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This paper presents a nonconforming finite element approximation of the space of sym-
metric tensors with square integrable divergence, on tetrahedral meshes. Used for stress
approximation together with the full space of piecewise linear vector fields for displace-
ment, this gives a stable mixed finite element method which is shown to be linearly
convergent for both the stress and displacement, and which is significantly simpler than
any stable conforming mixed finite element method. The method may be viewed as the
three-dimensional analogue of a previously developed element in two dimensions. As in
that case, a variant of the method is proposed as well, in which the displacement approx-
imation is reduced to piecewise rigid motions and the stress space is reduced accordingly,
but the linear convergence is retained.
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1. Introduction

Mixed finite element methods for elasticity simultaneously approximate the dis-
placement vector field and the stress—tensor field. Conforming methods based on the
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classical Hellinger—Reissner variational formulation require a finite element space
for the stress—tensor that is contained in H (div, 2;S), the space of symmetric n xn
tensor fields which are square integrable with square integrable divergence. For a
stable method, this stress space must be compatible with the finite element space
used for the displacement, which is a subspace of the vector-valued L? function
space. It has proven difficult to devise such pairs of spaces. While some stable
pairs have been successfully constructed in both two and three dimensions, the
resulting elements tend to be quite complicated, especially in three dimensions.
For this reason, much attention has been paid to constructing elements which ful-
fill desired stability, consistency, and convergence conditions, but which relax the
requirement that the stress space be contained in H(div,2;S) in one of two ways:
either by relaxing the interelement continuity requirements, which leads to non-
conforming mixed finite elements, or by relaxing the symmetry requirement, which
leads to mixed finite elements with weak symmetry. In this paper we construct a
new nonconforming mixed finite element for elasticity in three dimensions based on
tetrahedral meshes, analogous to a two-dimensional element defined previously.!!
The space Y of shape functions on a tetrahedral element K (which is defined
in (3.1) below) is a subspace of the space P2(K;S), the space of symmetric tensors
with components which are polynomials of degree at most 2. It contains P;(K;S)
and has dimension 42. The degrees of freedom for o € ¥ are the integral of o over
K (this is six degrees of freedom, since o has six components), and the integral and
linear moments of on on each face of K (nine degrees of freedom per face). For the
displacements we simply take P;(K,R3) as the shape functions and use only inte-
rior degrees of freedom so as not to impose any interelement degrees of freedom.
See the element diagrams in Fig. 1. We note that, since there are no degrees of
freedom associated to vertices or edges, only to faces and the interior, our elements
may be implemented through hybridization, which may simplify the implementa-
tion. See Ref. 5 for the general idea, or Ref. 18 for a case close to the present
one.

After some preliminaries in Sec. 2, in Sec. 3 we define the shape function space
Yk and prove unisolvence of the degrees of freedom. In Sec. 4, we establish the

Fig. 1. Degrees of freedom for the stress o (left) and displacement u (right). The arrows represent
moments of on, which has three components, and so there are 9 degrees of freedom associated
to each face. The interior degrees of freedom are the integrals of o and w, which have 6 and 3
components, respectively.
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stability, consistency, and convergence of the resulting mixed method. Finally in
Sec. 5 we describe a variant of the method which reduces the displacement space to
the space of piecewise rigid motions and reduces the stress space accordingly. The
results of this paper were announced previously.'?

As mentioned, conforming mixed finite elements for elasticity tend to be quite
complicated. The earliest elements, which worked only in two dimensions, used
composite elements for stress.”»22 Much more recently, elements using polynomial
shape functions were developed for simplicial meshes in two'® and three dimen-
1,4 410 indicate that it is not possi-
ble to construct significantly simpler elements with polynomial shape functions and
which preserve both the conformity and symmetry of the stress. Many authors have
developed mixed elements with weak symmetry,? 689, 15,17,19,20,24,26-28
will not pursue here. For nonconforming methods with strong symmetry, which is
the subject of this paper, there have been several elements proposed for rectangular
meshes,12:21:23:29:30 1yt very little work on simplicial meshes. A two-dimensional
nonconforming element of low degree was developed by two of the present authors.!!
As shape functions for stress it uses a 15-dimensional subspace of the space of all
quadratic symmetric tensors, while for the displacement it uses piecewise linear
vector fields. A second element was also introduced,'! for which the stress shape
function space was reduced to dimension 12 and the displacement functions reduced

sions"'# and for rectangular meshes.? ' Heuristics

which we

to the piecewise rigid motions. Gopalakrishnan and Guzman'® developed a family
of simplicial elements, in both two and three dimensions. As shape functions they
used the space of all symmetric tensors of polynomial degree at most k + 1, paired
with piecewise polynomial vector fields of dimension k, for £ > 1. Thus, in two
dimensions and in the lowest degree case, they use an 18-dimensional space of
shape functions for stress, while in three dimensions, the space has dimension 60.
Gopalakrishnan and Guzméan also proposed a reduced variant of their space, in
which the displacement space remains the full space of piecewise polynomials of
degree k, but the dimension of the stress space is reduced to 15 in two dimensions
and to 42 in three dimensions. However, their reduced spaces have a drawback, in
that they are not uniquely defined, but for each edge of the triangulation require
a choice of a favored endpoint of the edge. In particular, in two dimensions, the
reduced space of Ref. 18 uses the same displacement space as the non-reduced space
of Ref. 11, uses a stress space of the same dimension, and uses identical degrees of
freedom, but the two spaces do not coincide (since the space of Ref. 11 does not
require a choice of favored edge endpoints).

The elements introduced here may be regarded as the three-dimensional ana-
logue of the element in Ref. 11. Again, they have the same displacement space
and the same degrees of freedom as the reduced three-dimensional elements of
Ref. 18, but the stress spaces do not coincide. Also, as in the two-dimensional
case, our reduced space is of lower dimension than any that has been heretofore
proposed.
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2. Preliminaries

Let 2 C R? be a bounded domain. We denote by S the space of 3 x 3 symmetric
matrices and by L?(Q;R3) and L?(£2;S) the space of square-integrable vector fields
and symmetric matrix fields on €, respectively. The space H(div,$);S) consists
of matrix fields 7 € L?(2;S) with row-wise divergence, divr, in L*(Q;R3). The
Hellinger—Reissner variational formulation seeks (o,u) € H(div,;S) x L?(£;R3)
such that

/(Aa:T+diV7'~u)dx=O, T € H(div,;S)
@ (2.1)
/diva-vdac:/f-vdac, v € L2(Q;R™).
Q Q

Here o : 7 denotes the Frobenius inner products of matrices o and 7, and A =
A(z) : S — S denotes the compliance tensor, a linear operator which is bounded and
symmetric positive definite uniformly for x € 2. The solution u solves the Dirichlet
problem for the Lamé equations and so belongs to H*(€2;R3). If the domain Q is
smooth and the compliance tensor A is smooth, then (o,u) € H(;S) x H2({; R3)
and

lofl + [lllz < el fllo, (2.2)

with a constant ¢ depending on 2 and A. The same regularity holds if the domain
is a convex polyhedron, at least in the isotropic homogeneous case.?®

We shall also use spaces of the form H*(Q; X) where X is a finite-dimensional
vector space and k is a nonnegative integer, the Sobolev space of functions 2 — X
for which all derivatives of order at most k are square integrable. The norm is
denoted by || - ||a.k or || - ||&-

To discretize (2.1), we choose finite-dimensional subspaces ¥, C L?(€2;S) and
Vi, € L?(Q;R3). Assuming that ¥, consists of matrix fields which are piecewise
polynomial with respect to some mesh 7;, of Q, we define div, 7 € L%(;R3)
by applying the (row-wise) divergence operator piecewise. A mixed finite element
approximation of (2.1) is then obtained by seeking (o, up) € Xj, x V}, such that:

/(Aah:T—l—dith-uh)dx:O, TE X,
Q (2.3)

/divhah-vdac:/f-vhdgc7 v E V.
Q Q

If ¥, € H(div,€;S) this is a conforming method, otherwise, as for the elements
developed below, it is nonconforming. We recall that a piecewise smooth matrix
field 7 belongs to H(div) if and only if whenever two tetrahedra in 7 meet in a
common face, the jump [rn] of the normal components 7n across the face vanishes.

3. Definition of the New Elements

We define the finite element spaces ¥, and Vj, in the usual way, by specifying
spaces of shape functions and degrees of freedom. The space V}, is simply the space
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of all piecewise linear vector fields with respect to the given tetrahedral mesh 7},
of 2 (which we therefore assume is polyhedral). Thus the shape function space on
an element K € 7j, is simply Vix = P;(K;R3?), the space of polynomial vector
fields on K of degree at most 1. For degrees of freedom we choose the moments
v | V- wdz with weights w € V. Since no degrees of freedom are associated
with the proper subsimplices of K, no interelement continuity is imposed on V},.
The associated projection Py, : L2(; R?) — V}, is the L? projection.

To define the space X we introduce some notation. If u is a unit vector, let
Q. : R3 — u' be the orthogonal projection onto the plane orthogonal to u. Then
Q. is given by the symmetric matrix I — uu’. For a tetrahedron K, let Ay(K)
denote the subsimplices of dimension k (vertices, edges, faces and tetrahedra) of
K. For an edge e € A1(K) let s, be a unit vector parallel to e and, for a face f €
Ay (K), let ny be its outward unit normal. We can then define the shape function
space

Y ={0€Pa(K;S)|Qs.0Qs.]c € Pi(e;S)Ve e A(K)}. (3.1)

For o € Po(K;S), Qs.0Qs,|e is a quadratic polynomial on e taking values in the
three-dimensional subspace Qs,SQs, of S. As illustration, for s. = (0,0,1)" and
o = (Uij)i’jzl’m}g S 87 we have

o1 o012 0

Qs,0Qs, = | 012 022 0
0 0 0

Thus the requirement that Qs 0Qs | belong to P; represents three linear con-
straints on ¢, and so dim X > 60 — 3 x 6 = 42. We shall now specify 42 degrees of
freedom (linear functionals) and show unisolvence, i.e. that if all the degrees of free-
dom vanish for some o € Xk, then ¢ vanishes. This will imply that dim X < 42,
and so the dimension is exactly 42.

The degrees of freedom we take are:

/anf wds, v EPL(f;R?), feAyK), (36 degrees of freedom), (3.2)
f

/ odx, (6 degrees of freedom). (3.3)
K

The following lemma will be used in the proof of unisolvence.

Lemma 3.1. Let f; and f; be the faces of K opposite two distinct vertices v; and
v; and let e be their common edge, with endpoints vy, and v;. Given 3,y € R, there
exists a unique p € Po(K) satisfying the following four conditions (see Fig. 2):

(1) ple € Pile),
(2) p(vk) = ﬂa p(vl) =7
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Fig. 2. The conditions of Lemma 3.1.

(3) plf, L2 Pi(fi), pg; L2 Pi(fy),
(4) [ pdz=0.

Moreover, p(v;) =p(vj) = 3(8+7)/2.

Proof. For uniqueness we must show that if p € Po(K) satisfies (1)—(4) with
B =~ =0, then p vanishes. Certainly, from (1) and (2), p vanishes on e, and then,
using (3), p vanishes on f; and f;. Therefore p = cA;A; where \; € P1(K) is the
barycentric coordinate function equal to 0 on f; and 1 at v;, similarly for A;, and ¢
is a constant. Integrating this equation over K and invoking (4) we conclude that
p does indeed vanish.

To show the existence of p € Py(K), we simply exhibit its formula in terms of
barycentric coordinates:

3
p=BAL+ (B+MMA+ N + S8+ 1) + X))

(=58 = M)A + )Mk + (=8 = 57) (i + )M+ 3(8 + ) A

That this function satisfies (1)—(4) follows from the elementary formula

Oz1!-~-0zd 1'd'
/)\a:7+|T|7 o e NIt
T

(la] + d)!
for the integral of a barycentric monomial over a simplex 7" of dimension d, which
can be established by induction.!® O

We are now ready to prove the claimed unisolvence result.

Theorem 3.1. The degrees of freedom given by (3.2) and (3.3) are unisolvent for
the shape function space X defined by (3.1): if the degrees of freedom all vanish
for some o € ¥, then o = 0.

Proof. Let g; = grad \; be the gradient of the ith barycentric coordinate function.
Thus g; is an inward normal vector to the face f; with length 1/h; where h; is the
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distance from the ith vertex to f;. Note that any three of the g; form a basis for
R? and that ), g; = 0.

For 0 € Yk, define 0;; = 0j; = glog; € P2(K). We shall show that if 0 € X
and all the degrees of freedom vanish, then o;; = 0 on K for all ¢ # j. This is
sufficient, since, fixing j and varying ¢, we conclude that og; = 0, and, then, since
this holds for each j, that o = 0.

If e is an edge of the faces f; and f; of K, which may or may not coincide,
then 05 = gjog; = 9,Qs0Qsg;. Thus, from the definition (3.1) of the space Xk,
oij is linear on e. In particular, o;; is linear on each edge of f;. Thus p := 0|y, is a
quadratic polynomial on f; whose restriction to each edge of f; is linear. Therefore,
on the boundary of f;, p coincides with its linear interpolant, and, since a quadratic
function on a triangle is determined by its boundary values, p is linear. Thus o;; is
actually a linear polynomial on f;, and, in view of the degrees of freedom (3.2), we
conclude that o;; vanishes on f;.

For any pair (I, k) of distinct indices (that is, 1 <1,k <4 and [ # k), define

Bik = 0ij(vk), B = aij(vr), (3.4)

where 7, j are the two indices unequal to { and k. Now o;; € P2(K) is linear on
the common edge e of f; and f;, and, because of the vanishing degrees of freedom
of o, 04 is orthogonal to P; on f; and on f; and has integral 0 on K. Therefore,
by Lemma 3.1 applied with p = 0yj, it is sufficient to show that 5;, and B both
vanish in order to conclude that o;; vanishes. In fact, we shall show that the 12
quantities O, corresponding to the 12 pairs of distinct indices, satisfy a nonsingular
homogeneous system of 12 equations, and so vanish.

The lemma also tells us that o;;(vj) = 3(6ix + Br)/2. Interchanging j and k
gives

3
oik(vk) = 5(513' + Bj1)-
Also, by definition,
ﬂjk = ail(vk). (3.5)

Combining (3.4)—(3.5) gives

oij(vr) + oir(ve) + ou(vr) = g(ﬁlj + Bj1) + (Bik + Bijr)-

But 0;; + 041 + 01 = —044, which vanishes on f; and so, in particular, at the vertex
vi. Thus we have established the equation
a(Bij + Bji) + b(Bus + Bjk) =0, (3.6)

where a = 3, b = 2.

For each of the 12 pairs (¢, k) of distinct indices, we let j and [ be the remaining
indices and consider Eq. (3.6). In this way we obtain a system of 12 linear equations
in 12 unknowns. If we number the pairs of distinct indices lexographically, the
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matrix of the system is:

QT O Q TTDO O O o o oo
SR OO OO e oo o oo
O O O TR O O o oo
QO T Qe O T OO oo oo
ST O Q OO OO oo a oo
O OO T O OO0 o T e O
O Q T OO O O o oo
O TR OO oo oo e Ooc
O O O O OO T o e oo e
O O OO Q8 T o Qe oo oo
S OO O TR OO oo e o
O O O O O OO T O TR

Its determinant is 16(2a — b)2b%(a + b)*, as may be verified with a computer algebra
package. In particular, when a = 3, b = 2, the system is nonsingular. Thus all the
Bij vanish as claimed, and the proof is complete. O

Having established unisolvency, the assembled finite element space ¥, is defined
as the set of all matrix fields 7 such that 7|5 € Xk for all K € 75, and for which
the degrees of freedom (3.2) have a common value when a face f is shared by two
tetrahedra in 7. If 7 € X5, then the jump [rns] of 7ny across such an interior
face f need not vanish, but it is orthogonal to P;(f;R?). The normal component
[[n}rn ] is, by the definition of the shape function space, linear on each edge of f
so belongs to P1(f), and thus

[nmng] =0 on f, (3.7)

for any interior face of the triangulation.

4. Error Analysis

In this section, we show that the pair of spaces 3, V}, give a convergent finite ele-
ment method. The argument follows the one given in Ref. 11 for the two-dimensional
case. As usual, we suppose that we are given a sequence of tetrahedral meshes 7p,
indexed by a parameter h which decreases to zero and represents the maximum
tetrahedron diameter. We assume that the sequence is shape regular (the ratio of
the diameter of a tetrahedron to the diameter of its inscribed ball is bounded), and
the constants ¢ which appear in the estimates below may depend on this bound,
but are otherwise independent of h.
We start by observing that, by construction,

divy, Xp C Vy. (4.1)
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The degrees of freedom determine an interpolation operator I1j, : H*(%;S) — X, by

/(HhT—T)n'UdSZO, veP(Sf), fe€A(Th),
f

/(HhT—T)dgc:O7 K eT,
K

where Ag(7,) = Uger, Ak(K). Since

/K(div 7 — divr)-vde = — /K(HhT — 1) e(v)da

+/ (Il —T)n-vds =0,
oK
for 7 € HY(K;S), v € Vi, K € Ty, we have the commutativity property
divy, 7 = Py divr, 7€ HY(Q;S). (4.2)

Since div maps H'(Q;S) onto L?(£2;R3?), (4.2) implies that div, maps ¥, onto
Vi. An immediate consequence is that the finite element method system (2.3) is
nonsingular. Indeed, if f = 0, then the choice of test functions 7 = o5, and v = uy,
implies that o5, = 0 and then, choosing 7 with divy, 7 = uy, we get up = 0.

For the error analysis we also need the approximation and boundedness prop-
erties of the projections P}, and IIj,. Obviously, for the L? projection, we have

llv — Ppollo < ch™||v]lm, 0<m<2. (4.3)

Since ITj, is defined element-by-element and preserves piecewise linear matrix fields,
we may scale to a reference element of unit diameter using translation, rotation,
and dilation, and use a compactness argument, to obtain

|7 — p7llo < ch™||Tllm, m=1,2, (4.4)

where the constant ¢ depends only on the shape regularity of the elements. See, e.g.
Ref. 10 for details. Taking m = 1 and using the triangle inequality establishes H!
boundedness of IIj:

[n7llo < ¢l[7]1- (4.5)

The final ingredient we need for the convergence analysis is a bound on the
consistency error arising from the nonconformity of the elements. Define

Ep(u,7) = /[e(u) 7+ divy 7ouldr, ue HY(QR?), 7€ X, + H(div, Q;S).
Q
(4.6)
If 7 € H(div, Q;S), then Ej,(u,7) =0, by integration by parts. In general,

Ep(u,7) = Z/ T -uds = Z [tng]-uds,
oK rens(z)f

KeTy,
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where, again, [tn] denotes the jump of Tny across the face f. Only the interior
faces enter the sum, since u vanishes on 9Q. Now mny = Qn,(Tny) + (nng)ng, so

Buwr)= Y ){ /f [Qn, ()] - uds + /f [[n;mf]](n'fu)ds}

fEAL(TY,
-3 / [@n, (rrp)] - uds,
feA(Th)

where the last equality follows from (3.7).

We let W), C Vj, be the subspace of the displacement space Vj, consisting of
continuous functions which are zero on the boundary of €. In other words, W), is
the standard piecewise linear subspace of ﬁIl(Q;R?’). For any 7 € ¥j the jumps,
[rny], are orthogonal to Py (f;R?), so Ej,(w,7) = 0 for any w € Wj,.

Lemma 4.1. We may bound the consistency error

|Er (u, 7)| < ch(||T|lo + h||divy T|lo)]|ull2, 7€ X, ue f[l(Q;R3) N H2(Q;R?).
(4.7)

Furthermore, for any p € H*(£2;S)
|En(u, Tp)| < ch?[lplallullz, v € H(QR®) N H(Q;R?). (4.8)
Proof. For any 7 € ), we have Ej(u,7) = Ep(u — ul,7), where ul € W), is the
piecewise linear interpolant of u. Referring to the definition (4.6), we obtain
| En(u, )| < e(|| diva 7]lollu — ullo + [|7[lolle(u — u)llo
< ch(||I7llo + Al divi llo)[|ull2,

which is (4.7). For the second estimate we use that Ey,(u,Il,p) = Ep(u—ul,p) =
Ep(u —ul Ip — p), which implies that
Ep(u,Ip) = Z / div,(TTpp — p) - (u — ul )dx + / (Inp — p) : e(u — ul))dx.
KeTy, K K
Utilizing the estimate (4.4), the bound
| Bn(u, p)| < el div pllollu — upllo + [Thp — pllolle(u — up)llo < ch?[lpll1ull2

is an immediate consequence. O

Remark 4.1. The consistency error estimate (4.7) holds for any u € H*(Q;R?)
satisfying u|x € H*(K,R3) for each K € Ty, provided one replaces |ul2 with the
broken H? norm ke, HuH%z(KRB))I/&

With these ingredients assembled, error bounds for the finite element method
now follow in a straightforward fashion.
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Theorem 4.1. Let (o,u) be the solution of (2.1) and (op,up) the solution of (2.3).
Then

lo = onllo < chllullz,
l[divo — divy, onllo < ch™||divo|m, 0<m <2, (4.9)
llu—unllo < chllullz.

Furthermore, if problem (2.1) admits full elliptic regularity, such that the esti-
mate (2.2) holds, then

lu = unllo < ch?||ull2.

Proof. Subtracting the first equations of (2.1) and (2.3) and invoking the defini-
tion (4.6) of the consistency error, we get the error equation

/Q[A(a —op) T+ (u—up) - divy 7lde = Ep(u,7), T € Zp. (4.10)

Comparing the second equations in (2.1) and (2.3), we obtain div, o), = P, div o,
which immediately gives the claimed error estimate on divo. Using the commuta-
tivity (4.2), we find that divy, (Il — op) = 0. Choosing 7 = II,0 — o, in (4.10), we
get

/QA(O’ —op) : (o — op)dx = Ep(u, o — o),
which implies that
lo = onll% < llo —Mpol% + 2Bx(u, Myo — o),
where ||7]|4 := [ A7 : 7 dz. Combining with (4.4) and (4.7) we conclude that
lo —onll < ch(llolly + [lull2) < chllullz,

which is the desired error estimate for o.

To get the error estimate for u, we choose p € H*(Q,S) such that divp = Pyu—
up and ||p|l1 < ¢||Pru — upllp. Then, in light of the commutativity property (4.2)
and the bound (4.5), 7 := Ilp € X, satisfies divy, 7 = Pyu — up and [|7]o <
|| Pru — upllo. Hence, using (4.1), (4.10) and (4.7), we get

HPhu—uhH%:/dthT~(Phu—uh)dx=/divh7'~(u—uh)dac
Q Q

= _/ A(o — oy) : 7dx + Ep(u, 7)
Q

< c(llo = onllo + hllull2)[[Pau — unllo- (4.11)

This gives ||Pyu — upllo < chl|ul|2, and then, by the triangle inequality and (4.3),
the error estimate for u can be found.
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To establish the final quadratic estimate for ||[u —up||o in the case of full regular-
ity, we use a duality argument. Let p = A~1 e(w), where w € H'(Q; R3) N H?(; R?)
solves the problem div A~! e(w) = Pyu — uy,. It follows from (2.2) that

lplls + llwllz < el Prw — unllo- (4.12)

By introducing w! € W), as the piecewise linear interpolant of w, we now obtain
from (4.11) that

| Phu — up |2 = —/ A(o — o) : Uppdx + Ep(u, pp)
Q

_ /Q Ao —on) : (Wpp — p)da + Ep(u, I p)

— / (0 —op) : e(w —wi)dz,
Q

where the final equality follows since
/(U —op) : e(wl)dr = — Z / divy, (o — op) -wide + Ey(w}, 0 — o) = 0.
2 KeTy, K

However, by utilizing (4.4), (4.8), the estimate for |[o — op||o given in (4.9), com-
bined with the approximation property of the interpolant w,{, we obtain from the
representation of ||Pyu — uy||2 above that

| Pru — un|§ < e(B®|lpllillullz + [lo = onllll e(w — w)]lo)
< ch?|ull2(llpllr + [lwll2) < ch®||ulla|| Paw — unlo,

where we have used (4.12) to obtain the final inequality. This gives || Pru — up|lo <
ch?||ul|2. As above, the desired estimate for ||u — up|lo now follows from (4.3) and
the triangle inequality. O

Remark 4.2. Although |o — Hxollp = O(h?), we have only shown first order
convergence of the finite element solution: ||o — opll0 = O(h). The lower rate of
convergence is due to the consistency error estimated in (4.7).

5. The Reduced Element

As for the two-dimensional element,'! there is a variant of the element using smaller
spaces. Let

T(K) = {ve P (K;R®) |v(x) =a+bxx, a,b € R},

be the space of rigid motions on K. In the reduced method we take Vi := T(K)
instead of Vi = P;(K;R?) as the space of shape functions for displacement, so the
dimension is reduced from 12 to 6. As shape functions for stress we take

Sk ={r € Xk|div, T € T},
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so dim X = 36. As degrees of freedom for X we take the face moments (3.2) but
dispense with the interior degrees of freedom (3.3).

Let us see how the unisolvence argument adapts to these elements. If 7 € S x
with vanishing degrees of freedom, then divr € T(K), and for all v € T(K),

/ (divr)vdx = —/ T :e(v)de —|—/ Tnvds =0,
K K oK

using the degrees of freedom and the fact that e(v) = 0. Thus divr = 0 on K and
for all v € Py (K;R3),

/ 7:e(v)dr = —/ (divr)vdaH—/ Tnuds = 0.
K K oK

This shows that [, 7 dz = 0, so all degrees of freedom (3.3) vanish as well. Therefore
the previous unisolvence result applies, and gives 7 = 0.

A similar argument establishes the commutativity of the projection into X
(the analogue of (4.2)), and the analogue of the inclusion (4.1) obviously holds.
The space S still contains Py (K;S) so the approximability (4.4) still holds, but
the approximability of Vi is of one order lower, i.e. in (4.3) m can be at most 1. As
a result, the error estimates given by (4.9) in Theorem 4.1 carry over, except that
m is limited to 1 in the error estimate for divo.
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