6,095 research outputs found

    Nonconforming tetrahedral mixed finite elements for elasticity

    Get PDF
    This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, and which is significantly simpler than any stable conforming mixed finite element method. The method may be viewed as the three-dimensional analogue of a previously developed element in two dimensions. As in that case, a variant of the method is proposed as well, in which the displacement approximation is reduced to piecewise rigid motions and the stress space is reduced accordingly, but the linear convergence is retained.Comment: 13 pages, 2 figure

    Weakly imposed symmetry and robust preconditioners for Biot's consolidation model

    Full text link
    We discuss the construction of robust preconditioners for finite element approximations of Biot's consolidation model in poroelasticity. More precisely, we study finite element methods based on generalizations of the Hellinger-Reissner principle of linear elasticity, where the stress tensor is one of the unknowns. The Biot model has a number of applications in science, medicine, and engineering. A challenge in many of these applications is that the model parameters range over several orders of magnitude. Therefore, discretization procedures which are well behaved with respect to such variations are needed. The focus of the present paper will be on the construction of preconditioners, such that the preconditioned discrete systems are well-conditioned with respect to variations of the model parameters as well as refinements of the discretization. As a byproduct, we also obtain preconditioners for linear elasticity that are robust in the incompressible limit.Comment: 21 page

    Stabilized mixed finite element methods for linear elasticity on simplicial grids in Rn\mathbb{R}^{n}

    Full text link
    In this paper, we design two classes of stabilized mixed finite element methods for linear elasticity on simplicial grids. In the first class of elements, we use H(div,Ω;S)\boldsymbol{H}(\mathbf{div}, \Omega; \mathbb{S})-PkP_k and L2(Ω;Rn)\boldsymbol{L}^2(\Omega; \mathbb{R}^n)-Pk−1P_{k-1} to approximate the stress and displacement spaces, respectively, for 1≤k≤n1\leq k\leq n, and employ a stabilization technique in terms of the jump of the discrete displacement over the faces of the triangulation under consideration; in the second class of elements, we use H01(Ω;Rn)\boldsymbol{H}_0^1(\Omega; \mathbb{R}^n)-PkP_{k} to approximate the displacement space for 1≤k≤n1\leq k\leq n, and adopt the stabilization technique suggested by Brezzi, Fortin, and Marini. We establish the discrete inf-sup conditions, and consequently present the a priori error analysis for them. The main ingredient for the analysis is two special interpolation operators, which can be constructed using a crucial H(div)\boldsymbol{H}(\mathbf{div}) bubble function space of polynomials on each element. The feature of these methods is the low number of global degrees of freedom in the lowest order case. We present some numerical results to demonstrate the theoretical estimates.Comment: 16 pages, 1 figur
    • …
    corecore