � h⇢̂�i, and ⇢̂
⇤

�

defined as the complex conjugate of ⇢̂�. Taking the Fourier transform of the di↵erence

between the linearised version of Eq.(4.5) and Eq.(4.13), one obtains

@t �⇢̂(�) = i� ·
⇢

T

⇢(r; t)rr

�E [⇢]

�⇢

�
� T

⌧
⇢(r; t)rr

�E [⇢]

�⇢

��
+ i� ·

p
h⇢(r)i/�Ŵ(�).

(C.15)
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where T denotes the Fourier transform. If the free-energy functional terms in the Fourier

space can be expanded at first order around their mean value as

T

⇢(r; t)rr

�E [⇢]

�⇢

�
⇠ T

⌧
⇢(r; t)rr

�E [⇢]

�⇢

�
+

@T
h
⇢(r; t)rr

�E[⇢]

�⇢

i

@⇢̂�
�⇢̂� + O(�⇢̂�),

(C.16)

then Eq. C.15 yields

@t �⇢̂� = i� ·
@T

h
⇢(r; t)rr

�E[⇢]

�⇢

i

@⇢̂�
�⇢̂� + i� ·

p
h⇢i/�Ŵ(�). (C.17)

Since the last equation has the form of a Ornstein–Uhlenbeck process, the structure

factor can be computed as its variance:

S(�) =
2
⇣
i�
p

h⇢i/�

⌘
2

2i�
@T

h
⇢(r;t)rr

�E[⇢]

�⇢

i

@⇢̂�

=
i�h⇢i/�

@T

h
⇢(r;t)rr

�E[⇢]

�⇢

i

@⇢̂�

(C.18)

For example, in case of ideal gas without external potential, �E[⇢]

�⇢
= log ⇢(r, t), the

structure factor is given by:

S(�) =
i�h⇢i/�

@T [⇢(r;t)rr log ⇢(r,t)]

@⇢̂�

=
i�h⇢i/�

@T [rr⇢(r,t)]

@⇢̂�

=
i�h⇢i/�

@[i�⇢̂]

@⇢̂(�)

= h⇢i/� (C.19)

which is consistent with the expression of the structure factor derived in Ref. [71].

C.2. Non-homogeneous DDFT

C.2.1. Numerical methods: 2D scheme

In this section, we describe the semi-discrete finite-volume formulation for the 2D version

of Eq. (4.73). In 2D the non-homogeneous di↵usion ✓�1

0
is a 2⇥2 matrix that in general

depends on x, y, t and ⇢. ✓�1

0
is symmetric and positive definite, and we denote its

components as

✓�1

0
=

 
a b

b c

!
. (C.20)

We divide the computational domain in rectangular cells Cj,k = [xj�1/2, xj+1/2] ⇥
[yk�1/2, yk+1/2], which are assumed to have uniform size �x �y so that xj+1/2�xj�1/2 =
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�x, 8j, and yk+1/2�yk�1/2 = �y, 8k. In each cell Cj,k we define the density cell average

as ⇢j,k(t) = 1

�x�y

R
Cj,k

⇢(x, y, t) dx dy. Integrating Eq. (4.73) over Ci,j , and applying the

divergence theorem, it follows

d⇢j,k

dt
= �

F
x

j+1/2,k
� F

x

j�1/2,k

�x
�

F
y

j,k+1/2
� F

y

j,k�1/2

�y
. (C.21)

with numerical fluxes given by

F
x

j+1/2,k
= u

+

j+1/2,k
⇢

E

j,k
+ u

�

j+1/2,k
⇢

W

j+1,k
, F

y

j,k+1/2
= v

+

j,k+1/2
⇢

N

j,k
+ v

�

j,k+1/2
⇢

S

j,k+1
.

(C.22)

The upwind approach is accomplished by

�
uj+1/2,k

�
+

= max
�
uj+1/2,k, 0

�
,

�
uj+1/2,k

�
�

= min
�
uj+1/2,k, 0

�
,

�
vj,k+1/2

�
+

= max
�
vj,k+1/2, 0

�
,

�
vj,k+1/2

�
�

= min
�
vj,k+1/2, 0

�
,

(C.23)

with velocity satisfying

uj+1/2,k = �aj+1/2,k

✓
⇠j+1,k � ⇠j,k

�x

◆
� bj+1/2,k

✓
⇠j,k+1 � ⇠j,k

�y

◆
,

vj,k+1/2 = �bj,k+1/2

✓
⇠j+1,k � ⇠j,k

�x

◆
� cj,k+1/2

✓
⇠j,k+1 � ⇠j,k

�y

◆
.

(C.24)

Finally the discretized variation of the free-energy ⇠j,k is computed as

⇠j,k = �x�y

X

l,m

Kj�l,k�m ⇢l,m + f
0(⇢j,k) + Vj,k. (C.25)

Similarly to the one-dimensional case, the reconstructions of the density ⇢
E

j,k
, ⇢

W

j,k
, ⇢

N

j,k

and ⇢
S

j,k
are computed by means of a first- or second-order reconstruction of the form

8
<

:
⇢

E

j,k
= ⇢j,k, ⇢

W

j,k
= ⇢j,k, for the first-order scheme,

⇢
E

j,k
= ⇢j,k + �x

2
(⇢x)

j,k
, ⇢

W

j,k
= ⇢j,k � �x

2
(⇢x)

j,k
, for the second-order scheme,

(C.26)
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for ⇢
E

j,k
and for ⇢

W

j,k
, and of the form

8
<

:
⇢

N

j,k
= ⇢j,k, ⇢

S

j,k
= ⇢j,k, for the first-order scheme,

⇢
N

j,k
= ⇢j,k + �y

2
(⇢y)j,k

, ⇢
S

j,k
= ⇢j,k � �y

2
(⇢y)j,k

, for the second-order scheme,

(C.27)

for ⇢
N

j,k
and for ⇢

S

j,k
. As with the 1D set up, the slopes are initially computed by means

of central-di↵erence approximations satisfying

(⇢x)
j,k

=
⇢j+1,k � ⇢j,k

2�x
and (⇢y)j,k

=
⇢j,k+1 � ⇢j,k

2�y
. (C.28)

If at any point in the time evolution the reconstructions become negative, we recompute

the slopes (⇢x)
j,k

and (⇢y)j,k by means of a monotone nonlinear limiter which ensures

non-negativity. Following [209], we apply the generalized minmod limiters with ✓ 2
[1, 2]:

(⇢x)
j,k

= minmod

✓
✓

⇢j+1,k � ⇢j,k

�x
,
⇢j+1,k � ⇢j�1,k

2�x
, ✓

⇢j,k � ⇢j�1,k

�x

◆
,

(⇢y)j,k
= minmod

✓
✓

⇢j,k+1 � ⇢j,k

�y
,
⇢j,k+1 � ⇢j,k�1

2�y
, ✓

⇢j,k � ⇢j,k�1

�y

◆
.

(C.29)

The numerical no-flux conditions are implemented by taking the numerical flux Eq. (C.22)

to be zero at the boundaries:

F
x

j�
1

2
,k

= 0 for j = 1, 8k, F
x

j+
1

2
,k

= 0 for j = N, 8k,

F
y

j,k�
1

2

= 0 for k = 1, 8j; F
y

j,k+
1

2

= 0 for k = N, 8j.

(C.30)

We conclude this subsection by proving the 2D version of the positivity of the density

and the decay of the discrete free-energy.

Theorem C.2.1 (Positivity preserving). The 2D semi-discrete finite-volume scheme

Eqs (C.21)-(C.25), coupled with a positivity preserving reconstruction Eqs (C.26)-(C.27)

for ⇢, preserves the positivity of the cell-averages ⇢j,k � 0 8{j, k} if the following CFL

condition is satisfied:

• For the first-order reconstruction in Eqs (C.26)-(C.27):

�t  min
i,j

(
u

+

j+1/2,k
� u

�

j�1/2,k

�x
+

v
+

j,k+1/2
� v

�

j,k�1/2

�y

)
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• For the second-order reconstruction in Eqs (C.26)-(C.27):

�t  min

8
<

:
�x

4 max
n

u
+

j+1/2,k
, u

�

j+1/2,k

o ,
�y

4 max
n

v
+

j,k+1/2
, v

�

j,k+1/2

o

9
=

;

Proof. The proof follows the same lines as in [209].

For the decay of the discrete free-energy it is important to note that a full ✓�1

0
matrix

Eq. (C.20) where b 6= 0 produces a dimensional coupling in the gradient flow Eq. (4.73),

since the velocities Eq. (C.24) now contain terms from orthogonal directions. This can

be avoided by performing a diagonalization of the matrix ✓�1

0
, which is ensured due to

the conditions imposed over it (namely that it is symmetric and positive definite). To

show this we can first diagonalize ✓�1

0
as

✓�1

0
= QDQ

T
,

where QQ
T = Id2 and D is a positive diagonal matrix

D =

"
↵ 0

0 �

#
.

Formally, we can project the gradient operator onto the eigenvectors basis: r = Qre,

and r · F = r
T
F = r

T
e (QT

F ) = re · (QT
F ). Therefore, the gradient-flow equation in

Eq. (4.73) becomes

@⇢

@t
= (Qre)

T

✓
QDQ

T
Qre

�E [⇢]

�⇢

◆
= (Qre)

T

✓
QDre

�E [⇢]

�⇢

◆
= r

T

✓
Dre

�E [⇢]

�⇢

◆
,

so that Eq. (4.73) can now be written in the eigenvector basis as,

@⇢

@t
= re · (Dre⇢). (C.31)

The advantage of this formulation is that for Eq. (C.31) the di↵usion matrix D is di-

agonal which then simplifies the velocities in Eq. (C.24) since b = 0. Following this

transformation one can then show the decay of the discrete free-energy for Eq. (C.31).

248



Appendix C. Chapter 4: Additional details and results

Such discrete energy in 2D satisfies:

E� = �x�y

X

j,k

Vj,k ⇢j,k + H(⇢j,k) +
1

2
�x�y

X

l,m

Kj�l,k�m ⇢l,m ⇢j,k. (C.32)

Theorem C.2.2 (Discrete-energy decay). The 2D semi-discrete finite-volume scheme

Eqs (C.21)-(C.25), coupled with a positivity preserving reconstruction Eqs (C.26)-(C.27)

for ⇢, satisfies the following decay of the discrete free-energy Eqs (C.32) for gradient flows

where b = 0 in ✓�1

0
Eq. (C.20) or previously diagonalized as in Eq. (C.31):

d

dt
E�(t)  �I�(t), (C.33)

where the discrete version of the entropy dissipation results in

I�(t) = ��x�y
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. (C.34)

Proof. Following the 1D proof in Sect. 4.2.1, the temporal decay of the discrete free-

energy in Eq. (C.32) yields

d

dt
E�(t) = ��x�y
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j,k
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.

Then, by applying integration by parts with respect to both x and y yields:

d

dt
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With b = 0 in ✓�1

0
Eq. (C.20) and the expressions for the velocities in Eq. (C.24) and

the fluxes in Eq. (C.22), it follows that:
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Thus, the decay of the discrete free-energy in Eq. (C.33) is satisfied with a discrete
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entropy dissipation of the form Eq. (C.34).
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