9 research outputs found

    Error Rate Analysis of Cognitive Radio Transmissions with Imperfect Channel Sensing

    Get PDF
    This paper studies the symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. Two different transmission schemes, namely sensing-based spectrum sharing (SSS) and opportunistic spectrum access (OSA), are considered. In both schemes, secondary users first perform channel sensing, albeit with possible errors. In SSS, depending on the sensing decisions, they adapt the transmission power level and coexist with primary users in the channel. On the other hand, in OSA, secondary users are allowed to transmit only when the primary user activity is not detected. Initially, for both transmission schemes, general formulations for the optimal decision rule and error probabilities are provided for arbitrary modulation schemes under the assumptions that the receiver is equipped with the sensing decision and perfect knowledge of the channel fading, and the primary user's received faded signals at the secondary receiver has a Gaussian mixture distribution. Subsequently, the general approach is specialized to rectangular quadrature amplitude modulation (QAM). More specifically, optimal decision rule is characterized for rectangular QAM, and closed-form expressions for the average symbol error probability attained with the optimal detector are derived under both transmit power and interference constraints. The effects of imperfect channel sensing decisions, interference from the primary user and its Gaussian mixture model, and the transmit power and interference constraints on the error rate performance of cognitive transmissions are analyzed

    Interference Efficiency: A New Metric to Analyze the Performance of Cognitive Radio Networks

    Get PDF
    In this paper, we develop and analyze a novel performance metric, called interference efficiency, which shows the number of transmitted bits per unit of interference energy imposed on the primary users (PUs) in an underlay cognitive radio network (CRN). Specifically, we develop a framework to maximize the interference efficiency of a CRN with multiple secondary users (SUs) while satisfying target constraints on the average interference power, total transmit power, and minimum ergodic rate for the SUs. In doing so, we formulate a multiobjective optimization problem (MOP) that aims to maximize ergodic sum rate of SUs and to minimize average interference power on the primary receiver. We solve the MOP by first transferring it into a single objective problem (SOP) using a weighted sum method. Considering different scenarios in terms of channel state information (CSI) availability to the SU transmitter, we investigate the effect of CSI on the performance and power allocation of the SUs. When full CSI is available, the formulated SOP is nonconvex and is solved using augmented penalty method (also known as the method of multiplier). When only statistical information of the channel gains between the SU transmitters and the PU receiver is available, the SOP is solved using Lagrangian optimization. Numerical results are conducted to corroborate our theoretical analysis

    A Unified Framework for the Ergodic Capacity of Spectrum Sharing Cognitive Radio Systems

    No full text

    Performance Analysis of Cognitive Radio Systems with Imperfect Channel Knowledge

    Get PDF
    An analytical framework is established to characterize the effects such as time allocation and variation, arising due to the incorporation of imperfect channel knowledge, that are detrimental to the performance of the cognitive radio systems. In order to facilitate hardware deployment of a cognitive radio system, received power-based estimation, a novel channel estimation technique is employed for the channels existing between the primary and the secondary systems, thus fulfilling low-complexity and versatility requirements

    Cognitive Radio Systems: Performance Analysis and Optimal Resource Allocation

    Get PDF
    Rapid growth in the use of wireless services coupled with inefficient utilization of scarce spectrum resources has led to the analysis and development of cognitive radio systems. Cognitive radio systems provide dynamic and more efficient utilization of the available spectrum by allowing unlicensed users (i.e., cognitive or secondary users) to access the frequency bands allocated to the licensed users (i.e., primary users) without causing harmful interference to the primary user transmissions. The central goal of this thesis is to conduct a performance analysis and obtain throughput- and energy-efficient optimal resource allocation strategies for cognitive radio systems. Cognitive radio systems, which employ spectrum sensing mechanisms to learn the channel occupancy by primary users, generally operate under sensing uncertainty arising due to false alarms and miss-detections. This thesis analyzes the performance of cognitive radio systems in a practical setting with imperfect spectrum sensing. In the first part of the thesis, optimal power adaptation schemes that maximize the achievable rates of cognitive users with arbitrary input distributions in underlay cognitive radio systems subject to transmit and interference power constraints are studied. Simpler approximations of optimal power control policies in the low-power regime are determined. Low-complexity optimal power control algorithms are proposed. Next, energy efficiency is considered as the performance metric and power allocation strategies that maximize the energy efficiency of cognitive users in the presence of time-slotted primary users are identified. The impact of different levels of channel knowledge regarding the transmission link between the secondary transmitter and secondary receiver, and the interference link between the secondary transmitter and primary receiver on the optimal power allocation is addressed. In practice, the primary user may change its status during the transmission phase of the secondary users. In such cases, the assumption of time-slotted primary user transmission no longer holds. With this motivation, the spectral and energy efficiency in cognitive radio systems with unslotted primary users are analyzed and the optimal frame duration and energy-efficient optimal power control schemes subject to a collision constraint are jointly determined. The second line of research in this thesis focuses on symbol error rate performance of cognitive radio transmissions in the presence of imperfect sensing decisions. General formulations for the optimal decision rule and error probabilities for arbitrary modulation schemes are provided. The optimal decision rule for rectangular quadrature amplitude modulation (QAM) is characterized, and closed-form expressions for the average symbol error probability attained with the optimal detector under both transmit power and interference constraints are derived. Furthermore, throughput of cognitive radio systems for both fixed-rate and variable-rate transmissions in the finite-blocklength regime is studied. The maximum constant arrival rates that the cognitive radio channel can support with finite blocklength codes while satisfying statistical quality of service (QoS) constraints imposed as limitations on the buffer violation probability are characterized. In the final part of the thesis, performance analysis in the presence of QoS requirements is extended to general wireless systems, and energy efficiency and throughput optimization with arbitrary input signaling are studied when statistical QoS constraints are imposed as limitations on the buffer violation probability. Effective capacity is chosen as the performance metric to characterize the maximum throughput subject to such buffer constraints by capturing the asymptotic decay-rate of buffer occupancy. Initially, constant-rate source is considered and subsequently random arrivals are taken into account
    corecore