101 research outputs found

    A two-graph guided multi-task lasso approach for eQTL mapping.

    Get PDF
    Abstract Learning a small number of genetic variants associated with multiple complex genetic traits is of practical importance and remains challenging due to the highdimensional nature of data. In this paper, we proposed a two-graph guided multi-task Lasso to address this issue with an emphasis on estimating subnetwork-to-subnetwork associations in expression quantitative trait loci (eQTL) mapping. The proposed model can learn such subnetworkto-subnetwork associations and therefore can be seen as a generalization of several state-of-the-art multi-task feature selection methods. Additionally, this model has a nice property of allowing flexible structured sparsity on both feature and label domains. Simulation study shows the improved performance of our model and a human eQTL data set is analyzed to further demonstrate the applications of the model

    Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping

    Full text link
    We consider the problem of estimating a sparse multi-response regression function, with an application to expression quantitative trait locus (eQTL) mapping, where the goal is to discover genetic variations that influence gene-expression levels. In particular, we investigate a shrinkage technique capable of capturing a given hierarchical structure over the responses, such as a hierarchical clustering tree with leaf nodes for responses and internal nodes for clusters of related responses at multiple granularity, and we seek to leverage this structure to recover covariates relevant to each hierarchically-defined cluster of responses. We propose a tree-guided group lasso, or tree lasso, for estimating such structured sparsity under multi-response regression by employing a novel penalty function constructed from the tree. We describe a systematic weighting scheme for the overlapping groups in the tree-penalty such that each regression coefficient is penalized in a balanced manner despite the inhomogeneous multiplicity of group memberships of the regression coefficients due to overlaps among groups. For efficient optimization, we employ a smoothing proximal gradient method that was originally developed for a general class of structured-sparsity-inducing penalties. Using simulated and yeast data sets, we demonstrate that our method shows a superior performance in terms of both prediction errors and recovery of true sparsity patterns, compared to other methods for learning a multivariate-response regression.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS549 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graph-Regularized Dual Lasso for Robust eQTL Mapping

    Get PDF
    Motivation: As a promising tool for dissecting the genetic basis of complex traits, expression quantitative trait loci (eQTL) mapping has attracted increasing research interest. An important issue in eQTL mapping is how to effectively integrate networks representing interactions among genetic markers and genes. Recently, several Lasso-based methods have been proposed to leverage such network information. Despite their success, existing methods have three common limitations: (i) a preprocessing step is usually needed to cluster the networks; (ii) the incompleteness of the networks and the noise in them are not considered; (iii) other available information, such as location of genetic markers and pathway information are not integrated. Results: To address the limitations of the existing methods, we propose Graph-regularized Dual Lasso (GDL), a robust approach for eQTL mapping. GDL integrates the correlation structures among genetic markers and traits simultaneously. It also takes into account the incompleteness of the networks and is robust to the noise. GDL utilizes graph-based regularizers to model the prior networks and does not require an explicit clustering step. Moreover, it enables further refinement of the partial and noisy networks. We further generalize GDL to incorporate the location of genetic makers and gene-pathway information. We perform extensive experimental evaluations using both simulated and real datasets. Experimental results demonstrate that the proposed methods can effectively integrate various available priori knowledge and significantly outperform the state-of-the-art eQTL mapping methods

    Sparse regression models for unraveling group and individual associations in eQTL mapping

    Get PDF
    BackgroundAs a promising tool for dissecting the genetic basis of common diseases, expression quantitative trait loci (eQTL) study has attracted increasing research interest. Traditional eQTL methods focus on testing the associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may correspond to biological pathways.ResultsTo alleviate this limitation, in this paper, we propose geQTL, a sparse regression method that can detect both group-wise and individual associations between SNPs and expression traits. geQTL can also correct the effects of potential confounders. Our method employs computationally efficient technique, thus it is able to fulfill large scale studies. Moreover, our method can automatically infer the proper number of group-wise associations. We perform extensive experiments on both simulated datasets and yeast datasets to demonstrate the effectiveness and efficiency of the proposed method. The results show that geQTL can effectively detect both individual and group-wise signals and outperforms the state-of-the-arts by a large margin.ConclusionsThis paper well illustrates that decoupling individual and group-wise associations for association mapping is able to improve eQTL mapping accuracy, and inferring individual and group-wise associations.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-0986-9) contains supplementary material, which is available to authorized users

    Expression QTLs Mapping and Analysis: A Bayesian Perspective.

    Get PDF
    The aim of expression Quantitative Trait Locus (eQTL) mapping is the identification of DNA sequence variants that explain variation in gene expression. Given the recent yield of trait-associated genetic variants identified by large-scale genome-wide association analyses (GWAS), eQTL mapping has become a useful tool to understand the functional context where these variants operate and eventually narrow down functional gene targets for disease. Despite its extensive application to complex (polygenic) traits and disease, the majority of eQTL studies still rely on univariate data modeling strategies, i.e., testing for association of all transcript-marker pairs. However these "one at-a-time" strategies are (1) unable to control the number of false-positives when an intricate Linkage Disequilibrium structure is present and (2) are often underpowered to detect the full spectrum of trans-acting regulatory effects. Here we present our viewpoint on the most recent advances on eQTL mapping approaches, with a focus on Bayesian methodology. We review the advantages of the Bayesian approach over frequentist methods and provide an empirical example of polygenic eQTL mapping to illustrate the different properties of frequentist and Bayesian methods. Finally, we discuss how multivariate eQTL mapping approaches have distinctive features with respect to detection of polygenic effects, accuracy, and interpretability of the results

    Toward Robust Group-Wise eQTL Mapping via Integrating Multi-Domain Heterogeneous Data

    Get PDF
    As a promising tool for dissecting the genetic basis of common diseases, expression quantitative trait loci (eQTL) study has attracted increasing research interest. Traditional eQTL methods focus on testing the associations between individual single-nucleotide polymorphisms (SNPs) and gene expression traits. A major drawback of this approach is that it cannot model the joint effect of a set of SNPs on a set of genes, which may correspond to biological pathways. This thesis studies the problem of identifying group-wise associations in eQTL mapping. Based on the intuition of group-wise association, we examine how the integration of heterogeneous prior knowledge on the correlation structures between SNPs, and between genes can improve the robustness and the interpretability of eQTL mapping. To obtain a more accurate knowledgebase on the interactions among SNPs and genes, we developed a robust and flexible approach that can incorporate multiple data sources and automatically identify noisy sources. Extensive experiments demonstrate the effectiveness of the proposed algorithms.Doctor of Philosoph
    • …
    corecore