4,509 research outputs found

    Improved Runtime Bounds for the Univariate Marginal Distribution Algorithm via Anti-Concentration

    Get PDF
    Unlike traditional evolutionary algorithms which produce offspring via genetic operators, Estimation of Distribution Algorithms (EDAs) sample solutions from probabilistic models which are learned from selected individuals. It is hoped that EDAs may improve optimisation performance on epistatic fitness landscapes by learning variable interactions. However, hardly any rigorous results are available to support claims about the performance of EDAs, even for fitness functions without epistasis. The expected runtime of the Univariate Marginal Distribution Algorithm (UMDA) on OneMax was recently shown to be in O(nλlogλ)\mathcal{O}\left(n\lambda\log \lambda\right) by Dang and Lehre (GECCO 2015). Later, Krejca and Witt (FOGA 2017) proved the lower bound Ω(λn+nlogn)\Omega\left(\lambda\sqrt{n}+n\log n\right) via an involved drift analysis. We prove a O(nλ)\mathcal{O}\left(n\lambda\right) bound, given some restrictions on the population size. This implies the tight bound Θ(nlogn)\Theta\left(n\log n\right) when λ=O(logn)\lambda=\mathcal{O}\left(\log n\right), matching the runtime of classical EAs. Our analysis uses the level-based theorem and anti-concentration properties of the Poisson-Binomial distribution. We expect that these generic methods will facilitate further analysis of EDAs.Comment: 19 pages, 1 figur

    Towards a Theory-Guided Benchmarking Suite for Discrete Black-Box Optimization Heuristics: Profiling (1+λ)(1+\lambda) EA Variants on OneMax and LeadingOnes

    Full text link
    Theoretical and empirical research on evolutionary computation methods complement each other by providing two fundamentally different approaches towards a better understanding of black-box optimization heuristics. In discrete optimization, both streams developed rather independently of each other, but we observe today an increasing interest in reconciling these two sub-branches. In continuous optimization, the COCO (COmparing Continuous Optimisers) benchmarking suite has established itself as an important platform that theoreticians and practitioners use to exchange research ideas and questions. No widely accepted equivalent exists in the research domain of discrete black-box optimization. Marking an important step towards filling this gap, we adjust the COCO software to pseudo-Boolean optimization problems, and obtain from this a benchmarking environment that allows a fine-grained empirical analysis of discrete black-box heuristics. In this documentation we demonstrate how this test bed can be used to profile the performance of evolutionary algorithms. More concretely, we study the optimization behavior of several (1+λ)(1+\lambda) EA variants on the two benchmark problems OneMax and LeadingOnes. This comparison motivates a refined analysis for the optimization time of the (1+λ)(1+\lambda) EA on LeadingOnes

    Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings

    Full text link
    While evolutionary algorithms are known to be very successful for a broad range of applications, the algorithm designer is often left with many algorithmic choices, for example, the size of the population, the mutation rates, and the crossover rates of the algorithm. These parameters are known to have a crucial influence on the optimization time, and thus need to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal parameters can change during the optimization process. It is therefore of great interest to design mechanisms that dynamically choose best-possible parameters. An example for such an update mechanism is the one-fifth success rule for step-size adaption in evolutionary strategies. While in continuous domains this principle is well understood also from a mathematical point of view, no comparable theory is available for problems in discrete domains. In this work we show that the one-fifth success rule can be effective also in discrete settings. We regard the (1+(λ,λ))(1+(\lambda,\lambda))~GA proposed in [Doerr/Doerr/Ebel: From black-box complexity to designing new genetic algorithms, TCS 2015]. We prove that if its population size is chosen according to the one-fifth success rule then the expected optimization time on \textsc{OneMax} is linear. This is better than what \emph{any} static population size λ\lambda can achieve and is asymptotically optimal also among all adaptive parameter choices.Comment: This is the full version of a paper that is to appear at GECCO 201

    Analyses of evolutionary algorithms

    Get PDF
    Evolutionary algorithms (EAs) are a highly successful tool commonly used in practice to solve algorithmic problems. This remarkable practical value, however, is not backed up by a deep theoretical understanding. Such an understanding would facilitate the application of EAs to further problems. Runtime analyses of EAs are one way to expand the theoretical knowledge in this field. This thesis presents runtime analyses for three prominent problems in combinatorial optimization. Additionally, it provides probability theoretical tools that will simplify future runtime analyses of EAs. The first problem considered is the Single Source Shortest Path problem. The task is to find in a weighted graph for a given source vertex shortest paths to all other vertices. Developing a new analysis method we can give tight bounds on the runtime of a previously designed and analyzed EA for this problem. The second problem is the All-Pairs Shortest Path problem. Given a weighted graph, one has to find a shortest path for every pair of vertices in the graph. For this problem we show that adding a crossover operator to a natural EA using only mutation provably decreases the runtime. This is the first time that the usefulness of a crossover operator was shown for a combinatorial problem. The third problem considered is the Sorting problem. For this problem, we design a new representation based on trees. We show that the EA nat- urally arising from this representation has a better runtime than previously analyzed EAs.Evolutionäre Algorithmen (EAs) werden in der Praxis sehr erfolgreich eingesetzt. Bisher werden die theoretischen Grundlagen von EAs jedoch nicht zufriedenstellend verstanden. Laufzeitanalysen für einfache EAs sollen dieses Verständnis erweitern. Diese Dissertation enthält Laufzeitanalysen für EAs für drei wohlbekannte kombinatorische Probleme. Zusätzlich werden wahrscheinlichkeitstheoretische Hilfsmittel zur Analyse von EAs eingeführt. Zuerst behandeln wir das Single Source Shortest Path Problem. Die Aufgabe besteht darin, in einem gewichteten Graphen einen kürzesten Weg von einem Startknoten zu jedem anderen Knoten zu finden. Durch die Entwick- lung einer neuen Analysemethode konnten wir scharfe Schranken für die Laufzeit eines bereits zuvor präsentierten und analysierten EAs angeben. Als nächstes betrachten wir das All-Pairs Shortest Path Problem. Hierbei will man für jedes Paar von Knoten in einem gewichteten Graphen einen kürzesten Weg berechnen. Für dieses Problem zeigen wir, dass das Hinzufügen eines Crossover Operators die Laufzeit gegenüber einem natürlichen EA, der nur Mutationen nutzt, verbessert. Dies ist das erste Mal, dass für ein kombinatorisches Problem bewiesen wurde, dass ein Crossover Operator die Laufzeit reduziert. Für das Sortierproblem entwickeln wir eine neue, auf Bäumen beruhende Repräsentation und zeigen, dass der natürlich daraus entstehende EA eine bessere Laufzeit hat als vorherige EAs

    Runtime Analysis of the (1+(λ,λ))(1+(\lambda,\lambda)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas

    Full text link
    The (1+(λ,λ))(1+(\lambda,\lambda)) genetic algorithm, first proposed at GECCO 2013, showed a surprisingly good performance on so me optimization problems. The theoretical analysis so far was restricted to the OneMax test function, where this GA profited from the perfect fitness-distance correlation. In this work, we conduct a rigorous runtime analysis of this GA on random 3-SAT instances in the planted solution model having at least logarithmic average degree, which are known to have a weaker fitness distance correlation. We prove that this GA with fixed not too large population size again obtains runtimes better than Θ(nlogn)\Theta(n \log n), which is a lower bound for most evolutionary algorithms on pseudo-Boolean problems with unique optimum. However, the self-adjusting version of the GA risks reaching population sizes at which the intermediate selection of the GA, due to the weaker fitness-distance correlation, is not able to distinguish a profitable offspring from others. We show that this problem can be overcome by equipping the self-adjusting GA with an upper limit for the population size. Apart from sparse instances, this limit can be chosen in a way that the asymptotic performance does not worsen compared to the idealistic OneMax case. Overall, this work shows that the (1+(λ,λ))(1+(\lambda,\lambda)) GA can provably have a good performance on combinatorial search and optimization problems also in the presence of a weaker fitness-distance correlation.Comment: An extended abstract of this report will appear in the proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017

    An Exponential Lower Bound for the Runtime of the cGA on Jump Functions

    Full text link
    In the first runtime analysis of an estimation-of-distribution algorithm (EDA) on the multi-modal jump function class, Hasen\"ohrl and Sutton (GECCO 2018) proved that the runtime of the compact genetic algorithm with suitable parameter choice on jump functions with high probability is at most polynomial (in the dimension) if the jump size is at most logarithmic (in the dimension), and is at most exponential in the jump size if the jump size is super-logarithmic. The exponential runtime guarantee was achieved with a hypothetical population size that is also exponential in the jump size. Consequently, this setting cannot lead to a better runtime. In this work, we show that any choice of the hypothetical population size leads to a runtime that, with high probability, is at least exponential in the jump size. This result might be the first non-trivial exponential lower bound for EDAs that holds for arbitrary parameter settings.Comment: To appear in the Proceedings of FOGA 2019. arXiv admin note: text overlap with arXiv:1903.1098
    corecore