6,400 research outputs found

    An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Full text link
    The error pattern correcting code (EPCC) can be constructed to provide a syndrome decoding table targeting the dominant error events of an inter-symbol interference channel at the output of the Viterbi detector. For the size of the syndrome table to be manageable and the list of possible error events to be reasonable in size, the codeword length of EPCC needs to be short enough. However, the rate of such a short length code will be too low for hard drive applications. To accommodate the required large redundancy, it is possible to record only a highly compressed function of the parity bits of EPCC's tensor product with a symbol correcting code. In this paper, we show that the proposed tensor error-pattern correcting code (T-EPCC) is linear time encodable and also devise a low-complexity soft iterative decoding algorithm for EPCC's tensor product with q-ary LDPC (T-EPCC-qLDPC). Simulation results show that T-EPCC-qLDPC achieves almost similar performance to single-level qLDPC with a 1/2 KB sector at 50% reduction in decoding complexity. Moreover, 1 KB T-EPCC-qLDPC surpasses the performance of 1/2 KB single-level qLDPC at the same decoder complexity.Comment: Hakim Alhussien, Jaekyun Moon, "An Iteratively Decodable Tensor Product Code with Application to Data Storage

    Experimental quantum e-commerce

    Full text link
    E-commerce, a type of trading that occurs at a high frequency on the Internet, requires guaranteeing the integrity, authentication and non-repudiation of messages through long distance. As current e-commerce schemes are vulnerable to computational attacks, quantum cryptography, ensuring information-theoretic security against adversary's repudiation and forgery, provides a solution to this problem. However, quantum solutions generally have much lower performance compared to classical ones. Besides, when considering imperfect devices, the performance of quantum schemes exhibits a significant decline. Here, for the first time, we demonstrate the whole e-commerce process of involving the signing of a contract and payment among three parties by proposing a quantum e-commerce scheme, which shows resistance of attacks from imperfect devices. Results show that with a maximum attenuation of 25 dB among participants, our scheme can achieve a signature rate of 0.82 times per second for an agreement size of approximately 0.428 megabit. This proposed scheme presents a promising solution for providing information-theoretic security for e-commerce.Comment: 16 pages, 5 figures, Comments are weclome

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Visual Twin for Pipeline Leak Detection

    Get PDF
    We describe a visual digital twin system to allow for both operation and training of a data-driven pipeline leak detection system. We show system design in terms of its data inputs and the software system which incorporates this data in real time. This system allows visualization of pipeline data and machine learning-driven leak detection in a pipeline sitting in a subsea context. The intended purpose of the system is to both train operators of the leak detection system in its use and also provide high situational awareness to those tasked with monitoring pipeline deployments. The visual digital twin system uses gaming engine technology to achieve high visual quality. We also construct a novel software system enhancement to incorporate live data streams into the gaming engine environment. This allows real-time driving of gaming engine visualization elements with which we may augment the gaming engine environment. In terms of visualization, we focus on addressing problems of large ranges of multiple scales and providing high situational awareness which minimize operator fatigue and cognitive load. We show how multiple camera views in combination with a convenient user interface can help to address these issues. We demonstrate a digital twin system for leak detection. We show its realtime operation in a gaming engine environment with the ability to instantaneously incorporate outside data sources into the visualizations. We demonstrate using simulated pipeline flow data from sensors such as pressure, temperature, etc. This is visualized in the context of a subsea pipeline on a sea floor. Given the large range of scales, we demonstrate how we can view both the full kilometer scale pipeline and smaller subsections in the context of specific sensor data streams. The overall system demonstrates a novel combination of advanced software systems which incorporates real-time data stream with visualization using a high-fidelity gaming engine. The data used represents a leak detection scenario where both operator training and situational awareness are key desired outcomes

    Visual Twin for Pipeline Leak Detection

    Get PDF
    We describe a visual digital twin system to allow for both operation and training of a data-driven pipeline leak detection system. We show system design in terms of its data inputs and the software system which incorporates this data in real time. This system allows visualization of pipeline data and machine learning-driven leak detection in a pipeline sitting in a subsea context. The intended purpose of the system is to both train operators of the leak detection system in its use and also provide high situational awareness to those tasked with monitoring pipeline deployments. The visual digital twin system uses gaming engine technology to achieve high visual quality. We also construct a novel software system enhancement to incorporate live data streams into the gaming engine environment. This allows real-time driving of gaming engine visualization elements with which we may augment the gaming engine environment. In terms of visualization, we focus on addressing problems of large ranges of multiple scales and providing high situational awareness which minimize operator fatigue and cognitive load. We show how multiple camera views in combination with a convenient user interface can help to address these issues. We demonstrate a digital twin system for leak detection. We show its realtime operation in a gaming engine environment with the ability to instantaneously incorporate outside data sources into the visualizations. We demonstrate using simulated pipeline flow data from sensors such as pressure, temperature, etc. This is visualized in the context of a subsea pipeline on a sea floor. Given the large range of scales, we demonstrate how we can view both the full kilometer scale pipeline and smaller subsections in the context of specific sensor data streams. The overall system demonstrates a novel combination of advanced software systems which incorporates real-time data stream with visualization using a high-fidelity gaming engine. The data used represents a leak detection scenario where both operator training and situational awareness are key desired outcomes

    One-Time Universal Hashing Quantum Digital Signatures without Perfect Keys

    Full text link
    Quantum digital signatures (QDS), generating correlated bit strings among three remote parties for signatures through quantum law, can guarantee non-repudiation, authenticity, and integrity of messages. Recently, one-time universal hashing QDS framework, exploiting the quantum asymmetric encryption and universal hash functions, has been proposed to significantly improve the signature rate and ensure unconditional security by directly signing the hash value of long messages. However, similar to quantum key distribution, this framework utilizes keys with perfect secrecy by performing privacy amplification that introduces cumbersome matrix operations, thereby consuming large computational resources, causing delays and increasing failure probability. Here, we prove that, different from private communication, imperfect quantum keys with limited information leakage can be used for digital signatures and authentication without compromising the security while having eight orders of magnitude improvement on signature rate for signing a megabit message compared with conventional single-bit schemes. This study significantly reduces the delay for data postprocessing and is compatible with any quantum key generation protocols. In our simulation, taking two-photon twin-field key generation protocol as an example, QDS can be practically implemented over a fiber distance of 650 km between the signer and receiver. For the first time, this study offers a cryptographic application of quantum keys with imperfect secrecy and paves a way for the practical and agile implementation of digital signatures in a future quantum network.Comment: Comments are welcome
    • …
    corecore