55 research outputs found

    A Time Hierarchy Theorem for the LOCAL Model

    Full text link
    The celebrated Time Hierarchy Theorem for Turing machines states, informally, that more problems can be solved given more time. The extent to which a time hierarchy-type theorem holds in the distributed LOCAL model has been open for many years. It is consistent with previous results that all natural problems in the LOCAL model can be classified according to a small constant number of complexities, such as O(1),O(logn),O(logn),2O(logn)O(1),O(\log^* n), O(\log n), 2^{O(\sqrt{\log n})}, etc. In this paper we establish the first time hierarchy theorem for the LOCAL model and prove that several gaps exist in the LOCAL time hierarchy. 1. We define an infinite set of simple coloring problems called Hierarchical 2122\frac{1}{2}-Coloring}. A correctly colored graph can be confirmed by simply checking the neighborhood of each vertex, so this problem fits into the class of locally checkable labeling (LCL) problems. However, the complexity of the kk-level Hierarchical 2122\frac{1}{2}-Coloring problem is Θ(n1/k)\Theta(n^{1/k}), for kZ+k\in\mathbb{Z}^+. The upper and lower bounds hold for both general graphs and trees, and for both randomized and deterministic algorithms. 2. Consider any LCL problem on bounded degree trees. We prove an automatic-speedup theorem that states that any randomized no(1)n^{o(1)}-time algorithm solving the LCL can be transformed into a deterministic O(logn)O(\log n)-time algorithm. Together with a previous result, this establishes that on trees, there are no natural deterministic complexities in the ranges ω(logn)\omega(\log^* n)---o(logn)o(\log n) or ω(logn)\omega(\log n)---no(1)n^{o(1)}. 3. We expose a gap in the randomized time hierarchy on general graphs. Any randomized algorithm that solves an LCL problem in sublogarithmic time can be sped up to run in O(TLLL)O(T_{LLL}) time, which is the complexity of the distributed Lovasz local lemma problem, currently known to be Ω(loglogn)\Omega(\log\log n) and O(logn)O(\log n)

    Locality of not-so-weak coloring

    Get PDF
    Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes: - "Easy": solvable in O(logn)O(\log^* n) rounds with both deterministic and randomized distributed algorithms. - "Hard": requires at least Ω(logn)\Omega(\log n) rounds with deterministic and Ω(loglogn)\Omega(\log \log n) rounds with randomized distributed algorithms. Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in dd-regular graphs it is now known that this jump is at precisely dd colors: coloring with d+1d+1 colors is easy, while coloring with dd colors is hard. However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define kk-partial cc-coloring as follows: nodes are labeled with numbers between 11 and cc, and every node is incident to at least kk properly colored edges. It is known that 11-partial 22-coloring (a.k.a. weak 22-coloring) is easy for any d1d \ge 1. As our main result, we show that kk-partial 22-coloring becomes hard as soon as k2k \ge 2, no matter how large a dd we have. We also show that this is fundamentally different from kk-partial 33-coloring: no matter which k3k \ge 3 we choose, the problem is always hard for d=kd = k but it becomes easy when dkd \gg k. The same was known previously for partial cc-coloring with c4c \ge 4, but the case of c<4c < 4 was open

    New Classes of Distributed Time Complexity

    Full text link
    A number of recent papers -- e.g. Brandt et al. (STOC 2016), Chang et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC 2017), and Chang & Pettie (FOCS 2017) -- have advanced our understanding of one of the most fundamental questions in theory of distributed computing: what are the possible time complexity classes of LCL problems in the LOCAL model? In essence, we have a graph problem Π\Pi in which a solution can be verified by checking all radius-O(1)O(1) neighbourhoods, and the question is what is the smallest TT such that a solution can be computed so that each node chooses its own output based on its radius-TT neighbourhood. Here TT is the distributed time complexity of Π\Pi. The time complexity classes for deterministic algorithms in bounded-degree graphs that are known to exist by prior work are Θ(1)\Theta(1), Θ(logn)\Theta(\log^* n), Θ(logn)\Theta(\log n), Θ(n1/k)\Theta(n^{1/k}), and Θ(n)\Theta(n). It is also known that there are two gaps: one between ω(1)\omega(1) and o(loglogn)o(\log \log^* n), and another between ω(logn)\omega(\log^* n) and o(logn)o(\log n). It has been conjectured that many more gaps exist, and that the overall time hierarchy is relatively simple -- indeed, this is known to be the case in restricted graph families such as cycles and grids. We show that the picture is much more diverse than previously expected. We present a general technique for engineering LCL problems with numerous different deterministic time complexities, including Θ(logαn)\Theta(\log^{\alpha}n) for any α1\alpha\ge1, 2Θ(logαn)2^{\Theta(\log^{\alpha}n)} for any α1\alpha\le 1, and Θ(nα)\Theta(n^{\alpha}) for any α<1/2\alpha <1/2 in the high end of the complexity spectrum, and Θ(logαlogn)\Theta(\log^{\alpha}\log^* n) for any α1\alpha\ge 1, 2Θ(logαlogn)\smash{2^{\Theta(\log^{\alpha}\log^* n)}} for any α1\alpha\le 1, and Θ((logn)α)\Theta((\log^* n)^{\alpha}) for any α1\alpha \le 1 in the low end; here α\alpha is a positive rational number

    Towards a complexity theory for the congested clique

    Full text link
    The congested clique model of distributed computing has been receiving attention as a model for densely connected distributed systems. While there has been significant progress on the side of upper bounds, we have very little in terms of lower bounds for the congested clique; indeed, it is now know that proving explicit congested clique lower bounds is as difficult as proving circuit lower bounds. In this work, we use various more traditional complexity-theoretic tools to build a clearer picture of the complexity landscape of the congested clique: -- Nondeterminism and beyond: We introduce the nondeterministic congested clique model (analogous to NP) and show that there is a natural canonical problem family that captures all problems solvable in constant time with nondeterministic algorithms. We further generalise these notions by introducing the constant-round decision hierarchy (analogous to the polynomial hierarchy). -- Non-constructive lower bounds: We lift the prior non-uniform counting arguments to a general technique for proving non-constructive uniform lower bounds for the congested clique. In particular, we prove a time hierarchy theorem for the congested clique, showing that there are decision problems of essentially all complexities, both in the deterministic and nondeterministic settings. -- Fine-grained complexity: We map out relationships between various natural problems in the congested clique model, arguing that a reduction-based complexity theory currently gives us a fairly good picture of the complexity landscape of the congested clique

    Distributed (Δ+1)(\Delta+1)-Coloring in Sublogarithmic Rounds

    Full text link
    We give a new randomized distributed algorithm for (Δ+1)(\Delta+1)-coloring in the LOCAL model, running in O(logΔ)+2O(loglogn)O(\sqrt{\log \Delta})+ 2^{O(\sqrt{\log \log n})} rounds in a graph of maximum degree~Δ\Delta. This implies that the (Δ+1)(\Delta+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(lognloglogn,logΔloglogΔ))\Omega \left( \min \left( \sqrt{\frac{\log n}{\log \log n}}, \frac{\log \Delta}{\log \log \Delta} \right) \right) by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ+1\Delta+1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts

    On the Complexity of Distributed Splitting Problems

    Full text link
    One of the fundamental open problems in the area of distributed graph algorithms is the question of whether randomization is needed for efficient symmetry breaking. While there are fast, polylogn\text{poly}\log n-time randomized distributed algorithms for all of the classic symmetry breaking problems, for many of them, the best deterministic algorithms are almost exponentially slower. The following basic local splitting problem, which is known as the \emph{weak splitting} problem takes a central role in this context: Each node of a graph G=(V,E)G=(V,E) has to be colored red or blue such that each node of sufficiently large degree has at least one node of each color among its neighbors. Ghaffari, Kuhn, and Maus [STOC '17] showed that this seemingly simple problem is complete w.r.t. the above fundamental open question in the following sense: If there is an efficient polylogn\text{poly}\log n-time determinstic distributed algorithm for weak splitting, then there is such an algorithm for all locally checkable graph problems for which an efficient randomized algorithm exists. In this paper, we investigate the distributed complexity of weak splitting and some closely related problems. E.g., we obtain efficient algorithms for special cases of weak splitting, where the graph is nearly regular. In particular, we show that if δ\delta and Δ\Delta are the minimum and maximum degrees of GG and if δ=Ω(logn)\delta=\Omega(\log n), weak splitting can be solved deterministically in time O(Δδpoly(logn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log n)\big). Further, if δ=Ω(loglogn)\delta = \Omega(\log\log n) and Δ2εδ\Delta\leq 2^{\varepsilon\delta}, there is a randomized algorithm with time complexity O(Δδpoly(loglogn))O\big(\frac{\Delta}{\delta}\cdot\text{poly}(\log\log n)\big)
    corecore