4,228 research outputs found

    A Timed Logic for Modeling and Reasoning about Security Protocols

    Get PDF
    Many logical methods are usually considered suitable to express the static properties of security protocols while unsuitable to model dynamic processes or properties. However, a security protocol itself is in fact a dynamic process over time, and sometimes it is important to be able to express time-dependent security properties of protocols. In this paper, we present a new timed logic based on predicate modal logic, in which time is explicitly expressed in parameters of predicates or modal operators. This makes it possible to model an agent\u27s actions, knowledge and beliefs at different and exact time points, which enables us to model both protocols and their properties, especially time-dependent properties. We formalize semantics of the presented logic, and prove its soundness. We also present a modeling scheme for formalizing protocols and security properties of authentication and secrecy under the logic. The scheme provides a flexible and succinct framework to reason about security protocols, and essentially enhances the power of logical methods for protocol analysis. As a case study, we then analyze a timed-release protocol using this framework, and discover a new vulnerability that did not appear previously in the literature. We provide a further example to show additional advantages of the modeling scheme in the new logic

    Quantifying pervasive authentication: the case of the Hancke-Kuhn protocol

    Full text link
    As mobile devices pervade physical space, the familiar authentication patterns are becoming insufficient: besides entity authentication, many applications require, e.g., location authentication. Many interesting protocols have been proposed and implemented to provide such strengthened forms of authentication, but there are very few proofs that such protocols satisfy the required security properties. The logical formalisms, devised for reasoning about security protocols on standard computer networks, turn out to be difficult to adapt for reasoning about hybrid protocols, used in pervasive and heterogenous networks. We refine the Dolev-Yao-style algebraic method for protocol analysis by a probabilistic model of guessing, needed to analyze protocols that mix weak cryptography with physical properties of nonstandard communication channels. Applying this model, we provide a precise security proof for a proximity authentication protocol, due to Hancke and Kuhn, that uses a subtle form of probabilistic reasoning to achieve its goals.Comment: 31 pages, 2 figures; short version of this paper appeared in the Proceedings of MFPS 201

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    Modeling and Analyzing Timed Security Protocols Using Extended Timed CSP

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1109/SSIRI.2010.29Security protocols are hard to design, even under the assumption of perfect cryptography. This is especially true when a protocol involves different timing aspects such as timestamps, timeout, delays and a set of timing constraints. In this paper, we propose a methodology for modeling and analyzing security protocols that are aware of timing aspects. We develop a formalism for modeling security protocols by extending Timed CSP with the capability of stating complicated timing behaviors for processes and events. A reasoning mechanism for the proposed formalism is developed based on Constraint Logic Programming (CLP). Using the reasoning engine built in CLP, the authentication properties of timed security protocols are able to be verified and attacks can be discovered. We demonstrate the capability of our method by modeling and verifying real-world security protocols. New approaches of using timing information to unfold and prevent potential attacks are also presented

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques
    • …
    corecore