65,904 research outputs found

    Greedy PIG: Adaptive Integrated Gradients

    Full text link
    Deep learning has become the standard approach for most machine learning tasks. While its impact is undeniable, interpreting the predictions of deep learning models from a human perspective remains a challenge. In contrast to model training, model interpretability is harder to quantify and pose as an explicit optimization problem. Inspired by the AUC softmax information curve (AUC SIC) metric for evaluating feature attribution methods, we propose a unified discrete optimization framework for feature attribution and feature selection based on subset selection. This leads to a natural adaptive generalization of the path integrated gradients (PIG) method for feature attribution, which we call Greedy PIG. We demonstrate the success of Greedy PIG on a wide variety of tasks, including image feature attribution, graph compression/explanation, and post-hoc feature selection on tabular data. Our results show that introducing adaptivity is a powerful and versatile method for making attribution methods more powerful

    Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model-Agnostic Interpretations

    Full text link
    Model-agnostic interpretation techniques allow us to explain the behavior of any predictive model. Due to different notations and terminology, it is difficult to see how they are related. A unified view on these methods has been missing. We present the generalized SIPA (sampling, intervention, prediction, aggregation) framework of work stages for model-agnostic interpretations and demonstrate how several prominent methods for feature effects can be embedded into the proposed framework. Furthermore, we extend the framework to feature importance computations by pointing out how variance-based and performance-based importance measures are based on the same work stages. The SIPA framework reduces the diverse set of model-agnostic techniques to a single methodology and establishes a common terminology to discuss them in future work

    Occupancy, spatial variance, and the abundance of species

    Get PDF
    A notable and consistent ecological observation known for a long time is that spatial variance in the abundance of a species increases with its mean abundance and that this relationship typically conforms well to a simple power law (Taylor 1961). Indeed, such models can be used at a spectrum of spatial scales to describe spatial variance in the abundance of a single species at different times or in different regions and of different species across the same set of areas (Taylor et al. 1978; Taylor and Woiwod 1982)

    The Grammar of Interactive Explanatory Model Analysis

    Full text link
    The growing need for in-depth analysis of predictive models leads to a series of new methods for explaining their local and global properties. Which of these methods is the best? It turns out that this is an ill-posed question. One cannot sufficiently explain a black-box machine learning model using a single method that gives only one perspective. Isolated explanations are prone to misunderstanding, which inevitably leads to wrong or simplistic reasoning. This problem is known as the Rashomon effect and refers to diverse, even contradictory interpretations of the same phenomenon. Surprisingly, the majority of methods developed for explainable machine learning focus on a single aspect of the model behavior. In contrast, we showcase the problem of explainability as an interactive and sequential analysis of a model. This paper presents how different Explanatory Model Analysis (EMA) methods complement each other and why it is essential to juxtapose them together. The introduced process of Interactive EMA (IEMA) derives from the algorithmic side of explainable machine learning and aims to embrace ideas developed in cognitive sciences. We formalize the grammar of IEMA to describe potential human-model dialogues. IEMA is implemented in the human-centered framework that adopts interactivity, customizability and automation as its main traits. Combined, these methods enhance the responsible approach to predictive modeling.Comment: 17 pages, 10 figures, 3 table

    Coupling active and sterile neutrinos in the cosmon plus seesaw framework

    Full text link
    The cosmological evolution of neutrino energy densities driven by cosmon-type field equations is introduced assuming that active and sterile neutrinos are intrinsically connected by cosmon fields through the {\em seesaw} mechanism. Interpreting sterile neutrinos as dark matter adiabatically coupled with dark energy results in a natural decoupling of (active) mass varying neutrino (MaVaN) equations. Identifying the dimensionless scale of the {\em seesaw} mechanism, m/Mm/M, with a power of the cosmological scale factor, aa, allows for embedding the resulting masses into the generalized Chaplygin gas (GCG) scenario for the dark sector. Without additional assumptions, our findings establish a precise connection among three distinct frameworks: the cosmon field dynamics for MaVaN's, the {\em seesaw} mechanism for dynamical mass generation and the GCG scenario. Our results also corroborate with previous assertions that mass varying particles can be the right responsible for the stability issue and for the cosmic acceleration of the universe.Comment: 12 pages, 2 figure

    An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

    Full text link
    While deep learning methods are increasingly being applied to tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by target users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level radiologist semantic features, and 2) a high-level malignancy prediction score. The low-level semantic outputs quantify the diagnostic features used by radiologists and serve to explain how the model interprets the images in an expert-driven manner. The information from these low-level tasks, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level task of predicting nodule malignancy. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to common 3D CNN approaches
    corecore