27,249 research outputs found

    A Symbolic Transformation Language and its Application to a Multiscale Method

    Get PDF
    The context of this work is the design of a software, called MEMSALab, dedicated to the automatic derivation of multiscale models of arrays of micro- and nanosystems. In this domain a model is a partial differential equation. Multiscale methods approximate it by another partial differential equation which can be numerically simulated in a reasonable time. The challenge consists in taking into account a wide range of geometries combining thin and periodic structures with the possibility of multiple nested scales. In this paper we present a transformation language that will make the development of MEMSALab more feasible. It is proposed as a Maple package for rule-based programming, rewriting strategies and their combination with standard Maple code. We illustrate the practical interest of this language by using it to encode two examples of multiscale derivations, namely the two-scale limit of the derivative operator and the two-scale model of the stationary heat equation.Comment: 36 page

    Singular and Plural Functions for Functional Logic Programming

    Full text link
    Functional logic programming (FLP) languages use non-terminating and non-confluent constructor systems (CS's) as programs in order to define non-strict non-determi-nistic functions. Two semantic alternatives have been usually considered for parameter passing with this kind of functions: call-time choice and run-time choice. While the former is the standard choice of modern FLP languages, the latter lacks some properties---mainly compositionality---that have prevented its use in practical FLP systems. Traditionally it has been considered that call-time choice induces a singular denotational semantics, while run-time choice induces a plural semantics. We have discovered that this latter identification is wrong when pattern matching is involved, and thus we propose two novel compositional plural semantics for CS's that are different from run-time choice. We study the basic properties of our plural semantics---compositionality, polarity, monotonicity for substitutions, and a restricted form of the bubbling property for constructor systems---and the relation between them and to previous proposals, concluding that these semantics form a hierarchy in the sense of set inclusion of the set of computed values. We have also identified a class of programs characterized by a syntactic criterion for which the proposed plural semantics behave the same, and a program transformation that can be used to simulate one of them by term rewriting. At the practical level, we study how to use the expressive capabilities of these semantics for improving the declarative flavour of programs. We also propose a language which combines call-time choice and our plural semantics, that we have implemented in Maude. The resulting interpreter is employed to test several significant examples showing the capabilities of the combined semantics. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 53 pages, 5 figure

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Extensional and Intensional Strategies

    Full text link
    This paper is a contribution to the theoretical foundations of strategies. We first present a general definition of abstract strategies which is extensional in the sense that a strategy is defined explicitly as a set of derivations of an abstract reduction system. We then move to a more intensional definition supporting the abstract view but more operational in the sense that it describes a means for determining such a set. We characterize the class of extensional strategies that can be defined intensionally. We also give some hints towards a logical characterization of intensional strategies and propose a few challenging perspectives
    corecore