5,753 research outputs found

    Cmos Rotary Traveling Wave Oscillators (Rtwos)

    Get PDF
    Rotary Traveling Wave Oscillator (RTWO) represents a transmission line based technology for multi-gigahertz multiple phase clock generation. RTWO is known for providing low jitter and low phase noise signals but the issue of high power consumption is a major drawback in its application. Direction of wave propagation is random and is determined by the least resistance path in the absence of an external direction control circuit. The objective of this research is to address some of the problems of RTWO design, including high power consumption, uncertainty of propagation direction and optimization of design variables. Included is the modeling of RTWO for sensitivity, phase noise and power analysis. Research objectives were met through design, simulation and implementation. Different designs of RTWO in terms of ring size and number of amplifier stages were implemented and tested. Design tools employed include Agilent ADS, Cadence EDA, SONNET and Altium PCB Designer. Test chip was fabricated using IBM 0.18 ÎŒm RF CMOS technology. Performance measures of interest are tuning range, phase noise and power consumption. Agilent ADS and SONNET were used for electromagnetic modeling of transmission lines and electromagnetic field radiation. For each design, electromagnetic simulations were carried out followed by oscillation synthesis based on circuit simulation in Cadence Spectre. RTWO frequencies between 2 GHz and 12 GHz were measured based on the ring size of transmission lines. Simulated microstrip transmission line segments had a quality factor between 5.5 and 18. For the various designs, power consumption ranged from 20 mW to 120 mW. Measured phase noise ranged between -123 dBc/Hz and -87 dBc/Hz at 1 MHz offset. Development also included the design of a wide band buffer and a printed circuit board with high signal integrity for accurate measurement of oscillation frequency and other performance measures. Simulated performance, schematics and measurement results are presented

    Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory

    Full text link
    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed

    Design architectures of the CMOS power amplifier for 2.4 GHz ISM band applications: An overview

    Get PDF
    Power amplifiers (PAs) are among the most crucial functional blocks in the radio frequency (RF) frontend for reliable wireless communication. PAs amplify and boost the input signal to the required output power. The signal is amplified to make it sufficiently high for the transmitter to propagate the required distance to the receiver. Attempted advancements of PA have focused on attaining high-performance RF signals for transmitters. Such PAs are expected to require low power consumption while producing a relatively high output power with a high efficiency. However, current PA designs in nanometer and micrometer complementary metal–oxide semiconductor (CMOS) technology present inevitable drawbacks, such as oxide breakdown and hot electron effect. A well-defined architecture, including a linear and simple functional block synthesis, is critical in designing CMOS PA for various applications. This article describes the different state-of-the art design architectures of CMOS PA, including their circuit operations, and analyzes the performance of PAs for 2.4 GHz ISM (industrial, scientific, and medical) band applications

    A 24-GHz SiGe Phased-Array Receiver—LO Phase-Shifting Approach

    Get PDF
    A local-oscillator phase-shifting approach is introduced to implement a fully integrated 24-GHz phased-array receiver using an SiGe technology. Sixteen phases of the local oscillator are generated in one oscillator core, resulting in a raw beam-forming accuracy of 4 bits. These phases are distributed to all eight receiving paths of the array by a symmetric network. The appropriate phase for each path is selected using high-frequency analog multiplexers. The raw beam-steering resolution of the array is better than 10 [degrees] for a forward-looking angle, while the array spatial selectivity, without any amplitude correction, is better than 20 dB. The overall gain of the array is 61 dB, while the array improves the input signal-to-noise ratio by 9 dB

    Transmitter Architectures Based on Near-Field Direct Antenna Modulation

    Get PDF
    A near-field direct antenna modulation (NFDAM) technique is introduced, where the radiated far-field signal is modulated by time-varying changes in the antenna near-field electromagnetic (EM) boundary conditions. This enables the transmitter to send data in a direction-dependent fashion producing a secure communication link. Near-field direct antenna modulation (NFDAM) can be performed by using either switches or varactors. Two fully-integrated proof-of-concept NFDAM transmitters operating at 60 GHz using switches and varactors are demonstrated in silicon proving the feasibility of this approach

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-”m SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86Âș, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Low-Power Slew-Rate Boosting Based 12-Bit Pipeline ADC Utilizing Forecasting Technique in the Sub-ADCS

    Get PDF
    The dissertation presents architecture and circuit solutions to improve the power efficiency of high-speed 12-bit pipelined ADCs in advanced CMOS technologies. First, the 4.5bit algorithmic pipelined front-end stage is proposed. It is shown that the algorithmic pipelined ADC requires a simpler sub-ADC and shows lower sensitivity to the Multiplying DAC (MDAC) errors and smaller area and power dissipation in comparison to the conventional multi-bit per stage pipelined ADC. Also, it is shown that the algorithmic pipelined architecture is more tolerant to capacitive mismatch for the same input-referred thermal noise than the conventional multi-bit per stage architecture. To take full advantage of these properties, a modified residue curve for the pipelined ADC is proposed. This concept introduces better linearity compared with the conventional residue curve of the pipelined ADC; this approach is particularly attractive for the digitization of signals with large peak to average ratio such as OFDM coded signals. Moreover, the minimum total required transconductance for the different architectures of the 12-bit pipelined ADC are computed. This helps the pipelined ADC designers to find the most power-efficient architecture between different topologies based on the same input-referred thermal noise. By employing this calculation, the most power efficient architecture for realizing the 12-bit pipelined ADC is selected. Then, a technique for slew-rate (SR) boosting in switched-capacitor circuits is proposed in the order to be utilized in the proposed 12-bit pipelined ADC. This technique makes use of a class-B auxiliary amplifier that generates a compensating current only when high slew-rate is demanded by large input signal. The proposed architecture employs simple circuitry to detect the need of injecting current at the output load by implementing a Pre-Amp followed by a class-B amplifier, embedded with a pre-defined hysteresis, in parallel with the main amplifier to boost its slew phase. The proposed solution requires small static power since it does not need high dc-current at the output stage of the main amplifier. The proposed technique is suitable for high-speed low-power multi-bit/stage pipelined ADC applications. Both transistor-level simulations and experimental results in TSMC 40nm technology reduces the slew-time for more than 45% and shorts the 1% settling time by 28% when used in a 4.5bit/stage pipelined ADC; power consumption increases by 20%. In addition, the technique of inactivating and disconnecting of the sub-ADC’s comparators by forecasting the sign of the sampled input voltage is proposed in the order to reduce the dynamic power consumption of the sub-ADCs in the proposed 12-bit pipelined ADC. This technique reduces the total dynamic power consumption more than 46%. The implemented 12-bit pipelined ADC achieves an SNDR/SFDR of 65.9/82.3 dB at low input frequencies and a 64.1/75.5 dB near Nyquist frequency while running at 500 MS/s. The pipelined ADC prototype occupies an active area of 0.9 mm^2 and consumes 18.16 mW from a 1.1 V supply, resulting in a figure of merit (FOM) of 22.4 and a 27.7 fJ/conversion-step at low-frequency and Nyquist frequency, respectively
    • 

    corecore