2,883 research outputs found

    Adaptive Synchronization of Robotic Sensor Networks

    Full text link
    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, we present the application and the evaluation of the existing synchronization methods on robotic sensor networks. We show through simulations that Adaptive Value Tracking synchronization is robust and efficient under mobility. Hence, deducing the time synchronization problem in robotic sensor networks into a dynamic value searching problem is preferable to existing synchronization methods in the literature.Comment: First International Workshop on Robotic Sensor Networks part of Cyber-Physical Systems Week, Berlin, Germany, 14 April 201

    Position Estimation of Robotic Mobile Nodes in Wireless Testbed using GENI

    Full text link
    We present a low complexity experimental RF-based indoor localization system based on the collection and processing of WiFi RSSI signals and processing using a RSS-based multi-lateration algorithm to determine a robotic mobile node's location. We use a real indoor wireless testbed called w-iLab.t that is deployed in Zwijnaarde, Ghent, Belgium. One of the unique attributes of this testbed is that it provides tools and interfaces using Global Environment for Network Innovations (GENI) project to easily create reproducible wireless network experiments in a controlled environment. We provide a low complexity algorithm to estimate the location of the mobile robots in the indoor environment. In addition, we provide a comparison between some of our collected measurements with their corresponding location estimation and the actual robot location. The comparison shows an accuracy between 0.65 and 5 meters.Comment: (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Jointly Optimizing Placement and Inference for Beacon-based Localization

    Full text link
    The ability of robots to estimate their location is crucial for a wide variety of autonomous operations. In settings where GPS is unavailable, measurements of transmissions from fixed beacons provide an effective means of estimating a robot's location as it navigates. The accuracy of such a beacon-based localization system depends both on how beacons are distributed in the environment, and how the robot's location is inferred based on noisy and potentially ambiguous measurements. We propose an approach for making these design decisions automatically and without expert supervision, by explicitly searching for the placement and inference strategies that, together, are optimal for a given environment. Since this search is computationally expensive, our approach encodes beacon placement as a differential neural layer that interfaces with a neural network for inference. This formulation allows us to employ standard techniques for training neural networks to carry out the joint optimization. We evaluate this approach on a variety of environments and settings, and find that it is able to discover designs that enable high localization accuracy.Comment: Appeared at 2017 International Conference on Intelligent Robots and Systems (IROS

    Lower bounds for Arrangement-based Range-Free Localization in Sensor Networks

    Full text link
    Colander are location aware entities that collaborate to determine approximate location of mobile or static objects when beacons from an object are received by all colanders that are within its distance RR. This model, referred to as arrangement-based localization, does not require distance estimation between entities, which has been shown to be highly erroneous in practice. Colander are applicable in localization in sensor networks and tracking of mobile objects. A set S⊂R2S \subset {\mathbb R}^2 is an (R,ϵ)(R,\epsilon)-colander if by placing receivers at the points of SS, a wireless device with transmission radius RR can be localized to within a circle of radius ϵ\epsilon. We present tight upper and lower bounds on the size of (R,ϵ)(R,\epsilon)-colanders. We measure the expected size of colanders that will form (R,ϵ)(R, \epsilon)-colanders if they distributed uniformly over the plane

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    • …
    corecore