2,199 research outputs found

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    Learning temporal context for activity recognition

    Get PDF
    We investigate how incremental learning of long-term human activity patterns improves the accuracy of activity classification over time. Rather than trying to improve the classification methods themselves, we assume that they can take into account prior probabilities of activities occurring at a particular time. We use the classification results to build temporal models that can provide these priors to the classifiers. As our system gradually learns about typical patterns of human activities, the accuracy of activity classification improves, which results in even more accurate priors. Two datasets collected over several months containing hand-annotated activity in residential and office environments were chosen to evaluate the approach. Several types of temporal models were evaluated for each of these datasets. The results indicate that incremental learning of daily routines leads to a significant improvement in activity classification

    Sobi: An Interactive Social Service Robot for Long-Term Autonomy in Open Environments

    Get PDF
    Long-term autonomy in service robotics is a current research topic, especially for dynamic, large-scale environments that change over time. We present Sobi, a mobile service robot developed as an interactive guide for open environments, such as public places with indoor and outdoor areas. The robot will serve as a platform for environmental modeling and human-robot interaction. Its main hardware and software components, which we freely license as a documented open source project, are presented. Another key focus is Sobi’s monitoring system for long-term autonomy, which restores system components in a targeted manner in order to extend the total system lifetime without unplanned intervention. We demonstrate first results of the long-term autonomous capabilities in a 16-day indoor deployment, in which the robot patrols a total of 66.6 km with an average of 5.5 hours of travel time per weekday, charging autonomously in between. In a user study with 12 participants, we evaluate the appearance and usability of the user interface, which allows users to interactively query information about the environment and directions.© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    From Capture to Display: A Survey on Volumetric Video

    Full text link
    Volumetric video, which offers immersive viewing experiences, is gaining increasing prominence. With its six degrees of freedom, it provides viewers with greater immersion and interactivity compared to traditional videos. Despite their potential, volumetric video services poses significant challenges. This survey conducts a comprehensive review of the existing literature on volumetric video. We firstly provide a general framework of volumetric video services, followed by a discussion on prerequisites for volumetric video, encompassing representations, open datasets, and quality assessment metrics. Then we delve into the current methodologies for each stage of the volumetric video service pipeline, detailing capturing, compression, transmission, rendering, and display techniques. Lastly, we explore various applications enabled by this pioneering technology and we present an array of research challenges and opportunities in the domain of volumetric video services. This survey aspires to provide a holistic understanding of this burgeoning field and shed light on potential future research trajectories, aiming to bring the vision of volumetric video to fruition.Comment: Submitte
    • …
    corecore