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A notable and consistent ecological observation known for

a long time is that spatial variance in the abundance of a

species ( ) increases with its mean abundance (m) and2
j

that this relationship typically conforms well to a simple

power law (Taylor 1961):

2 b
j p am , (1)

where a and b are constants. Indeed, such models can be

used at a spectrum of spatial scales to describe spatial

variance in the abundance of a single species at different

times or in different regions and of different species across

the same set of areas (Taylor et al. 1978; Taylor and Woi-

wod 1982).

A second general pattern that has come to prominence

more recently is that the proportion of areas occupied by

a species (p, its probability of occurrence in a sample)

increases with its average abundance (m) among those ar-

eas and again that this is manifest from micro- to mac-

rospatial scales both for a given species at different times

or in different regions and for different species across the

same set of areas (Brown 1984; Gaston and Blackburn

2000). While a number of models have been developed to

describe this pattern, most are special forms of the general

model (Wright 1991; Hanski et al. 1993; He and Gaston

2000)
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�k

m
p p 1 � 1 � , (2)( )k

where k is a spatial aggregation parameter defined in the

domain of (��, �m) or (0, �) and takes the form

2
m

k p . (3)
2

j � m

When , model (2) is derived from the positive bi-k ! �m

nomial distribution that describes spatial regularity, and

when , it is derived from the negative binomial dis-k 1 0

tribution for spatial aggregation (He and Gaston 2000).

Variance-mean and occupancy-abundance patterns

characterize the spatial distributions of species and share

a common currency of abundance, but there has been little

attempt in ecology to explore the connection between the

two. The existence of such a connection for specific models

of spatial variation in species abundance (e.g., Poisson) is

not difficult to understand, but it has long been recognized

that at different mean densities, the distributions of species

conform best to different such models (Perry and Taylor

1986), limiting the utility of this insight. However, sub-

stituting equation (3) into model (2) and recognizing that

is defined by model (1) gives a general model unifying2
j

occupancy (p) and spatial variance ( ):2
j

2 2
m /(j �m)

m
p p 1 � , (4)

2( )j

where but can infinitely approach m, resulting2
j ( m

in , which is occupancy for the Poisson�mp p 1 � e

distribution.

Note that model (4) has also been used in agricultural

entomology for estimating pest levels of individual species

from binomial sampling data (Wilson and Room 1983;

Yamamura 2000). However, the unification of the two gen-

eral ecological patterns of variance-mean and occupancy-

abundance implied by the model is novel and has not

apparently been reported and investigated before. Indeed,

this model is arguably of much wider ecological signifi-

cance from the perspective of pattern unification than that
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of estimating population levels and, as such, it may help

in fundamental understanding of spatial variation in abun-

dance. The first objective of this study is to show that these

two formerly independently documented patterns are able

to predict each other and hence are just different expres-

sions of the same phenomenon (i.e., the distribution of

species). In doing so, the study does not consider the

variance-mean and the occupancy-abundance as compet-

ing models but two complementary mathematical forms.

The second objective is to provide mechanistic interpre-

tations for the unification of the two patterns, with an

emphasis on theories of metapopulation dynamics. The

study further discusses the importance in investigating

spatial variability (in contrast to temporal stochasticity) in

abundance for understanding population persistence in

landscapes.

Methods

Data

We compiled eight empirical data sets (four intraspecific

and four interspecific), reflecting a spectrum of spatial

scales, to examine how well the variance-mean and

occupancy-abundance patterns can predict each other.

The four intraspecific data sets are as follows: first, the

number of striped ambrosia beetle (Trypodendron lineatum

Olivier) caught in each of 12 traps in 32 periods (dates)

from 1993 to 1998 in a lodgepole pine (Pinus contorta

Doug. ex Loud.) plantation in British Columbia, Canada.

On each date, the mean of the beetle abundance and its

variance was calculated for the 12 traps (see app. A in the

online edition of the American Naturalist). Four periods

of samples were ignored when no individuals were caught

in any of the 12 traps; second, the number of aphids

Acyrthosiphon pisum (Harris) caught in each of 22 suction

traps distributed across Britain for seven 4-wk periods

(ignoring two periods when no individuals were caught

in any trap; see Woiwod et al. 1988); third, the number

of ticks Ixodes ricinus L. on each sheep for 10 groups of

sheep (of 20–86 individuals; Milne 1943); and fourth, the

number of eggs of the chrysomelid Altica oleracea (L.) on

each leaf for each of 49 stems of the host plant Oenothera

biennis (L.) (Yamamura 1990).

The four interspecific data sets are as follows: first, the

number of individuals of each of 30 moth species caught

in each of 53 light traps distributed across Britain over a

1-yr period (Taylor and French 1973); second, the number

of individuals of each of 14 benthic infaunal species caught

in each of 10 quadrats in a subtidal marsh creek in Rhode

Island (Heltshe and Forrester 1983; see app. B in the online

edition of the American Naturalist); and finally, the num-

ber of individuals of each of 814 tree species counted at

two quadrat sizes, m and m,12.5 m # 12.5 25 m # 25

respectively, in a 50-ha tropical rain forest plot censused

in 1987 in the Pasoh Forest Reserve of Malaysia (He et

al. 1997; Manokaran et al. 1999). The area of occupancy

of a species was the number of the occupied quadrats

multiplied by quadrat size.

Two of the data sets, one intraspecific and one inter-

specific, are shown in appendixes A and B as examples.

Model Fitting and Prediction

Because variance-mean data are typically heteroscedastic,

the simple linear regression method has been widely used

as a standard method for fitting the log-transformed model

(1) to each of the eight sets of variance-mean data. The

appropriate method for fitting model (2) to occupancy-

abundance data is the maximum likelihood method by

assuming binomial errors (He et al. 2002). The parameter

k was estimated by minimizing the log-likelihood function

, where the no-
s

l p � [y log (p ) � (n � y ) log (1 � p )]i i i i iip1

tation is slightly different for intraspecific and interspecific

data. For intraspecific data, s is the total number of trap-

ping dates (e.g., app. A), while for interspecific data, s is

the total number of species (e.g., app. B); ni is the number

of empty and occupied traps on the ith date for appendix

A data or the number of empty and occupied quadrats

for the ith species for appendix B data, yi is the number

of occupied traps or quadrats, and pi is given by model

(2) in which density mi can be read, for instance, from the

tables in appendix A for the ith trapping date or species.

The prediction of the variance-mean pattern was then

made using the fitted occupancy-abundance model (2) by

substituting it into the unified model (4), in which the

relationship between variance ( ) and mean (m) is then2
j

determined. To be more specific, the prediction involves

three steps. First, we fitted the occupancy model (2) to

the observed occupancy-abundance data. We then substi-

tuted the fitted occupancy p (for each abundance m) into

model (4) so that the variance ( ) in the model now2
j

became the only unknown variable. We finally numerically

solved the model (4) for the variance ( ), given the ob-2
j

served abundance (m). Likewise, the prediction of the

occupancy-abundance pattern was made using the fitted

variance-mean power model (1) by substituting it into

model (4); that is, given the observed abundance, the oc-

cupancy (p) was solved by substituting the fitted variance

into model (4).

Model Assessment

Two statistics were used to assess how far (or close) the

fitted model departs from the predicted results. The ratio

of the squared roots of the residual sums of squares is
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RSSE1, and RSSE2 is the same ratio but applied to log-

transformed data:

2�� (y � y )p o

RSSE1 p ,
2�� (y � y )f o

2�� [log (y ) � log (y )]p o

RSSE2 p ,
2�� [log (y ) � log (y )]f o

where yo is the observed variance ( ) or occupancy (p),2
j

yp is the predicted variance or occupancy from the unified

model (4), and yf is the fitted variance or occupancy using

model (1) or (2); indicates that model (1) orRSSE p 1

(2) describes the data as well as the relationship predicted

by the unified model (4), indicates model (1)RSSE 1 1

or (2) describes the data better than the relationship pre-

dicted by the unified model (4), while suggestsRSSE ! 1

that the prediction from the unified model (4) is superior

to the individual model (1) or (2). To statistically judge

how far RSSE departs from 1, we generated the sampling

distribution of RSSE by bootstrap resampling and obtained

a 95% confidence interval for the RSSE based on 500

resamples. If the confidence interval contains the value 1,

we conclude that model (1) or (2) and model (4) describe

the data equally well; otherwise, either the individual mod-

els or the unified model describes the data better.

Although our primary interest in this study is to in-

vestigate how well one pattern can predict the other, not

to test how well these models could fit data (this is well

established), we include an approximate assessment of how

much variation in the data can actually be explained by

the individual model (1) or (2) and by the unified model

(4). This can be done, by analogy to the method in linear

regression, by partitioning the total sum of squares (SST)

into the sum of regression (or prediction) squares (SSR)

and the sum of residual squares (SSE). The proportion of

variation explained by a model is measured by ,SSR/SST

where and , in2 2¯ ˆ ¯SST p � (y � y ) SSR p � (y � y )o o o

which is the mean of observed data yo and is the¯ ˆy yo

estimate (or prediction) of either yp or yf as notated in

RSSE. The assessment of variation was done for the log-

transformed data. In this study, all computation (including

bootstrapping) was carried out using program S-Plus 2000

(MathSoft 1999).

Results

The numerical examples in figure 1 illustrate the predictive

relationships between the variance-mean power law model

(1) and the occupancy-abundance model (2). Figure 1a

and 1b show how an occupancy-abundance pattern is pre-

dicted by a variance-mean model. This was done by in-

serting model (1) (e.g., as for curve 1 in fig. 1a)2 2
j p 5m

into model (4) and then solving for the p-m relationship.

Similarly, for a given occupancy (p), model (4) predicts

the log-linear variance-mean relationship of model (1) (fig.

1c). Note that in producing figure 1c, model (1) did not

participate but was the result of the prediction. The re-

lationships among occupancy, variance, and abundance

are shown in figure 1d. It is clear that for a given abun-

dance (m), occupancy-variance forms an inverse relation-

ship, and the concavity of the curve becomes flatter with

the increase in abundance (fig. 1d). This is consistent with

expectation because for a very abundant species, few sites

will be left unoccupied while abundance still varies con-

siderably from site to site.

To further confirm the prediction of model (4) for the

occupancy-variance relationship and the numerical results

in figure 1, we tested the unified model using the eight

data sets described above. The estimated parameters for

models (1) and (2) are shown in table 1. The prediction

of variance from occupancy and the prediction of occu-

pancy from variance are rather impressive (figs. 2, 3; table

2). Although the statistics used to compare the component

models against the unified model are not always consistent,

there is no systematic bias toward the fitted patterns or

those predicted from the unified model (4) (table 2). Some

data may be more closely described by the unified model

(e.g., occupancy data for Acyrthosiphon pisum measured

by RSSE1; table 2), whereas others are better fitted by the

component model (1) or (2) (e.g., the variance data for

Altica oleracea). However, there seems to be a systematic

pattern in the cases where the component models and the

unified model do differ (i.e., the eight footnoted cases in

table 2). In the four variance cases where the component

model (1) appears to fit the data better than the unified

model (4) (i.e., the ), we suspect that this mayRSSE 1 1

simply reflect the fact that the of the component model2R f

(1) is higher than the of the unified model in the four2R p

cases (table 2), while in the footnoted occupancy cases,

the of the unified model is higher than the of the2 2R Rp f

component model (2) except for A. pisum.

While caution is needed in interpreting the RSSE boot-

strap confidence intervals for some data sets because of

small sample size (e.g., A. pisum has only seven data points

to resample), nevertheless, the RSSE criteria in table 2

show that the predicted variances and occupancies are little

different from the fitted models (1) and (2). These results

suggest that the component models (variance-mean and

occupancy-abundance) and the unified model both can

describe the two patterns equally well. In other words, the

mean-variance pattern can indeed predict the occupancy-

abundance pattern and vice versa. Even though the pre-

dicted variance-mean relationships do not exhibit a

straight line on a log-log scale, the predictions and the



Figure 1: a, b, Variance-mean power models (left column) and their corresponding occupancy-abundance curves predicted from model (4) (right

column). a, Power model for with b varying from 2 to 0.1. b, Model for with a varying from 40 to 5. c, Variance-mean relationshipsa p 5 b p 1.2

solved from model (4) for various occupancy p’s. The slopes of the lines approximately equal 2.25. d, Occupancy-variance relationships solved from

model (4) for various abundance m’s.
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Table 1: Parameters for the estimated variance-mean model (1) and occupancy-abundance model (2)

for the eight data sets

Data n

Variance-mean model (1) Occupancy-abundance model (2)

log(a) (SE) b (SE) k (SE)

Intraspecific:

Trypodendron lineatum 28 .991 (.131) 1.575 (.075) .883 (.196)

Acyrthosiphon pisum 7 1.586 (.209) 1.730 (.075) .472 (.089)

Ixodes ricinus 10 .545 (.321) 1.462 (.114) 2.525 (.541)

Altica oleracea 49 1.049 (.039) 1.300 (.025) .683 (.051)

Interspecific:

Moth species 30 1.932 (.196) 1.769 (.086) .319 (.018)

Infaunal species 14 .333 (.058) 2.054 (1.106) 1.473 (.671)

Pasoh tree species 1 814 .528 (.023) 1.077 (.006) .807 (.009)

Pasoh tree species 2 814 .807 (.025) 1.150 (.009) .907 (.008)

Note: Model (1) was fit to the log-transformed data using simple linear regression method, while model (2) was

parameterized using the maximum likelihood method.

fitted variance-mean models are practically indistinguish-

able according to the RSSE in table 2.

Discussion

As expected given their ubiquity and generality across spa-

tial scales, a variety of statistical and ecological processes

can and do give rise to variance-mean and occupancy-

abundance relationships, although their role in generating

both patterns in the same study system has not empirically

been demonstrated (Perry 1988; Gaston et al. 1997). It has

been shown that the negative binomial distribution on

which model (2) is based can be generated from a wide

range of statistical processes including several types of

birth-death processes (Boswell and Patil 1970). From an

ecological perspective, the mechanisms that result in the

variance-mean and occupancy-abundance patterns have

been argued to be rooted in demographics, behavior, niche

structure, or even sampling artefact (Taylor et al. 1983;

Brown 1984; Downing 1986; Perry 1988; Gaston 1994). A

significant implication of the unification is that it suggests

that interpretations for one pattern can also be used for

interpreting the other pattern because of the mutuality of

the two.

A simple but elegant interpretation for the two linked

patterns can be found in theories of metapopulation dy-

namics. In part because of the significance for conservation

and management issues, the theories of metapopulation

dynamics, in which species dispersal is assumed to be a

fundamental process in maintaining local populations in

different habitat patches, have been widely used to inter-

pret occupancy-abundance relationships (Hanski 1991;

Hanski et al. 1993; Gonzalez et al. 1998). From the pre-

diction of the unified model (4), such a metapopulation

process should also lead to a positive variance-mean re-

lationship. Indeed, the variance-mean pattern is inevitably

produced by metapopulation dynamics through immigra-

tion of individuals from high-density sites to lower-density

or vacant ones (the rescue effect; Hanski 1991). For in-

stance, assume a metapopulation with ,abundances p 5

10, 0, and 0 in four sites and that, due to the rescue effect,

the third vacant site is now rescued through immigration

from the second site so that the abundances become 5, 8,

2, and 0. This effect increases the chance of colonization

and reduces spatial variation, conforming to the prediction

of the unified model (4). These theoretical results are not

only supported by empirical field experiments (Kruess and

Tscharntke 1994; Gonzalez et al. 1998) but also demon-

strated by stochastic cellular automaton simulations,

which show that spatial aggregation is an unavoidable out-

come of poor colonization and dispersal ability, from

which the negative variance-occupancy correlation as

shown in figure 1d will result (Tilman et al. 1997).

In addition to metapopulation dynamics, a fractal model

of species distributions has been explored, which typically

stipulates a power law relationship between occupancy and

abundance (Kunin 1998; Harte et al. 2001). Although it

is not immediately clear what kind of spatial pattern in

abundance variability is implied by such a model, a result

of Harte et al. (2001), which proposes to link variance in

abundance to the probability of species presence in bi-

sected areas in a study, may provide the first step in making

such a connection.

The neutral theory of Hubbell (2001) has shown that

a parsimonious set of demographic parameters (e.g., dis-

persal, mortality, fecundity, and speciation) that are as-

sumed to be probabilistically identical on a per capita basis

can predict many prominent ecological patterns with high

accuracies (Bell 2001; Hubbell 2001). As we have shown

earlier, from the theory of metapopulation dynamics, dis-
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Figure 2: Intraspecific variance-mean and occupancy-abundance relationships for (a) Trypodendron lineatum, (b) Acyrthosiphon pisum, (c) Ixodes

ricinus, and (d ) Altica oleracea. The dashed curves are the power model (1) and the occupancy model (2) fitted to the respective data. The solid

curves are the predictions of model (4) given by the opposite patterns.
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Figure 3: Interspecific variance-mean and occupancy-abundance relationships for (a) moths, (b) benthic infauna, and (c, d) Pasoh tree species at

two spatial scales. The dashed curves are the power model (1) and the occupancy model (2) fitted to the respective data. The solid curves are the

predictions of model (4) given by the opposite patterns.
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Table 2: Comparison of the fitted variance and occupancy to the predictions from the unified model (4)

Data n

Variance Occupancy

RSSE R2 RSSE R2

RSSE1 (95% CI) RSSE2 (95% CI) 2Rf
2Rp RSSE1 (95% CI) RSSE2 (95% CI) 2Rf

2Rp

Intraspecific:

Trypodendron

lineatum 28 .79 (.73, 1.09) .89 (.79, 1.23) .944 .956 .99 (.82, 1.08) .98 (.90, 1.05) .799 .807

Acyrthosiphon pisum 7 5.66 (.38, 8.40) .67 (.58, 1.50) .991 .996 .72a (.62, .90) 1.77 (.61, 2.19) .993 .977

Ixodes ricinus 10 .73 (.56, 1.49) 1.24 (.88, 2.84) .953 .928 1.13 (.55, 1.56) .84 (.42, 1.57) .950 .965

Altica oleracea 49 3.41a (1.82, 5.85) 1.62a (1.33, 1.85) .983 .956 .90 (.71, 1.15) .76a (.67, .89) .941 .966

Interspecific:

Moth species 30 .99 (.57, 2.97) .97 (.80, 1.09) .939 .942 1.09 (.95, 1.32) 1.02 (.82, 1.32) .821 .812

Infaunal species 14 .92 (.26, 2.03) .99 (.67, 1.20) .980 .980 1.04 (.87, 1.51) .97 (.85, 1.27) .926 .929

Pasoh tree species 1 814 .88 (.68, 1.25) 1.09a (1.02, 1.13) .977 .973 1.10 (.94, 1.30) .93a (.90, .97) .989 .990

Pasoh tree species 2 814 .90 (.62, 1.68) 1.08a (1.02, 1.13) .957 .950 1.01 (.97, 1.07) .94a (.91, .97) .970 .974

Note: The individual models describe the data better than the unified model if the lower bound of the 95% bootstrap confidence interval (CI) is larger

than 1, whereas the unified model is superior if the upper bound of the CI is smaller than 1. The bootstrap CIs were generated from 500 resamples. is2Rf

the proportion of variation explained by the fitted model, whereas is the proportion of variation explained by the prediction of the unified model, all2Rp

measured in terms of log-transformed data.
a Indicates that the fitted individual variance or occupancy model describes the data significantly differently from the unified model.

persal, which is also a critical underpinning process in

neutral theory, can play a key role in linking the variance-

mean and occupancy-abundance patterns. A question of

particular interest is thus what other neutral processes

(e.g., birth, death, and speciation rates) could tell us more

about the connection between the two patterns.

It is well known in ecology that, all else being equal,

the greater the temporal variation of a population, the

greater the likelihood of extinction (Leigh 1981; Goodman

1987). However, how spatial variation affects population

persistence is poorly understood. This study underlines

the importance of studying spatial variance for under-

standing species persistence in metapopulation systems

and biological conservation. According to model (4), for

a given level of abundance, high spatial variability is as-

sociated with a small range size (fig. 1d), making a pop-

ulation more susceptible to environmental change and

habitat loss and therefore increasing its risk of extinction.

This is supported by much empirical evidence showing

that landscape fragmentation or environmental stochas-

ticity, which promotes spatial variability, results in lower

occupancy (i.e., “shallow incidence function”; Hanski

1992) and is a possible cause of population extirpation

(Pimm 1991; Kruess and Tscharntke 1994; Gonzalez et al.

1998). Such a negative impact of greater spatial variability

on species persistence can, however, be alleviated by the

rescue effect, which both reduces the likelihood of local

extinction and lowers spatial variation. Rare species are

typically found to be less aggregated than common species,

which, sampling artefacts aside, might suggest that low

aggregation could be a means by which they persist.

Important applications of variance-mean models are in

sampling design and in stabilizing variance for data anal-

ysis (Taylor 1961; Kuno 1990; Hayek and Buzas 1997).

The unified model (4) suggests that data on occupancy,

which are more readily obtained, can also be used for these

purposes. For example, in the interspecific case, variance

for an assemblage of species can be derived using models

(2) and (4) if occupancy-abundance data for just some

of the species are available. This is achieved by first fit-

ting the occupancy model (2) to those species whose

occupancy-abundance data are available. The abundance

(m) of other species whose occupancies are known can be

estimated using the parameterized model (2). The vari-

ances of those species can then be obtained through the

unified model (4).

Another application, again owing to the readiness of

garnering occupancy data, is to use information on oc-

cupancy and variance for biological monitoring and con-

servation purposes. Model (2) helps provide data on

occupancy-abundance relationships, whereas model (4)

permits the derivation of information for assessing spatial

variability in species distribution. When using these mod-

els to derive occupancy data or variance for monitoring

and conservation programs, however, a sampling problem

that has not explicitly been addressed here but must be

kept in mind is that of species detectability. The presence

of a species in a study site may or may not be observed

in the field. The nondetection may mean that the species

is truly absent or is missed because of insufficient survey

efforts. The latter scenario will inevitably lead to under-

estimation of occupancy rates. This problem may also exist

to some degree in some of the data sets used in this study,

but it should clearly not be a problem for others such as
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the census data of the Pasoh forest. Incorporation of this

sampling bias into occupancy-abundance models is chal-

lenging, but the problem must be solved to provide un-

biased occupancy rates useful for practical applications.

Some constructive approaches to the problem can be

found in Heikkinen and Högmander (1994) and Mac-

Kenzie et al. (2002) for two common sampling designs.

The issue is further complicated by the fact that detect-

ability often varies over time and space due to the dynamic

change and nonstationary spatial distribution in abun-

dance. This study assumed occupancy to be temporally

and spatially invariant, although future improvement may

be made by considering abundance (m) in model (2) to

be temporally or spatially dependent. We suggest that de-

velopment in this direction will inevitably advance the

understanding of spatiotemporal dynamics of meta-

populations.

There is growing evidence that ecology is progressing

from searching for bivariate ecological patterns (e.g.,

species-area, species-abundance, productivity-richness,

variance-mean, occupancy-abundance, body size-richness)

toward the study of multivariate patterns between the same

sets of variables (Hanski and Gyllenberg 1997; Ritchie and

Olff 1999; Pachepsky et al. 2001; He and Legendre 2002).

The current study is another step in this process suggesting

that ecology may be on the verge of a significant period

of pattern unification.
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