
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2010

Modeling and Analyzing Timed Security
Protocols Using Extended Timed CSP

Zhang, Xian; Liu, Yang; Auguston, Mikhail
IEEE

Zhang, Xian, Yang Liu, and Mikhail Auguston. "Modeling and analyzing timed
security protocols using extended timed csp." Secure Software Integration and
Reliability Improvement (SSIRI), 2010 Fourth International Conference on. IEEE, 2010.
http://hdl.handle.net/10945/59394

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Modeling and Analyzing Timed Security Protocols
Using Extended Timed CSP

Xian Zhang and Yang Liu
School of Computing,

National University of Singapore
{zhangxi5, liuyang}@comp.nus.edu.sg

Mikhail Auguston
Department of Computer Science
Naval Postgraduate School, USA

maugusto@nps.edu

Abstract— Security protocols are hard to design, even un-
der the assumption of perfect cryptography. This is especially
true when a protocol involves different timing aspects such as
timestamps, timeout, delays and a set of timing constraints.
In this paper, we propose a methodology for modeling and
analyzing security protocols that are aware of timing aspects. We
develop a formalism for modeling security protocols by extending
Timed CSP with the capability of stating complicated timing
behaviors for processes and events. A reasoning mechanism for
the proposed formalism is developed based on Constraint Logic
Programming (CLP). Using the reasoning engine built in CLP,
the authentication properties of timed security protocols are able
to be verified and attacks can be discovered. We demonstrate the
capability of our method by modeling and verifying real-world
security protocols. New approaches of using timing information
to unfold and prevent potential attacks are also presented.

I. INTRODUCTION

Security protocols are widely used for securing application-
level data transport crossing distributed systems, typically by
exchanging messages constructed using cryptographic opera-
tions (e.g. message encryption). In general, designing security
protocols is notoriously difficult and error-prone. Many proto-
cols proposed in the literature and many protocols exploited
in practice turned out to be awed, or their well-functioning
was found to be based on implicit assumptions. Since the
late eighties various approaches [11], [16], [6], [9], [10], [7]
have been put forward for the formal verification of security
protocols to overcome the problems of faulty implementations
and hidden requirements.

The new challenges are raise when different timing as-
pects are required in the security protocol design, such as
timestamps, delays, timeout and a set of timing constraints.
In the past years, there has been an increasing interest in
the formal analysis of timed cryptographic protocols. How-
ever, there are few tool supports for modeling and analyzing
security protocols with the capability of capturing various
timing features. A particularly successful approach to analyze
untimed security protocols is using CSP [18] to model and
CSP model checker FDR [15] to analyze protocols [26], [23].
Motivated by this approach, we focus on timed extensions
of CSP to accomplish the modeling and analyzing of timed
security protocols, particularly Timed CSP.

Timed CSP [24] has been proposed as a formalism to
model concurrent systems with timing behaviors. It is elegant
and intuitive as well as precise such that it has been widely

accepted and applied to a wide arrange of systems, including
communication protocols, embedded systems, etc [25]. Our
previous work [12] built a first tool for Timed CSP based on
Constraint Logic Programming (CLP) [19]. However Timed
CSP has limitations for specifying hard timing constraints
such as deadline, execution time of a process or time-related
constraints among events which are common requirements for
timed security protocols.
Contribution In this work, we propose a formalism to model
timed security protocols by substantially extending Timed CSP
with the capability of stating complicated and critical timing
constraints. In order to specify more timing behaviors of a
process, we attach timed-related system requirements to each
process in a modular manner. Our proposed language can spec-
ify expressions which cannot be modeled in Timed CSP, such
as number of event occurrences, relations of occurrences time
of events from different processes. Furthermore, it provides
a generic way of specifying additional critical requirements
as a first order logic predicate attached to each process. In
this work, we formally define both syntax and operational
semantics of the extended Timed CSP.

Our approach is different from the previous approaches by
taking into account the time information. The use of explicit
timing information allows us to specify security protocols with
timestamps, timeout and retransmissions which can be natu-
rally modeled using the specification. In the timing analysis,
we could verify timed non-injective agreement authentication
property which can be easily extended to other authentication
property verification [16]. We also propose a novel approach of
using the capability of the extended Timed CSP to avoid such
attacks without changing the original specifications of the pro-
tocols. Besides, we can model timing requirements/constraints
and verify other timed sensitive properties such as execution
time of a protocol which is beyond the capability of existing
approaches.

Our engineering effort realizes all the techniques in a
verification engine for analyzing security protocols. The un-
derlying reasoning mechanism is based CLP, which has been
successfully applied to model programs and transition systems
for the purpose of verification [17], [21]. In our previous
work [12], we developed a reasoning mechanism based on
CLP to verify Timed CSP. In this work, we extend the
reasoning mechanism to support the extension of Timed CSP.
A prototype is implemented based on one of the established

2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

9780769540863/10 $26.00 © 2010 IEEE

DOI 10.1109/SSIRI.2010.30

224

2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement

9780769540863/10 $26.00 © 2010 IEEE

DOI 10.1109/SSIRI.2010.29

217

2010 Fourth International Conference on Secure Software Integration and Reliability Improvement

9780769540863/10 $26.00 © 2010 IEEE

DOI 10.1109/SSIRI.2010.29

217

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

CLP solvers, CLP(R) [20]. CLP(R) is chosen for its support
of real numbers and continuous time variables. A number of
theories, libraries and patterns are developed for easy querying
and proving.

The rest of the paper is organized as follows. Section II
introduces the syntax of the modeling language for timed
security protocols. Section III presents the operational se-
mantics of the proposed formalism. The encoding of the
proposed semantics in CLP is described in Section IV. Sec-
tion V introduces the reasoning methods for security protocols.
Section VI explains how to conduct the analysis for timed
security protocols. The last section discusses related works
and concludes this paper.

II. MODELING OF TIMED SECURITY PROTOCOLS

In this section, we present the formalism for timed security
protocols. Firstly, we will briefly introduce the Timed CSP
language. Secondly, the syntax of the newly proposed exten-
sion is presented. Thirdly, we will demonstrate how to model
timed security protocols using the formalism proposed.

A. Timed CSP Language

Hoare’s CSP [18] is an event-based notation primarily aimed
at describing the sequencing of behavior within a process and
the synchronization (or communication) between processes.
Timed CSP [24] extends CSP by introducing a capability to
quantify temporal aspects of sequencing and synchronization.

Definition 1: (Timed CSP) A Timed CSP process is defined
by the following syntax,

P ::= STOP | SKIP | RUN | e t P | e : E P(e)
| e@t P(t) | P1 � P2 | P1 � P2 | P1 X ||Y P2

| P1 |[X]|P2 | P1 ||| P2 | P1; P2 | P1 ⇧ P2

| P1
d
⇤ P2 | WAIT d | P1 ⇧{d} P2 | µ X • P(X)

STOP denotes a process that deadlocks and does nothing. A
process that terminates is written as SKIP. RUN� is a process
always willing to engage any event in � where � is the
universal set of events. A process which may participate in
event e then act according to process description P is written
as e@t P(t). The (optional) timing parameter t records the
time, relative to the start of the process, at which the event
e occurs and allows the subsequent behavior P to depend on
its value. The process e t P delays process P by t time
units after engaging event e. The external choice operator,
written as P � Q, allows a process of choice of behavior
according to what events are requested by its environment.
Internal choice � represents variation in behavior determined
by the internal state of the process. The parallel composition
of processes P1 and P2, synchronized on common events
of their alphabets X, Y (or a common set of events A) is
written as P1 X ||Y P2 (or P1 |[A]|P2). P1 ||| P2 is the
interleaving composition. The sequential composition of P1

and P2, written as P1; P2, acts as P1 until P1 terminates
by communicating a distinguished event ⌃ and then proceeds
to act as P2. The interrupt process P1 ⇧ P2 behaves as P1

until the first occurrence of event in P2, then the control
passes to P2. The timed interrupt process P1 ⇧{d} P2 behaves
similarly except P1 is interrupted as soon as d time units
have elapsed. A process which allows no communications for
period d time units then terminates is written as WAIT d. The
timeout construct written as P1 ⇤{d} P2 passes control to an
exception handler P2 if no event has occurred in the primary
process P1 by some deadline d. Recursion is used to give
finite representation of non-terminating processes. The process
expression µ X • P(X) describes processes which repeatedly
act as P(X). The detailed illustration of each process type
can be found in [27]. The semantics of a Timed CSP process
is precisely defined either by identifying how the process
may evolve through time or by engaging in events (i.e., the
operational semantics defined in [28]) or by stating the set of
observations, e.g., traces, failures and timed failures (i.e., the
denotational semantics as defined in [8]).

B. Extension of Timed CSP

In the extended Timed CSP specification, a process is
extended with an optional WHERE clause, which consists
of a (first order) predicate over a predefined set of time
variables. More precisely, we introduce time point variables:
START, END, ENGAGE and TES as explained as follows.

Given a process P, the variable P.START (P.END) denotes
the exact starting (ending) time of process P. More specifically,
P.START captures the starting time of a process P when its
first event is enabled or when the “WAIT d” process is enabled
if P starts with a WAIT process. P.END is the ending time
of the process P. If the process is terminating, P.END is the
engage time of event ⌃. If the process is non-terminating, then
P.END = �. Naturally, condition P.END ⌥ P.START holds
all the time. Using the two variables, a deadline property (a
task must be accomplished within a certain time) is expresses
as P WHERE P.END � P.START ⇤ d where d is a constant
(d � R+), if and only if this process is terminating.

In many scenarios, there are requirements on an event
to occur at some expected time, for example attending a
meeting at 10am or printing the job within 15 minutes after
receiving this job. A time variable ENGAGE is attached to
an event e to denote the exact time when e is engaged, in
the form of e.ENGAGE. In an evaluation, event e is likely
to be engaged more than once, variable e.ENGAGEi is in-
troduced to denote the ith occurrence of e in an evaluation.
For instance, P �= a 2 P, one possible evaluation is
(a.ENGAGE1 = 0, a.ENGAGE2 = 3, a.ENGAGE3 = 5, . . .).
For event e engaged more than once in a trace, e.ENGAGE
is the set of all e.ENGAGEi, i.e., e.ENGAGE = {e.ENGAGEi}.
Constraint e1.ENGAGEi�e2.ENGAGEi ⇤ t is exactly the same
as ⇣ i • e1.ENGAGEi � e2.ENGAGEi ⇤ t, which means that
each time after e2 is engaged, e1 must be engaged within t
time units. Constraint e1.ENGAGE � e2.ENGAGE ⇤ t means
⇣ i, j • e1.ENGAGEi � e2.ENGAGEj ⇤ t, which specifies the
requirement that e1 is not allowed to be engaged after t time
units with any occurrence of e2.

225218218

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

For simplicity, to specify the constraint that event e must
be engaged before time t, expression e.ENGAGE ⇤ t is used
instead of ⇣ i • e.ENGAGEi ⇤ t, if this process is terminating.
For any process P, engaged time of all events must be in
the range of P.START and P.END, i.e., ⇣ e • P.START ⇤
e.ENGAGE ⇤ P.END.

In addition, the variable P.TES is introduced to capture the
evaluation of a process up to the current time, where TES
stands for Timed Event Set. TES is a set of timed events.
A timed event is a pair drawn from e ⇥ R+ where e � �1,
consisting of a time and an event engage time variable. TES
is used to record the engage time of all events engaged so far,
which can be viewed as a history of the execution. Traces of
the specific evaluation are able to be retrieved from TES. We
can also retrieve other information we are interested in from
the set TES. The following example illustrates a constraint
concerning the number of occurrences of events in P.

Example 1: The following cryptographic device provides
services of encryption and decryption to protocol principals.
Each encryption will be finished within Te time units and each
decryption process will be finished within Td time unites.

Cryptograph �=
(start encrpt end encrypt Cryptograph)
� (start decrypt end decrypt Cryptograph)
WHERE end encrpyt.ENGAGE�

start encrpyt.ENGAGE ⇤ Te
� end decrypt.ENGAGE�
start decrypt.ENGAGE ⇤ Td

�

Example 2: In checking security protocol authentication
property, we add two signals run and commit into two protocol
principals. If we want to guarantee the non-injective agreement
for a protocol, we need to make sure for each protocol run,
there are less commit events than run events. We can append
this property as constraint into protocol process. We will
illustrate the details of non-injective agreement in Section VI.

Non inj Free �= Protocol
WHERE TES ⌦ run ⌅ TES ⌦ commit

where TES ⌦ run is number of occurrences of event run in
TES. The WHERE predicate guarantees for each protocol run,
there will be less commit than run. �

The syntax of the extended Timed CSP process is summa-
rized in the following.

P(x1, ..., xn) ::= ProcExp [WHERE WherePred]
WherePred ::= WherePred � WherePred

| WherePred ⌫ WherePred
| WherePred � WherePred
| WherePred ↵ WherePred
| ¬WherePre | true | false
| WhereExpr � WhereExpr,

� � {<,⇤,=, >,⌥}

1� is the universal set of events.

WhereExpr ::= [Name.]START | [Name.]END
| [Name.]TES
| Name.ENGAGE | Name.ENGAGEi
| WhereExpr ⌅WhereExpr,⌅ � {+,�}
| WhereExpr ⌅ R,⌅ � {⇤, /}
| (WhereExp) | R

where P is the process name, x1, ..., xn is an optional
list of process parameters and ProcExp is a Timed CSP
process expression. Each process can be attached with an
optional WherePred with keyword WHERE . Process P without
WherePred is exactly the same as a Timed CSP process.

To capture different aspects of the execution, we define a
set of build-in libraries which can be directly used in where
predicates.

• TES ⌦ e : the number of occurrences of event e in the
timed event set TES.

• first(TES): the first event appearing in TES.
• last(TES): the last event appearing in TES.
• fresh(e, T, TES): check whether event e is firstly engaged

at time T in TES.
Common requirements for a system can be easily specified.

For instance, the deadline of a process, order of events, and
separation time between events are specified as follows:

1) Process P must be finished within time d:
P.END � P.START ⇤ d

2) Process P must be finished before time d:
P.END ⇤ d

3) Max separation time between two events e1, e2 is d:
e2.ENGAGE � e1.ENGAGE ⇤ d

4) e2 must be engages before e1:
e1.ENGAGE � e2.ENGAGE ⇤ 0

C. Formal Specification of Timed Security Protocols

In this section, we show how to model timed security
protocols using the language proposed in a structured way. All
the protocols we consider have a similar objective: in each
protocol, an initiator A seeks to establish a session with a
responder B, possibly with the help of a sever S, where A, B,
and S are principals.

Principals (including initiator, responder and server) and
intruder are modeled as processes. The whole network would
be the parallel execution of all processes. Event send.S.R.M is
introduced to denote the behavior sending the message M from
sender S to receiver R. Event receive.S.R.M denotes receiver
R receives a message M from sender S.

We use the Wide Mouth Frog protocol (WMF) [5] as a
running example to illustrate the ideas. The Wide Mouth
Frog protocol is a computer network authentication protocol
designed for insecure networks. The goal is to allow two
principals A and B to exchange a secret key Kab via a trusted
server S. The model is described as follows, where Kas and
Kbs are shared keys of A and B with sever S respectively.
Ta and Ts are timestamps generated and sent by A and S
respectively.

226219219

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Timeout patterns: (a) typical (b) count-bounded (c) time-bounded

A, B, S : principal
Kas, Kbs, Kab : Key
Ta, Ts : timestamp
1. A S : A, {Ta, B, Kab}Kas
2. S B : {Ts, A, Kab}Kbs

1) Timeout and Retransmissions: Look at the following
simple protocol, where A sends a message MAB to B, and later
B will send an acknowledgement ACKBA to A after receiving
MAB.

1.A B : MAB
2.B A : ACKBA

After principal A sends a message in a session of a protocol,
A starts a timer that will timeout if A does not get ACKBA
from the receiver B. When a timeout is reached, the principal
A can execute two actions: retransmit or reset a session. We
are able to model both actions, where an implementation of
the protocol should specify which action to perform. In some
study with the introduction of timeout [7], principal A will
resend the message if it detects a timeout. But they do not
discuss the case if the resent message also gets timeout. In
our specification, we introduce a bounded timeout, including
count-bounded timeout and time-bounded timeout discussed
as follows.

• Count-bounded timeout After principal A sends a message
in a session of a protocol, it will start a timer and a
counter. Once detecting a timeout, it will resend this
message. If the resent message also gets timeout, it would
resend again, by increasing number of resending by 1. If
the number of times exceeds the max value, A will send
request to abort this protocol (see Figure 1 (b)).

• Time-bounded timeout After principal A sends a message
in a session of a protocol, it starts two timers. If it detects
a timeout from the first timer, it will resend this message;
if the resent message also gets timeout, A will resend
again. Once it detects a timeout of the whole sending
message process, A will send a request to abort this
protocol (see Figure 1(c)).

Extended Timed CSP specification of both count bounded
timeout and time bounded timeout are shown in process

CBTimeout(d, max) and TBTimeout(d1, d2), respectively,
where d and d1 are the timeout for sending a message, max
is the maximum retransmission times and d2 is the timeout
for the whole process. c = TES ⌦ send.A.B.{mAB.A} is the
number of times of retransmission.

CBTimeout(d, max) �= (µ X • send.A.B.{mAB.B}
 (receive.B.A.{ackBA.B} SKIP

d
⇤ X))

⇧ ([c > max]SKIP)
WHERE c = TES ⌦ send.A.B.{mAB.A}

TBTimeout(d1, d2) �= (µ X • send.A.B.{mAB.B}
(receive.B.A.{ackBA.B} SKIP ⇧{d1} X))
d2
⇤ SKIP

2) Timestamps and Lifetime: Timestamp is a typical way
to prevent replay attacks, by simply attaching the current time
value to a message. It is later used by the receiver of this
message to make sure that it was recently generated, not a
replay. A timestamp of a message can be easily recorded by
m.Engage which is the engage time of the event m, where
event m denotes sending the message. In our implementation,
we keep TES, a set of all timed events, which is a record of
all engage time of all event engaged so far. It is easy to check
whether m.Engage is the most recent one or not by using the
predefined predicate fresh(m, m.Engage, TES) in Section II-B.

3) Initiator, Responder and Server: We model each prin-
cipal (initiator, responder, server) as a process. For the Wide
Mouth Frog protocol, the behavior of the initiator A is sending
a message {Ta, b, kab} to Server S using public key kas
and waiting for acknowledgement from S, where ta is the
timestamp. The responder B receives message from the server
and then send the acknowledgment to S. The server receives
message from A and then message {Ts, a, kab} to B with new
timestamp Ts. The three components are modeled as follows.

Initiator �= start encrpt end encrpyt
(µ X • send.A.S.{Ta.b.kab}kas

(receive.S.A.{ackSA} SKIP
d1
⇤ X))

⇧{d2} SKIP WHERE
Ta = send.A.S.{Ta.b.kab}kas .ENGAGE1

Responder �= receive.S.B.{Ts.a.kab}kbs
send.B.S.{ackSB} start decrypt
end decrypt SKIP WHERE
Ts ⇤ receive.S.B.{Ts.a.kab}kbs .ENGAGE
� fresh(receive.S.B.{Ts.a.kab}, Ts, TES)2

2fresh(e,t,TES) is defined in Section II-B.

227220220

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

Server �= receive.A.S.{Ta.b.kab}kas
send.S.A.{ackSA} start decrypt
end decrypt (µ X •
send.S.B.{Ts.a.kab}kbs
(receive.B.S.{ackbs} SKIP

d3
⇤ X))

⇧{d4} SKIP WHERE
Ts = send.S.B.{Ts.kab}kbs .ENGAGE1

� fresh(receive.A.S.{Ta.b.kab}, Ta, TES)
Network �= Initiator || Responder

|| Server || Cryptograph

The network is a parallel composition of the three processes,
as well as the Cryptograph.

4) Intruder: The intruder works basically as a Dolev-
Yao intruder [11]. The difference is that our intruder takes
time. The intruder can impersonate each agent executing the
protocol, so it can play each of the roles in the protocol. Even
thought the intruder has got its own keys, nonces etc., it can
also try to use all the information it is receiving in the protocol
run as its own (e.g., nonces). For the purpose of this paper,
we restrict the behaviors of the intruder that it cannot read the
mind of other principals to get some secret and it is unable to
guess values. We restrict the behaviors of the intruder to the
following actions:

• encrypt and decrypt a message
• intercept a message
• replay a message
• send a message to any principals
• delay a message with arbitrary time

The models of intruder and the new system with intruder are
specified as follows:

Intruder �= start encrypt end encrypt Intruder
� start decrypt end decrypt Intruder
� receive.S.I.M Intruder
� send.I.R.M Intruder
� receive.S.I.M T send.I.R.M Intruder

System �= Network � Intruder

where I is the identity of itself, S is the sender, R is the receiver
and M is the message. The intruder would intercept into the
protocol sessions through channel send and receive.

We present a natural way for specifying security protocols
using extended Timed CSP, including the initiator, responder,
server and intruder, with timestamps and timeout. It shows the
extended Timed CSP is a good mechanism to model timed
security protocols in a compositional way.

III. OPERATIONAL SEMANTICS

In the previous section, syntax of extended Timed CSP
and approaches of specifying timed security protocols are
properly illustrated. In this section, we formally define the
semantics of the new specification. An operational semantics
provides a way of interpreting a language by stepping through
executions of programs written in that language. It describes
an operational understanding of the language. The operational

semantics of Timed CSP is precisely defined in Schneider [28]
by using the combination of two relations: event transition and
evolution. The semantics model consists of three components:
the event and timed transitions which are inherited from Timed
CSP, a WHERE predicate which must be satisfied by this
model, and an Timed stamped set. A Timed stamped set (Tss)
is a record of an execution, consisting of a set of process
related time stamps, namely the starting and ending times of
processes, and a timed event set (TES) which is a set of timed
events. TES is a subset of Tss: TES ⌃ Tss. A timed event is
a pair drawn from e⇥ R+ where e � �, consisting of a time
and an event engage time value.

We define the state of a process as a quadruple ⇢P, t, W, Tss�
where P is the process, t is the current time, W is the WHERE
predicate and Tss is the timed stamped set of the model. Tss
keeps value for all variables. At each transition, an evaluation
of the system requirement W is performed. If the current
state satisfies the requirement, the transition can be enabled,
otherwise not.

Definition 2: The operational semantics of the extended
Timed CSP specification is a timed transition where the state is
a quadruple ⇢P, t, W, Tss�, and event transitions and evolution
transitions are defined by the rules:

• ⇢P, t, W, Tss� a ⇢P⇥, t, W, Tss⇥� where
a ✏= ⌃ � ⌘ i : N • Tss{(a.ENGAGEi, t), (P.START, t)} �
W

• ⇢P, t, W, Tss� ⌃ ⇢P⇥, t, W, Tss⇥� where
Tss {(P.END, t)} � W

• ⇢P, t, W, Tss� d⇥ ⇢P⇥, t + d, W, Tss⇥� where
d > 0 � Tss {(P.START, t)} � W

where P⇥ is the subsequent process of P by involving ei-
ther a event transition () or a timed transition (⇥). Tss⇥

is a timed stamped set with updated ENGAGE, ENGAGEi,
START, END and TES variables. The a represents an event
transition, whereas d⇥ is a timed transition. ⌘ i : N •
Tss {(a.ENGAGEi, t), (P.START, t)} � W is an evaluation of
the current state, which is used to check whether the current
Tss fulfills the system requirements W or not. �

In the operational semantics, we define both event transition
and timed transition relations for all primary and composi-
tional operators in Timed CSP specification. The operational
semantics of the alphabetized parallel composition operator
P1 X ||Y P2 are illustrated in the following rules.

Tss {(START, t), (e.ENGAGEi, t)} |= W
P1

e P⇥
1 [r1]

[e � X {⇥} \ Y, Tes ⌦ e = i� 1]
⇢P1 X ||Y P2, t, W, Tss� e
⇢P⇥

1 X ||Y P2, t, W, Tss
{(START, t), (e.ENGAGEi, t)}�

228221221

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

Tss {(START, t), (e.ENGAGEi, t)} |= W
P2

e P⇥
2 [r2]

[e � Y {⇥} \ X, Tes ⌦ e = i� 1]
⇢P1 X ||Y P2, t, W, Tss� e
⇢P1 X ||Y P⇥

2, t, W, Tss
{(START, t), (e.ENGAGEi, t)}�

Tss {(START, t), (e.ENGAGEi, t)} |= W
P1

e P⇥
1 P2

e P⇥
2 [r3]

[e � X � Y � {⌃}, Tes ⌦ e = i� 1]
⇢P1 X ||Y P2, t, W, Tss� e
⇢P⇥

1 X ||Y P⇥
2, t, W, Tss

{(START, t), (e.ENGAGEi, t)}�

Tss {(START, t), (⌃.ENGAGE, t)} |= W

P1
⌃ P⇥

1 P2
⌃ P⇥

2 [r4]
⇢P1 X ||Y P2, t, W, Tss� e
⇢P⇥

1 X ||Y P⇥
2, t, W, Tss

{(START, t), (END, t)}�

Tss {(START, t)} |= W
P1

d⇥ P⇥
1 P2

d⇥ P⇥
2 [r5]

⇢P1 X ||Y P2, t, W, Tss� d⇥
⇢P⇥

1 X ||Y P⇥
2, t + d, W, Tss {(START, t)}�

The first two rules state that either of the components
(P1 or P2) may engage an event as long as the event is
not shared if and only if the evaluation on whether the
current Tss appended with {(START, t), (e.ENGAGEi, t)} still
satisfies process requirement W is true. Tss will be updated
to Tss⇥ = Tss {(START, t), (e.ENGAGEi, t)}. Rule r3 states
that a shared event can be engaged simultaneously by both
components as long as the event satisfies the requirements.
Rule r4 is a special case for the third rule, whereas the event
is the ⌃ which is a special event used purely to denote
termination. A new pair (END, t) is added to the Tss and
hence checked. Rule r5 says that the composition may allow
time elapsing when both the components do. We define the
semantics rules for each operator in Timed CSP, which are
fully explained in [13].

IV. ENCODING OPERATIONAL SEMANTICS IN CLP
In this section, we encode the extended Timed CSP Seman-

tics in CLP. First, we briefly introduce the CLP language then
followed by the translation of syntax and semantics into CLP
rules.

A. CLP Preliminaries
Constraint Logic Programming (CLP [19]) began as a nat-

ural merger of two declarative paradigms: constraint solving
and logic programming. This combination helps make CLP
programs both expressive and flexible, and in some cases,
more efficient than other kinds of programs. The CLP scheme

defines a class of languages based upon the paradigm of rule-
based constraint programming, where CLP(R) is an instance
of this class. We present some preliminary definitions about
CLP.

Definition 3: (Atom, Rule and Goal) An atom is of the form
p(̃t), where p is a user defined predicate symbol and t̃ is a
sequence of terms ‘t1, t2.., tn’. A rule is of the form A : �B̃,⇥
where the atom A is the head of the rule, and the sequence of
atoms B̃ and the constraint ⇥ constitute the body of the rule.
A goal has exactly the same format as the body of the rule of
the form ?� B̃,⇥. If B̃ is an empty sequence of atoms, we call
this a fact. All goals, rules and facts are terms. A program is
a set of rules. �

CLP has been successful as a programming language, and
more recently, as a model of executable specifications. There
have been numerous works which use CLP to model systems
or programs and which use an adaptation of the CLP proof
system for proving certain properties [22], [12]. In this work,
we follow this trend and use existing powerful constraint
solvers CLP(R) for mechanized extended Timed CSP.

B. Encoding Extended Timed CSP in CLP
The very initial step is to encode the extended Timed CSP

models in to CLP rules. This step is automatically done by
syntax rewriting. A process “Proc WHERE WherePred” is
encoded to a relation tproc(N, P, W) in CLP. tproc(N, P,
W) consists of three parts, where N is the name of this
process, P is the CLP representation of Proc and W represents
the WherePred. The syntax translation consists of two parts,
process operators translation and Where clause translation.

All operators of the extended specification which inherited
from Timed CSP are encoded into CLP rules in a composi-
tional way. A library of all operator translation is built. For
example:

• a SKIP : eventprefix(a, skip)
• a t SKIP : delay(a, skip, t)
• P1 ||| P2 : interleaving(P1,P2)
• P1; P2 : sequential(P1,P2)
In our library, eventprefix(A, P) is defined to denote a

process A P. delay(A, P, T) is the CLP form of operator
A T P in Timed CSP. interleaving(P1, P2) is to represent
operator P1 ||| P2 where P1 and P2 are the CLP formate of
process P1 and P2. Relations sequential/2 is to represent a
sequential operator ”;”.

For each process, a WHERE clause WherePred is encoded
into W in CLP. W is a list of the form [W1, W2, ..., Wn].
Before we encode WherePred into a CLP list, we need
to convert WherePred into conjunctive normal form (CNF),
which is a conjunction of Horn clauses. Logically, W = W1 �
W2... � Wn where each Wi is a Horn clause in the form of
or(Wi1, Wi2), not(Wik) or an atom. If there are no WHERE
predicates defined for this process, W = [].

C. Encoding Semantics in CLP
Having defined the corresponding CLP syntax for the ex-

tended Timed CSP specifications, we devote the rest of this

229222222

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

section to describe how to embed the operational semantics
into CLP rules. A relation of the form tpos(P1, T1, E1, M,
P2, T2, E2) is used to denote the timed protocol operational
semantics, by capturing both event transition relations and
evolution relations with a set of constraints. Informally speak-
ing, tpos(P1, T1, E1, M, P2, T2, E2) returns true if the process
P1 evolves to P2 through either a time evolution, i.e., let
T2 � T1 time units elapse (so that M = []), or an event
transition by engaging an event e instantly (M = e), as long
as both transitions satisfy the WHERE requirements stored
in E1. After this transition relation, the local environment
might change to E2 by adding more predicates. E1 (and E2)
is the environment of the system, which consists not only the
WHERE predicates, but also the current values of the variables
appeared in the WHERE predicates.

We define the tpos/73 relation for each and every operator
of Timed CSP according to the semantics presented previously
in Section III.

The only transition for process STOP is time elapsing.
Process SKIP may choose to wait some time before engaging
the ⌃ event. We use termination to denote this special
event in CLP. Process SKIP may not be able to terminate
immediately since there might be some constraints involving
P.END defined in the WHERE clause. The relation sat is
required to be evaluated before the termination. Relation
sat(E1, A, T, E2) and sat(E1, T, E2) are used to test whether
the current state fulfills the requirements. Relation sat/3
handles event transition and sat/2 handles timed transition.
The sat/3 and sat/2 rules are defines as:

sat(E1,termination,T)
:- get_process(E1,N),insert(end(N,T),E1,E2),

evaluate(E2).
sat(E1,A,T)

:- get_process(E1,N), insert(engage(A,N,T),E1,E2),
evaluate(E2).

sat(E1,T):- evaluate(E1).

The first rule says that whenever there is a termination event,
the predicate P.END = T need to be validated in conjunction
with all the current requirements in E1. Once the resultant
predicate is proved to be valid, we append this predicate to
the current set of predicates. The second rule is to validate
the case when an event is engaged, by adding the predicate
A.ENGAGEi = T to the environment. The last rule captures the
timed transition relation by evaluating the current environment
with the current time. Relation get process(E, N) is to find
the current named process being executed. evaluate(E) is to
evaluate the requirements, namely the constraint store.

In the operational semantics, there is a set of composition
operators which are more complex. For instance, the rules
associated with the semantics of alphabetized parallel
composition operator P1 X ||Y P2 are as follows.

3tpos/7 indicates the relation tpos of arity 7, same for sat/3 and sat/4.

tpos(para(P1,P2,X,Y),T,E1,A,para(P3,P2,X,Y),T,E2)
:- member(A,X), not(member(A,Y)), sat(E1,A,T),

tpos(P1,T,E1,A,P3,T,E3), update(E3,
engage(A, T), E2).

tpos(para(P1,P2,X,Y),T,E1,A,para(P1,P4,X,Y),T,E2)
:- member(A,Y), not(member(A,X)),sat(E1,A,T),

tpos(P2,T,E1,A,P4,T,E3), update(E3,
engage(A, T), E2).

tpos(para(P1,P2,X,Y),T,E1,A,para(P3,P4,X,Y),T,E2)
:- member(E,X),member(E,Y), not(E = termination),

sat(E1, A,T), tpos(P1,T,E1,A,P3,T,E3),
tpos(P2,T,E1,A,P4,T,E4),update(E3,E4,E2).

tpos(para(P1,P2,X,Y),T,E1,termination,
para(P3,P4,X,Y),T,E2)
:- sat(E1,termination,T),

tpos(P1,T,E1,termination,P3,T,E3),
tpos(P2,T,E1,termination,P4,T,E4),
update(E3,E4, end(para(P1,P2,X,Y), T),E2).

tpos(para(P1,P2,X,Y),T1,E,[],para(P3,P4,X,Y),T2,E)
:- tpos(P1,T1,E,[],P3,T2,E),

tpos(P2,T1,E,[],P4,T2,E).

Other parallel composition operation, like |[X]| and |||, can
be defined as special cases of the alphabetized parallel compo-
sition operator straightforwardly. There is a clear one-to-one
correspondence between our rules and the operators which are
fully defined at [13]. Therefore, the soundness of the encoding
can be proved by showing there is a bi-simulation relationship
between the transition system interpretation defined in Section
III and ours, and the bi-simulation relationship can be proved
easily via a structural induction.

V. VERIFICATION OF EXTENDED TIMED CSP

Once we encode the semantics of processes as CLP rules,
well-established constraint solvers like CLP(R) [20] can be
used to reason about those systems. Operational semantics
defined in Section III are all encoded systematically.

A. Feasibility Checking

After specifying the tasks using extended Timed CSP in
CLP(R), the very first task is to check whether the tasks
are feasible before simulation or reasoning of the system.
Feasibility checking is necessary because there might be a
conflict among the set of WHERE clauses of a system, which
potentially invalidates any proving result. To perform this task,
the conjunction of the WHERE predicates and the healthiness
conditions are checked.

The output of the feasibility checking is either yes if the
tasks are feasible or else no. In case the tasks are infeasible,
i.e., there is no way to satisfy all the constraints, a minimum
set of predicates which conflict each other can be generated so
as to facilitate user correction easily. We use the CLP(R) pred-
icate feasibility checking(N, S) to fulfill this purpose, where N
is the name of the process that is to be checked, and S is the
minimum conflict set. If the process N is a feasible process
feasibility checking/2 returns false, otherwise the minimum
conflict set S is generated and returned.

B. Reasoning about Safety and Liveness

Feasibility checking is to check whether the tasks modeled
in extended Timed CSP are feasible. Once it is proven to be
feasible, we can reason about safety or liveness properties by
making explicit assertions.

230223223

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

Relation reachable(P, Q, E1, E2, T1, T2, Tr) is defined to
explore the full state space if necessary. It states that “process
P starts at T1 with environment E1 and is able to be executed
to Q at T2 with environment changed to E2 via trace Tr”.

reachable(P, P, _, _, T, T, []).
reachable(P, Q, E1, E2, T1, T2, N)

:- tpos(P, T1, E1, A, P1, T3, E3),
(A=t(_);A==tau;A=reccall(_)),
not table(P1), assert(table(P1)),
reachable(P1, Q, E3, E2, T3, T2, N).

reachable(P, Q, E1, E2, T1, T2, [E|N])
:- tpos(P, T1, E1, A, P1, T3, E3),

not (A=t(_);A==tau;A=reccall(_)),
not table(P1),assert(table(P1)),
reachable(P1, Q, E3, E2, T3, T2, N).

reachable/74 is used to build assertions for various
property checking. The first property of interest is to find one
particular feasible execution for process, provided that the
process is feasible. Relation trace(P, Tr, T) is able to generate
such feasible trace Tr of process P, whose execution time is T .

trace(P,Tr, T):- not feasibility_checking(N,_),
init_Env(N,E), reachable(P,_,E,_,0,T,Tr).

Reachablity checking is easily carried out by executing the
goal “?� trace(P, Tr, T), property(Tr, Prop)”, which is to find
a trace Tr that satisfies some property Prop. For example, event
a is always engaged before b in Tr.

One property of special interest is deadlock-freeness.
Relation deadlock(P, Tr) is used to check the deadlock-
freeness property, by trying to find a counterexample where
P is deadlocked at some trace Tr.

deadlock(P, Tr) :- init_Env(P, E),
reachable(P, P1, E, E2, 0, T2, Tr),
(tpos(P1, T2, E2, [t(_)], Q1, T3, E3) ->
not(tpos(Q1, T3, E3, A, _, _, _), not A=[t(_)]);
not(tpos(P1, T2, E1, A, Q1, T3, _),not A=[t(_)])).

It states that a process P at time 0 may result in deadlock
if it can evolve to the process expression Q at time T2 where
no event transition is available neither at T2 nor at any later
moment. The last line outputs the trace which leads to a
deadlock. Alternatively, we may present it as the result of
the deadlock proving. Note that the above is different from
the deadlock checking for standard Timed CSP as presented
in [12]. Here the WHERE clauses at each step must be
fulfilled. In general, a deadlock-free Timed CSP process may
become a non deadlock-free process after it is enriched with
certain WHERE clauses. It is, however, also possible for a non
deadlock-free process to become deadlock-free.

We can also find the execution duration of a specific event,
more specifically, the range of time that the event is able to
be engaged. Relation engage time(P, E, R) is defined for the
purpose, which is to find the range R of the engage time of
event E in process P. The detailed definition for all relations
can be found in [13].

engage_time(P, E, []) :- not happen_at(P, E, _).
engage_time(P, E, R) :- happen_at(P, E, T),

union(R, T, R1), engage_time(P, E, R1).

4reachable/7 indicates the relation reachable of arity 7.

where R is the range of engaged time of event E in process
P which is generated after executing the relation.

VI. VERIFICATION OF AUTHENTICATION

For verifying timed security protocols, protocols are firstly
modeled in extended Timed CSP models, and then translated
into CLP programs. Properties which need to be verified are
encoded into CLP goals using relations defined in Section V.
In this section, we show how to define and verify timed
security properties, including timed authentication properties.
Moreover, by using timing information of each protocol run,
potential attacks are also to be found.

A. Timed Authentication Property
Authentication property is very important in security pro-

tocols. Protocols need to accomplish authentication of the
Initiator and Responder. [16] classified a set of authentication
requirements. We will focus on timed non-injective agreement,
which is an extension of the non-injective agreement defined
in [16].

Definition 4 (Timed Non-Injective Agreement): A timed
security protocol guarantees timed non-injective agreement,
only if responder B thinks it has completed a run of the
protocol with A using data D, then A was actually running
the protocol with B using data D. To check the authentication
property, signals are added to principals to indicate principal
B has completed a protocol run with A and A is actually
running a protocol with B, whenever necessary. �

Our method is to insert signals, which are special kind
of events, into each process, and then to check the corre-
sponding relationship of these signals. In our approach, event
commit.B.A.D is used to denote that principal B has completed
a protocol running with A using data D, run.A.B.D as principal
A is running a protocol with B using data M.

Initiator �= start encrpt end encrpyt
run.a.b.{ta.b.kab}
(µ X • send.A.S.{ta.b.kab}kas

 (receive.s.a.{acksa} SKIP
d1
⇤ X))

⇧{d2} SKIP
WHERE ta = send.a.s.{ta.b.kab}kas .ENGAGE

Properties which need to be verified are specified as assertions.
There is a one-to-one relationship between the runs of A and B
for protocol satisfying timed non-injective agreement property.
The timed non-injective agreement means that once there is a
commit event, there should be at least one run event appearing
previously. The assertion is defined as:

non inj agr(P, Tr) : �trace(P, Tr,),
end(Tr, commit.B.A.M), not in(Tr, run.B.A.M).

This predicate is to find a trace Tr, where there is no
event run occurred before event commit. Tr is an instance
of an attack. Predicate trace(P, Tr, T) is defined in previous
section. After checking the timed non-injective agreement
property over WMF protocol, such attack has been found
where responder B finds that it has more than one sessions

231224224

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

with initiator A but in fact there should be only one [1]. We
also model the Needham-Schroeder Public-Key protocol as
process NSP, by executing the following goal:

?� non inj agr(NSP, Tr).

We are able to find an attack where the responder B commits a
session with the initiator A, but A did not establish a protocol
run with B, where A is running the protocol with the intruder
I [23]. The trace is:

⇢start encrypt, end encrypt, send.A.I.M,
receive.A.I.M, send.I.B.M, receive.I.B.M,
send.B.I.M2, receive.B.I.M2, send.I.A.M2,
receive.I.A.M2, send.A.I.M3, receive.A.I.M3,
send.I.B.M4, receive.I.B.M4, commit.B.A.D�

Preventing Attacks: By preventing the authentication at-
tack, we propose appending a constraint WHERE TES ⌦
run.A.B.D ⌅ TES ⌦ commit.B.A.D to the protocol process to
guarantee number of event commit is always less than event
run (shown in Example 2). The revised Wide Mouth Frog
protocol is modeled as WMF R1.

Another approach of preventing attacks is by changing
the timeout values. There is a particular timed authentication
attack for Wide Mouth Frog protocol where the intruder can
extend the life time of a (possibly compromised) key Kab as
wanted, whereas A and B think that it has expired and been
destroyed [26].

i.1. A S : – A, {Ta, B, Kab}Kas
i.2. S I(B): – {Ts, A, Kab}Kbs
ii.1. I(B) S: – B, {Ts, A, Kab}Kbs
ii.2. S A : – {T’s, B, Kab}Kas
iii.1.I(A) S: – A, {T’s, B, Kab}Kas
iii.2. S B : – {T”s, A, Kab}Kbs

This attack cannot be checked using timed non-injection agree-
ment because there is exactly one session for both initiator
and responder. For step i.2 I takes the place of B to get the
message from server S where S should be expecting an ack
from B. If S does not get the ack within the timeout window,
it could choose to terminate the session. Let dn be the network
transaction delay for each message passing. S should be able
to get the ack message from B after 2⇤dn if there is no attack.
By changing the timeout window for S to less than 6 ⇤ dn,
this attack will be avoided because B can only send ack to S
after step iii.2, which takes more than 6 ⇤ dn time unites. We
model the Wide Mouth Frog protocol with bounded timeouts
in WMF R2.

We list a set of properties over Wide Mouth Frog protocols,
where the results are shown in Figure 2. CoreWMF is the
protocol without intruder; and CoreWMF + Intruder is the
protocol with intruder I. The results are computed in minutes
or even seconds in PC with 2.83GHz Intel Q9550 CPU and 2
GB memory. Comparison with other approaches are ignored
since there is no other tool supporting timed analysis of
security protocols.

B. Using Timing Information
We are able to check other timing properties of the protocol.

For example, find the minimum and maximum execution time
of a run of a protocol P by finding P.END, using predicate
engage time(P, termination, R) defined in Section V.

execution time(P, R) : �engage time(P, termination, R).

where termination is a special event denoting the end of the
execution, R is the range of execution time of protocol P.

By using the minimum and maximum execution of a pro-
tocol run, we can also check timing authentication properties.
In our approach, if there is a run of a protocol between two
principals A and B, it must be finished within a time interval
[Tmin, Tmax], without intruders. If a protocol run ends before
Tmin, this may be a result of an attack which omits at least
one instructions or performs at least one instructions faster
than it is expected. If a protocol run ends after Tmax, this may
be a result of an attack performing with extra actions, such as
replays. We define a predicate time attack (P, Tr, Min, Max) to
find a trace which exceeds the time interval [min, max], which
is also an instance of an attack.

time attack(P, Tr, Min, Max) : �
trace(P, Tr, T), (T < Min; T > Max).

Assume for a protocol run, once a sender sends a message to
the receiver, the message reaches the receiver within [2, 4] time
units because of the network delay. for WMF protocol, without
introducing an intruder, the execution time of a protocol run
is [4,8]. By executing goal ?� time attack (WMF, Tr, 4, 8).
We find a trace whose execution time is more than 8. If the
execution time of a protocol run exceeds the expected time
interval, there must be some attack in this protocol run. But
if the execution time is within the time interval, attack-free is
not guaranteed.

VII. RELATED WORKS AND CONCLUSION

In this work, we proposed a new method for modeling and
analyzing security protocols which consists of various timing
aspects. To fulfill the aim, we substantially extended Timed
CSP with capabilities to stating complicated and critical timing
requirements of timed security protocols, in a compositional
way. Based on our previous work on building a reasoning tool
for Timed CSP, a prototype mechanized proving system, based
on CLP(R) to verify various properties over systems mod-
eled in this extended specification has been built. We model
principals as processes, as well as the cryptograph device,
including timestamps, timeout, retransmissions and delays.
The timed non-injective agreement authentication property can
be verified using our underlying reasoning engine, which can
be easily extended to verify other authentication properties. We
propose a novel approach to find timing attacks using timing
information of protocol sessions. We can also model timing
requirements of the protocols in WHERE predicates and verify
other timing properties of the protocols.

There are many works on analyzing security protocols. In
literature, methods for formal verification of security protocols

232225225

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply.

Property Protocol Description Result
P1 CoreWMF non-injection agreement Yes
P2 CoreWMF timed non-injection agreement Yes
P3 CoreWMF + Intruder timed non-injection agreement No
P4 CoreWMF + Intruder replay attack Yes
P5 CoreWMF + Intruder timed authentication attack Yes
P6 WMF R1 + Intruder timed non-injection agreement Yes
P7 WMF R1 + Intruder replay attack No
P8 WMF R1 + Intruder timed authentication attack Yes
P9 WMF R2 + Intruder timed non-injection agreement Yes
P10 WMF R2 + Intruder replay attack No
P11 WMF R2 + Intruder timed authentication attack No

Fig. 2. Analysis of Wide Mouth Frog protocols

do not take time into account, and this choice simplifies
the analysis [3]. Powerful theorem provers like Isabelle and
PVS have been applied to verify timed dependent security
properties [2], [14]. A common practice in the area of
modeling and verification of security protocols is to abstract
away timestamps [4]. Our approach is similar to [26] which
uses CSP to model and analyze untimed security protocols.
Recently there have been also other approaches to verify
such protocols [10], which does not discuss timeout and re-
transmissions. One more recent work, using Timed Automata
for verifying timed security [7], also introduces timeout. The
difference of our timeout and retransmissions is that we
propose a bounded timeout, which also consider timeout over
retransmissions. Moreover, they cannot model timedstamps
which needs global synchronization on clocks.

As a future work, we will apply this extended Timed CSP
specifications to other domains, such as timed scheduling
problems, complex real-time systems and etc. For analyzing
timed security protocols, we will expand the verification of
security properties, such as secrecy, integrity, fairness and the
timing properties such as the time range for an easy attack.
For our underlying reasoning engine, there are many potential
improvements to be explored to reduce the execution time,
such as symmetry reduction and heuristics.

REFERENCES

[1] R. Anderson and R. Needham. Programming satan’s computer. In in
Computer Science Today, pages 426–440. Springer-Verlag, 1995.

[2] G. Bella and L. C. Paulson. Kerberos version iv: Inductive analysis of
the secrecy goals. In ESORICS 98, LNCS 1485. Springer, 1998.

[3] M. Boreale and M. G. Buscemi. Experimenting with sta, a tool for
automatic analysis of security protocols. In SAC ’02: Proceedings of
the 2002 ACM symposium on Applied computing, pages 281–285, New
York, NY, USA, 2002. ACM.

[4] L. Bozga, Y. Lakhnech, and M. Prin. Pattern-based abstraction for
verifying secrecy in protocols. Int. J. Softw. Tools Technol. Transf.,
8(1):57–76, 2006.

[5] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.
ACM Transactions on Computer Systems, 8:18–36, 1990.

[6] R. Corin and S. Etalle. An improved constraint-based system for the
verification of security protocols. In SAS ’02: Proceedings of the 9th
International Symposium on Static Analysis. Springer-Verlag, 2002.

[7] R. Corin, S. Etalle, P. H. Hartel, and A. Mader. Timed analysis of
security protocols. J. Comput. Secur., 15(6):619–645, 2007.

[8] J. Davies. Specification and Proof in Real-Time CSP. Cambridge
University Press, 1993.

[9] G. Delzanno and S. Etalle. Proof theory, transformations, and logic
programming for debugging security protocols. In LOPSTR ’01:
Selected papers from the 11th International Workshop on Logic Based
Program Synthesis and Transformation. Springer-Verlag, 2001.

[10] G. Delzanno and P. Ganty. Automatic verification of time sensitive
cryptographic protocols. In TACAS 2004.

[11] D. Dolev and A. C. Yao. On the security of public key protocols.
In SFCS ’81, pages 350–357, Washington, DC, USA, 1981. IEEE
Computer Society.

[12] J. S. Dong, P. Hao, J. Sun, and X. Zhang. A Reasoning Method for
Timed CSP Based on Constraint Solving. In ICFEM 2006, pages 342–
359, 2006.

[13] J. S. Dong, J. Sun, and X. Zhang. Reasoning of
Timed CSP and Extensions. In Technical report.
http://www.comp.nus.edu.sg/�zhangxi5/tp.pdf.

[14] N. Evans and S. Schneider. Analysing time dependent security properties
in csp using pvs. In ESORICS ’00, pages 222–237, London, UK, 2000.
Springer-Verlag.

[15] Formal Systems (Europe) Ltd. Failure Divergence Refinement: FDR2
User Manual. 1997.

[16] G.Lowe. A hierarchy of authentication specifications. In CSFW’97,
pages 31–44, 1997.

[17] G. Gupta and E. Pontelli. A Constraint-based Approach for Specification
and Verification of Real-time Systems. In RTSS ’97, page 230, 1997.

[18] C. A. R. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice-Hall, 1985.

[19] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey.
Journal of Logic Programming,1994.

[20] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R)
Language and System. ACM Trans. Program. Lang. Syst., 14(3):339–
395, 1992.

[21] J. Jaffar, A. E. Santosa, and R. Voicu. A CLP Proof Method for Timed
Automata. In Real-Time Systems Symposium, pages 175–186, 2004.

[22] J. Jaffar, A. E. Santosa, and R. Voicu. Modeling Systems in CLP. In
ICLP’05, 2005.

[23] G. Lowe. Breaking and fixing the needham-schroeder public-key pro-
tocol using fdr. In TACAs ’96: Proceedings of the Second International
Workshop on Tools and Algorithms for Construction and Analysis of
Systems, pages 147–166, London, UK, 1996. Springer-Verlag.

[24] G. M. Reed and A. W. Roscoe. A Timed Model for Communicating
Sequential Processes. In L. Kott, editor, ICALP, volume 226 of Lecture
Notes in Computer Science, pages 314–323. Springer, 1986.

[25] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[26] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. Mod-
elling and analysis of security protocols, 2001.

[27] S. Schneider. Concurrent and Real-time System: The CSP Approach.
JOHN WILEY & SONS, LTD, 2000.

[28] S. A. Schneider. An Operational Semantics for Timed CSP. In
Proceedings Chalmers Workshop on Concurrency, 1991, pages 193 –
213.

233226226

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on August 17,2010 at 21:43:24 UTC from IEEE Xplore. Restrictions apply. View publication statsView publication stats

