5 research outputs found

    Sentinel-1 SAR interferometry for agriculture: description of an experiment in Oryol, Russia

    Get PDF
    In this work we describe an experiment to be carried out in the basin of Suhaya Orlitsa river (Oryol region, central part of European Russia) to compare in-situ measurements of soil moisture with estimates obtained using Synthetic Aperture Radar (SAR) interferometry. The Sentinel-1 mission of the European Space Agency (ESA), acquiring C-band SAR images regularly over all Earth regions since 2014 with a mean revisiting time of 6 days, is used. In-situ measurements of soil moisture are planned in a time interval of 3 hours in coincidence of each Sentinel-1 passage, using a temporal sampling of 15 minutes. Test measurements are planned at the end of the month of April, when the soil accumulates water. The aim of the experiment is to demonstrate the feasibility of using Sentinel-1 images to densify the network of in-situ measurements of soil moisture on the territory of Russia. The application of SAR interferometry is investigated as it requires less in-situ measurements than methods based on the use of radar cross-section and the inversion of models of electromagnetic scattering from natural surfaces. Examples of interferometric coherence and phase images obtained by processing Sentinel-1 images acquired on 20th September 2019 and 2nd October 2019 over the study area are shown

    A Typical Review of Current and Prospective Microwave and Optical Remote Sensing Datasets for Soil Moisture Retrieval

    Get PDF
    Soil Moisture content is a vital indicator of both the weather and the water cycle. It has been a long-standing difficulty for the field of remote sensing to make sense of soil moisture's spatial and temporal distribution. For over five decades, researchers across the world have exclusively investigated the optical and microwave datasets for estimating soil moisture by developing various models, and algorithms. Nevertheless, challenges are faced in the consistent retrieval of SM at local, and global scales with higher accuracy in space and time resolution. The review was conducted in-depth, looking at the methods using optical and microwave data to determine soil moisture, and outlining the benefits and drawbacks considering the current needs.  With this research, a new age of widespread use of space technology for remote sensing of soil moisture has been ushered in. The study also acknowledges the scientific challenges of utilizing remote sensing datasets for soil moisture measurement

    Soil Moisture Estimation for landslide monitoring: A new approach using multi-temporal Synthetic Aperture RADAR data

    Get PDF
    This study explores the utility of the Spotlight2 X-band Synthetic Aperture Radar product developed by the Italian Space Agency for use in multi-temporal estimation of soil moisture in a landslide monitoring context, using a time series of monthly images of the Hollin Hill Landslide Observatory – North Yorkshire, UK. The study shows the complexity of surface soil moisture at an active landslide, using high resolution in situ soil moisture data. This in situ data is also used for ground truthing the soil moisture estimations from the SAR data. The study shows the limitations of inter-and intra-sensor calibration within the Cosmo-SkyMed array and contextualises this problem within the current research climate where SAR imagery is increasingly being created using multi-satellite constellation, while being used, increasingly, by environmental scientists rather than remote sensing specialists
    corecore