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Abstract

Evolutionary algorithms (EAs) are a highly successful tool commonly used
in practice to solve algorithmic problems. This remarkable practical value,
however, is not backed up by a deep theoretical understanding. Such an
understanding would facilitate the application of EAs to further problems.
Runtime analyses of EAs are one way to expand the theoretical knowledge
in this field.

This thesis presents runtime analyses for three prominent problems in
combinatorial optimization. Additionally, it provides probability theoretical
tools that will simplify future runtime analyses of EAs.

The first problem considered is the Single Source Shortest Path problem.
The task is to find in a weighted graph for a given source vertex shortest
paths to all other vertices. Developing a new analysis method we can give
tight bounds on the runtime of a previously designed and analyzed EA for
this problem.

The second problem is the All-Pairs Shortest Path problem. Given a
weighted graph, one has to find a shortest path for every pair of vertices in
the graph. For this problem we show that adding a crossover operator to
a natural EA using only mutation provably decreases the runtime. This is
the first time that the usefulness of a crossover operator was shown for a
combinatorial problem.

The third problem considered is the Sorting problem. For this problem,
we design a new representation based on trees. We show that the EA nat-
urally arising from this representation has a better runtime than previously
analyzed EAs.
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Zusammenfassung

Evolutionäre Algorithmen (EAs) werden in der Praxis sehr erfolgreich ein-
gesetzt. Bisher werden die theoretischen Grundlagen von EAs jedoch nicht
zufriedenstellend verstanden. Laufzeitanalysen für einfache EAs sollen dieses
Verständnis erweitern.

Diese Dissertation enthält Laufzeitanalysen für EAs für drei wohlbekann-
te kombinatorische Probleme. Zusätzlich werden wahrscheinlichkeitstheore-
tische Hilfsmittel zur Analyse von EAs eingeführt.

Zuerst behandeln wir das Single Source Shortest Path Problem. Die Auf-
gabe besteht darin, in einem gewichteten Graphen einen kürzesten Weg von
einem Startknoten zu jedem anderen Knoten zu finden. Durch die Entwick-
lung einer neuen Analysemethode konnten wir scharfe Schranken für die Lauf-
zeit eines bereits zuvor präsentierten und analysierten EAs angeben.

Als nächstes betrachten wir das All-Pairs Shortest Path Problem. Hier-
bei will man für jedes Paar von Knoten in einem gewichteten Graphen einen
kürzesten Weg berechnen. Für dieses Problem zeigen wir, dass das Hin-
zufügen eines Crossover Operators die Laufzeit gegenüber einem natürlichen
EA, der nur Mutationen nutzt, verbessert. Dies ist das erste Mal, dass für
ein kombinatorisches Problem bewiesen wurde, dass ein Crossover Operator
die Laufzeit reduziert.

Für das Sortierproblem entwickeln wir eine neue, auf Bäumen beruhende
Repräsentation und zeigen, dass der natürlich daraus entstehende EA eine
bessere Laufzeit hat als vorherige EAs.
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Chapter 1

Introduction

Evolutionary algorithms are a highly effective and widely used tool for solving
a broad range of optimization problems. The utilization of evolutionary
algorithms is very easy and they quickly provide results of a high quality.
But what exactly are evolutionary algorithms and why are they so efficient?

In this thesis, we introduce evolutionary algorithms and present theoret-
ical results contributing to the answer of the second question.

1.1 The Paradigm of Evolutionary Algorithms

Evolutionary algorithms use the principles of biological evolution in an algo-
rithmic framework to solve problems from computer science.

Charles Darwin is generally seen as the father of the evolutionary thought.
His new evolutionary theory was based on natural variation and selection.
This, in combination with Gregor Mendel’s laws of inheritance, gave rise to
the design of several distinct problem solving techniques in computer science,
comprised under the general term of evolutionary computation or evolution-
ary algorithms.

Biological evolution is a process spread over many generations that gradu-
ally changes the inheritance traits of a population of individuals. These traits
are encoded in the genes and vary within the population. Mutation changes
the genes over time, and sexual reproduction combines genes of different in-
dividuals. By natural selection, traits helpful for survival and reproduction
become more common in the population, whereas harmful ones extinguish.
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This occurs because individuals with advantageous traits have better chances
to pass these traits on to the next generation (survival of the fittest).

Evolutionary algorithms use computational models of these evolution-
ary processes for randomized computational optimization. Typically, they
keep a set (population) of solution candidates (individuals), which they try
to gradually improve. Improvements may be generated by applying differ-
ent variation operators, such as mutation and recombination (mostly called
crossover), to certain individuals. The quality of a solution is measured by
a so-called fitness function. Based on the fitness value of the individuals, a
selection procedure removes some individuals from the population. The cycle
of variation and selection is repeated until a solution of sufficient fitness is
found. See, e. g., [For93] for a short introduction to genetic algorithms. In
Section 2 we will define evolutionary algorithms more thoroughly.

1.2 Randomized Search Heuristics

Evolutionary algorithms are successfully used for a wide range of optimization
problems. They belong to the class of randomized search heuristics [Weg03].
Among others, Randomized Local Search (RLS), the Metropolis Algorithm
[MRR+53], and Simulated Annealing [KGJV83] also belong to this class of
algorithms. All of them try to find good solutions to an optimization problem
by repeatedly changing some candidate solution(s) randomly.

Whereas early hopes that these ideas might make notoriously hard prob-
lems become tractable were not fulfilled [WM97], randomized search heuris-
tics nowadays are frequently used as a generic way to obtain algorithms.
Naturally, such generic approaches cannot compete with a custom-tailored
algorithm. Nevertheless, they are a well established tool that is frequently
used in practice, because they are easy and cheap to implement, need fewer
analysis of the problem to be solved, and can be reused easily for related
problems. An expert in such methods can comfortably solve algorithmic
problems by plugging together suitable generic components without fully an-
alyzing the problem itself. The components only have to be adapted to the
particular problem under consideration. This adaptation can be guided by
an experimental evaluation of the actual behavior of the algorithms or by
previously obtained experience.
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1.3 Theoretical Analysis

Though evolutionary approaches have proven to be extremely successful in
practice (see, e. g., the Proceedings of the annual ACM Genetic and Evolu-
tionary Computation Conferences (GECCO)), the theoretical understanding
of such methods is still in its infancy.

Nevertheless, the recent years produced some remarkable theoretical re-
sults, mostly on convergence phenomena and runtime analyses. Since we will
present runtime analyses, we point the reader interested in some convergence
results to [RW91, RRS95, RW99]. The aim of runtime analyses is to obtain
a theoretically founded understanding of the basic principles of evolution-
ary computation. The hope is that such an understanding will facilitate the
future design of evolutionary algorithms.

The first theoretical runtime analyses were conducted on simple evolu-
tionary algorithms on artificial problems like maximizing simple pseudo-
boolean functions f : {0, 1}n → R, e. g., the number of ones (ONEMAX(x) :=
∑n

i=1 xi), the number of leading ones (LO(x) := max{i ∈ N | ∀j ≤ i : xj =
1}), or monotone linear functions and polynomials [Weg01, DJW02, WW05].
Already through the work on these simple problems quite some insight was
gained on the functionality and analysis of evolutionary algorithms. Sur-
prisingly, even for such extremely simple evolutionary algorithms on simple
problems a tight analysis of the runtime behavior can be very complicated.
A classical example for the difficulties one faces when analyzing evolutionary
algorithms is the (tight) O(n log(n)) bound for the optimization time of a
simple (1 + 1) evolutionary algorithm maximizing a monotone linear func-
tion on {0, 1}n. Here, classical methods from the analysis of randomized
algorithms lead to a highly technical proof [DJW02]. Subsequent efforts put
into this problem resulted in the so-called drift analysis becoming a major
tool in the runtime analysis of evolutionary algorithms [HY04].

More recently, evolutionary algorithms for classical problems from com-
puter science became the focus of such runtime analyses. The first work
in this direction was conducted by Scharnow, Tinnefeld, and Wegener who
analyzed simple evolutionary algorithms for sorting and shortest path prob-
lems [STW04]. Results on evolutionary algorithms for combinatorial prob-
lems like the Eulerian cycle problem [Neu04, DHN06, DKS07, DJ07], mini-
mum spanning trees [NW04, NW05], maximal matchings [GW03], and parti-
tion [Wit05] followed. The design of evolutionary algorithms for such combi-
natorial problems becomes more interesting, since one typically has to choose
between several natural representations of the individuals, fitness functions,
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and variation operators. Naturally, because of the richer structure of such
problems, the analysis becomes also more challenging.

To avoid misunderstandings, let us stress that the focus of this line of
research is not to find superior algorithms for the particular underlying op-
timization problem. Since these are classical and important problems, they
have been investigated thoroughly and hence very good custom-tailored al-
gorithms already exist. Rather, the focus of this work is to analyze how such
problems can be tackled with generic approaches, to understand how their
components like particular representations or variation operators work, and,
finally, to develop methods to analyze evolutionary algorithms.

1.4 Overview

The following gives a brief overview of the rest of this work summarizing our
main contributions and referencing the publications this thesis is based on.

Chapter 2 explains evolutionary algorithms in more detail, discussing
their components and structure. Chapter 3 presents the necessary back-
ground on probability theory. This includes classical Chernoff bounds as
well as some tools we developed for our analyses.

In Chapter 4, we reconsider the evolutionary algorithm for the Single
Source Shortest Path problem introduced in [STW04]. We apply a new tech-
nique for the analysis that overcomes the coupon collector behavior usually
used. Using this technique, we improve the previous results by giving a tight
bound on the optimization time which holds with high probability. Based on
the paper “A Tight Analysis of the (1 + 1)-EA for the Single Source Shortest
Path Problem” by B. Doerr, E. H., and C. Klein [DHK07].

In Chapter 5, we consider the All-Pairs Shortest Path problem and design
a natural evolutionary algorithm for it. We rigorously analyze the optimiza-
tion time of this algorithm with and without a crossover operator, which
reveals that adding a crossover operator can in fact improve the optimiza-
tion time. This is the first time that the usefulness of a crossover operator
was shown for a combinatorial problem. Based on the paper “Crossover Can
Provably be Useful in Evolutionary Computation” by B. Doerr, E. H., and
C. Klein [DHK08].

In Chapter 6, we introduce a simple framework for dealing with search
spaces consisting of permutations. To demonstrate its usefulness, we build
upon it a simple evolutionary algorithm for the Sorting problem. We show
that this algorithm has a better optimization time than the currently best
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evolutionary algorithm for the Sorting problem introduced in [STW04]. Ad-
ditionally, our approach has the particular advantage that it does distinguish
between wrong and unexplored information. This allows to retrieve partial,
correct information even before the optimal solution has been found. Based
on the paper “Directed Trees: A Powerful Representation for Sorting and
Ordering Problems” by B. Doerr and E. H. [DH08].

The Appendix A lists further contributions that are not contained in this
thesis.
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Chapter 2

Evolutionary Algorithms

The paradigm of evolutionary computation is to use principles inspired by the
biological evolution (cf. Section 1.1) to find good solutions for optimization
problems. In this chapter, we explain the different components and the
general structure of an evolutionary algorithm (EA).

2.1 Components of an Evolutionary Algorithm

The aim of an evolutionary algorithm is to find an optimal point in a search
space. It does so by keeping an over time evolving population (a set) of
individuals (or candidate solutions). These individuals represent points in
the search space. Variation operators, such as mutation and crossover, are
used to create new individuals from the existing population. As in nature,
the size of the population is not supposed to grow infinitely, and thus some of
the individuals are selected to persist, whilst others are deleted. There exist
several selection strategies which are typically based on a fitness function
which assigns fitness values to the individuals.

In the following, the different components of an evolutionary algorithm
are explained in more detail.

2.2 Individuals and Population

An evolutionary algorithm tries to find an optimal solution in a search space
S. Hence, an individual that is a candidate solution to the considered opti-
mization problem has to be a point in S. In the beginning of runtime analyses
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for evolutionary algorithms, EAs optimizing pseudo-boolean functions were
considered. Here, the search space is S := {0, 1}h and the individuals are
bit-strings of a fixed length h. However, if more elaborate problems are con-
sidered (as in this work), it is usually more adequate to choose a different
representation (and thus search space) for the problem.

The set of currently considered individuals is called the population. The
population at time t is denoted by It, and the nt individuals in this popu-
lation are denoted by I t

1, . . . , I
t
nt

. The index t is often omitted if it does not
create ambiguity. A population at a certain time step is sometimes also called
the current population or generation. When talking of populations at time t
and t + 1 one talks about the parent and the offspring population or gener-
ation. The size of the population is usually denoted by µ and the number of
offspring individuals by λ. In many cases, the size of the population and the
number of offspring individuals created per generation is constant. When
analyzing evolutionary algorithms, often (as in this work) simple versions
with µ = 1 and / or λ = 1 are considered.

2.3 Fitness Function and Selection Operator

The aim of the selection operator is to prevent the population from growing
too big as well as to get rid of individuals that are not considered to be
useful solution candidates anymore. Typically, selection is guided by a fitness
function f : S → R assigning each individual I ∈ I a fitness value. This
fitness function is a heuristic measure that indicates how far an individual is
from being optimal.

An evolutionary algorithm is called a (µ, λ)-EA if it has a population
size of µ, creates λ offspring individuals, and of these offspring individuals
selects the µ individuals having the best fitness. If the fittest µ individuals
are instead selected from a union of the parent population and the offspring,
the algorithm is called a (µ + λ)-EA. The latter is more commonly used and
the one we consider in this work.

Both of the above described selection strategies choose the fittest indi-
viduals and are thus called elitist selection strategies (or truncation). There
also exist other selection strategies [GD91, BT96], e. g., fitness-proportional
(also called roulette-wheel) selection and tournament selection. Fitness-
proportional selection chooses the individuals for the next generation with a
probability proportional to their fitness values. Tournament selection chooses
τ (called the tournament size) individuals at random of which it selects the
fittest. This process is repeated as often as individuals must be chosen.
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Elitist selection can lead to a faster fitness increase in the population,
whereas fitness-proportional and tournament selection have the advantage of
a higher degree of diversity in the population. The advantage of diversity
in a population is that the individuals hopefully cover a bigger part of the
search space and thus not all get stuck in some local optimum. A mechanism
that ensures variety in a population is called a diversity mechanism.

We do not need diversity mechanisms in Chapters 4 and 6, since there we
analyze (1 + 1)-EAs which always have a population consisting of a single
individual. In Chapter 5, diversity is assured by different measures using
elitist selection, so that we will not use any other selection strategies.

2.4 Variation Operators

Mutation and crossover are used to generate new individuals. Mutation
does so by applying some random changes to one individual whilst crossover
randomly combines two individuals. In this work, we will call an algorithm
that uses only mutation an evolutionary algorithm (EA), and one that uses
mutation and crossover a genetic algorithm (GA). In practice, mutation is
often applied to the individual resulting from a crossover step.

Mutation Operator

The classical mutation operator for bit-strings of length h selects a random
individual I := (x1, . . . , xh) ∈ I ⊆ {0, 1}h from the population and creates a
new individual Inew by flipping each bit of I with probability 1

h
. By doing this,

in expectation one bit is flipped. However, it is possible, though improbable,
for a single mutation step to flip many bits, including up to all h bits. Thus,
any bit-string might be generated by a single mutation step, but usually a
bit-string in a closer neighborhood is created. This is in contrast to RLS
(Randomized Local Search) where only a close neighborhood can be reached
in one step [WW03].

If the individuals are not represented by bit-strings, a different mutation
operator fitting the representation has to be defined. Analogously to the
classical one flipping a number of bits, the mutation operator is supposed
to apply a number of slight random changes to an individual. Let us call
such a slight change an elementary mutation. The number of bits flipped
by the classical mutation operator can be approximated by using a Poisson
distribution Pois(ζ = 1) with parameter ζ = 1, as proposed in [STW04].
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The Poisson distribution with ζ = 1 is the limit (for h growing large) of
the Binomial distribution for h trials with probability 1

h
each. For general

ζ > 0 and k ∈ N, the Poisson distribution with parameter ζ is given by the
probability mass function

f(k; ζ) =
ζke−ζ

k!
,

which gives the probability that a Pois(ζ)-distributed random variable is
equal to k. The number of elementary mutations applied in one step is then
given by S+1 (to assure that at least one elementary mutation is performed),
where S is distributed according to Pois(ζ = 1).

Crossover Operator

The classical crossover operators for bit-strings are uniform and one-point
crossover. Both randomly select two individuals Ii and Ij from the population
I and randomly create a new individual Inew . The uniform crossover does
so by setting for k ∈ [1..h] the k-th bit of Inew with probability 1

2
to the k-th

bit of either parent. The one-point crossover chooses a position k ∈ [0..h]
uniformly at random and sets the first k bits of Inew to the first k bits of Ii

and the last h − k bits to the corresponding bits of Ij.

If a different representation than bit-strings is used, a crossover operator
fitting the representation has to be defined that combines two individuals in
a random manner.

2.5 Structure of an Evolutionary Algorithm

Typically, an evolutionary algorithm (EA) has the following structure (cf.
Figure 2.5). First the initial population is created, often this initialization is
done randomly. Until a solution of sufficient fitness is found, the evolutionary
algorithm repeats the following steps. A number (usually denoted by λ) of
variation steps are done to generate (λ) offspring individuals. The variation
step consists of a mutation and / or a crossover step. If crossover is applied,
we will call the algorithm a genetic algorithm (GA). A selection step then
selects the (µ) individuals that form the next generation.
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General EA

1 Initialization (create initial population I)
2 repeat
3 repeat λ times
4 Variation (create a new individual)
5 Selection (choose µ individuals)
6 until I contains solution of sufficient fitness

Figure 2.1: The general structure of an evolutionary algorithm.

2.6 Optimization Time

When analyzing the complexity of an algorithm, one is typically interested
in the asymptotic runtime of the algorithm, that is, constant factors and
lower order terms are ignored. Since evolutionary algorithms are randomized
algorithms, we can only consider the runtime as random variable and analyze
the expected value of this random variable.

Moreover, the preferred performance measure in the EA community is
not the runtime, but the optimization time. This is defined to be the number
of fitness function evaluations the algorithm performs until it finds a solu-
tion of sufficient fitness, in this thesis an optimal solution. The time needed
for the creation of new individuals by mutation or crossover or to evaluate
the fitness function is usually disregarded. Again, only the expected asymp-
totic behavior is of interest. If the number of offspring individuals created
per generation is constant, the asymptotic optimization time is equal to the
asymptotic number of generations needed to find the desired solution.

However, not always is the expected optimization time the only term of
interest when analyzing evolutionary algorithms. Sometimes one wants to
state additionally to or instead of the expected optimization time an upper
or lower bound on the optimization time that holds up to a certain failure
probability. A bound on this failure probability is typically inverse polyno-
mial or inverse exponential. We say an event holds with high probability if it
holds with probability at least 1−O(n−c) for an arbitrary but fixed constant
c. Equivalently, we say an event holds with overwhelming probability if it
holds with probability at least 1 − 2−Ω(nε) for some constant ε > 0.
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Chapter 3

Probability Theory

Since evolutionary algorithms are random algorithms, for the analysis some
background in probability theory is needed. In this chapter we introduce
some classical Chernoff bounds together with several theorems and lemmas
that we developed and used while working on the contributions presented in
this thesis.

3.1 Chernoff Bounds

To be able to state that an optimization time holds with high or overwhelm-
ing probability (cf. Section 2.6), throughout this work we will often use the
following classical bounds on large deviations [AS00, MR95].

Theorem 3.1 (Chernoff Bounds). Let X1, . . . , Xt be mutually independent
random variables with Xi ∈ {0, 1} for all i ∈ [1..t]. Let X :=

∑t
i=1 Xi. Then

a) for all α < 1, Pr[X < αE[X]] ≤ exp(−1
2
(1 − α)2

E[X]),

b) for all β > 1, Pr[X ≥ βE[X]] < (eβ−1β−β)E[X],

c) for all γ > 0, Pr[X ≥ (1 + γ)E[X]] ≤ exp
(

−min{γ,γ2}E[X]
3

)

.

If the variables are geometrically distributed, the following Chernoff-like
inequality can be helpful. To the best of our knowledge, such bounds have
not been published so far in a mathematics or computer science journal.
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Theorem 3.2. Let Y1, . . . , Yt be mutually independent random variables,
Y :=

∑t
i=1 Yi, and 0 < p < 1 be a constant. If the Yi are geometrically

distributed random variables with Pr[Yi = j] = (1−p)j−1p for all j ∈ N, then

for all δ > 0, Pr[Y > (1 + δ)E[Y ]] ≤ exp
(

− δ2

2
(t−1)
(1+δ)

)

.

Proof. Let X1, X2, . . . be an infinite sequence of independent, identically dis-
tributed biased coin tosses (binary random variables) such that Xi is one with
probability Pr[Xi = 1] = p and zero with probability Pr[Xi = 0] = 1 − p.
Note that the random variable “smallest j such that Xj = 1” has the same
distribution as each Yi. In consequence, Y has the same distribution as
“smallest j such that exactly t of the variables X1, . . . , Xj are one”. In par-
ticular, Pr[Y > j] = Pr[

∑j−1
i=1 Xi < t − 1] for all j ∈ N. This manipulation

reduces our problem to the analysis of independent Bernoulli trials and will
enable us to use the classical Chernoff bounds.

The expected value of each Yi is E[Yi] = 1
p
, thus E[Y ] = t

p
. Let X :=

∑⌈(1+δ)E[Y ]−1⌉
i=1 Xi. By the above,

Pr[Y > (1 + δ)E[Y ]] = Pr[X < t − 1].

The expected value of X is bounded by

E[X] = ⌈(1 + δ)E[Y ] − 1⌉p ≥ (1 + δ)t − p > (1 + δ)(t − 1).

Now let α := t−1
E[X]

. Then α < 1 and Pr[X < t − 1] = Pr[X < αE[X]]. Hence
we can apply the first inequality in Theorem 3.1 to get

Pr[Y > (1 + δ)E[Y ]] = Pr[X < αE[X]]

≤ exp
(

− 1

2
E[X](1 − t − 1

E[X]
)2

)

≤ exp
(

− 1

2
E[X](1 − 1

1 + δ
)2

)

≤ exp
(

− 1

2
(t − 1)(1 + δ)(

δ

1 + δ
)2

)

= exp
(

− δ2

2

(t − 1)

(1 + δ)

)

.
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3.2 Application of Chernoff Bounds for

Correlated Variables

With Chernoff Bounds we can handle sums of independent random variables.
In our proofs, however, we will also encounter sums of correlated variables,
since in evolutionary algorithms events usually depend on the steps the al-
gorithm has performed so far. To be able to deal with sums of correlated
variables we will use the following lemma. With it, we can approximate
the behavior of such sums by using sums of independent random variables.
Hence we can, albeit indirectly, apply Chernoff Bounds to certain sums of
dependent random variables.

Lemma 3.1. Let X1, . . . , Xt, X
∗
1 , . . . , X∗

t be random variables that may take
on natural numbers as values. For all i ∈ [1..t], Xi is independent of
Xi+1, . . . , Xt, and the X∗

1 , . . . , X
∗
t are mutually independent. Then for all

k ≥ 0 the following holds.

a) If for all i ∈ [1..t], all m ∈ N
+, and all x1, . . . xi−1 ∈ N

Pr[Xi = m | X1 = x1, . . . , Xi−1 = xi−1] ≥ Pr[X∗
i = m],

then

Pr[
t∑

i=1

Xi ≥ k] ≥ Pr[
t∑

i=1

X∗
i ≥ k].

b) If for all i ∈ [1..t], all m ∈ N
+, and all x1, . . . xi−1 ∈ N

Pr[Xi = m | X1 = x1, . . . , Xi−1 = xi−1] ≤ Pr[X∗
i = m],

then

Pr[
t∑

i=1

Xi ≥ k] ≤ Pr[
t∑

i=1

X∗
i ≥ k].

Proof. a) Denote by Pj := Pr[
∑j

i=1 Xi +
∑t

i=j+1 X∗
i ≥ k] for j ∈ [0..t] the

probability that given the sequence of events X1, . . . , Xj, X
∗
j+1, . . . , X

∗
t the

sum
∑j

i=1 Xi +
∑t

i=j+1 X∗
i is at least k. Then we get for Pj for j ∈ [1..t]
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Pj = Pr
[ j
∑

i=1

Xi +
t∑

i=j+1

X∗
i ≥ k

]

= Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i ≥ k

]

· 1 +

k∑

m=1

(

Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i = k − m

]

· Pr[Xj ≥ m]

)

= Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i ≥ k

]

+

k∑

m=1

∑

(x1,...,xj−1,xj+1,...,xt)

∈X t−1
k−m

( j−1
∏

i=1

Pr
[
Xi = xi | X1 = x1, . . . , Xi−1 = xi−1

]

·

t∏

i=j+1

Pr
[
X∗

i = xi

]
· Pr

[
Xj ≥ m | X1 = x1, . . . , Xj−1 = xj−1

])

where X t−1
k−m = {(x1, . . . , xt−1) ∈ N

t−1 | ∑t
i=1 xi = k − m} is the set of

event outcomes (x1, . . . , xt−1) ∈ N
t−1 that fulfil

∑t−1
i=1 xi = k − m. Using the

minimum of Pr[Xj ≥ m | X1 = x1, . . . , Xj−1 = xj−1] over all (x1, . . . , xj−1) ∈
N

j−1 that gives

Pj ≥ Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i ≥ k

]

+

k∑

m=1

(

Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i = k − m

]

·

min
(x1,...,xj−1)∈Nj−1

Pr
[
Xj ≥ m | X1 = x1, . . . , Xj−1 = xj−1

])

.

Since for all j ∈ [1..t], m ∈ N
+, and x1, . . . , xj−1 ∈ N we have that

Pr[Xj = m | X1 = x1, . . . , Xj−1 = xj−1] ≥ Pr[X∗
j = m], we get that Pr[Xj ≥

m | X1 = x1, . . . , Xj−1 = xj−1] ≥ Pr[X∗
j ≥ m], and thus
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Pj ≥ Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i ≥ k

]

+

k∑

m=1

(

Pr
[ j−1
∑

i=1

Xi +
t∑

i=j+1

X∗
i = k − m

]

· Pr
[
X∗

j ≥ m
]
)

= Pr
[ j−1
∑

i=1

Xi +
t∑

i=j

X∗
i ≥ k

]

= Pj−1.

Thus, we have that Pr[
∑t

i=1 Xi ≥ k] = Pt ≥ Pt−1 ≥ · · · ≥ P1 ≥ P0 =
Pr[

∑t
i=1 X∗

i ≥ k].

b) Let Pj := Pr[
∑j

i=1 Xi +
∑t

i=j+1 X∗
i ≥ k] for j ∈ [0..t] as above. Using

the maximum instead of the minimum over all (j − 1)-tuples and the fact
that Pr[Xj = m | X1 = x1, . . . , Xj−1 = xj−1] ≤ Pr[X∗

j = m] and thus
Pr[Xj ≥ m | X1 = x1, . . . , Xj−1 = xj−1] ≤ Pr[X∗

j ≥ m] for all j ∈ [1..t],
m ∈ N

+, and x1, . . . , xj−1 ∈ N in the calculations from a), we get that
Pj ≤ Pj−1 for j ∈ [1..t]. Hence it follows that Pr[

∑t
i=1 Xi ≥ k] ≤ Pt−1 ≤

· · · ≤ P1 ≤ Pr[
∑t

i=1 X∗
i ≥ k].

Note that this lemma also holds if the considered variables Xi and X∗
i

are binary random variables and thus m = 1.

3.3 Derivation of Expected Values from High

Probabilities

Throughout this work we often use Chernoff inequalities to derive bounds on
the optimization time that hold with high or overwhelming probability. The
following lemmas allow to deduce thereof bounds on the expected optimiza-
tion time.

Lemma 3.2. Let c2 > 0, η′ > 0, and c1 be constants, let n ∈ N
+, and let

g(n) > 0 be a function. If t ∈ N is a random variable with Pr[t > ηg(n)] ≤
nc1−ηc2 for any η ≥ η′, then the expected value of t is O(g(n)).
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Proof. Let η := κni for some constant κ ≥ max{ |c1|+1
c2

, η′} and i ∈ N. Then,

Pr[κni+1g(n) ≥ t > κnig(n)] ≤ Pr[t > κnig(n)]

≤ nc1−c2κni

≤ nc1−(|c1|+1)ni

≤ n−ni

.

For n ≥ 2, the expected value E[t] is thus

E[t] =
∞∑

t′=1

t′ · Pr[t = t′]

≤ κg(n) +
∞∑

i=0

κni+1g(n)
∑

t′=κnig(n)+1

t′ · Pr[t = t′]

≤ κg(n) +
∞∑

i=0

κni+1g(n) · n−ni

= κg(n)(1 +
∞∑

i=0

ni+1−ni

)

≤ κg(n)(2 +
∞∑

i=1

n−ni

)

≤ κg(n)(2 + 2).

From this, we can easily derive the following lemma.

Lemma 3.3. Let c > 0, ε > 0, η′ > 0 be constants, let n ∈ N
+, and let

g(n) > 0 be a function. If t ∈ N is a random variable with Pr[t > ηg(n)] ≤
2−ηcnε

for any η ≥ η′, then the expected value of t is O(g(n)).

Proof. For any n ∈ N
+ and any constant ε > 0 there exists a positive constant

k with nε

log2 n
≥ k. Then we have

2−ηcnε

= 2
−ηcnε log2 n

log2 n

= n
−ηc nε

log2 n

≤ n−ηck.

Thus, we can apply Lemma 3.2 with c1 = 0 and c2 = ck to prove the
claim.



Chapter 4

The Single Source Shortest Path

Problem

This Chapter is based on the paper “A Tight Analysis of the (1 + 1)-EA for
the Single Source Shortest Path Problem” by Benjamin Doerr, E. H., and
Christian Klein [DHK07].

4.1 Introduction

The first work in which evolutionary algorithms for classical combinatorial
problems were analyzed considered the Single Source Shortest Path problem
and the Sorting problem [STW04]. Since already the analysis of simple evolu-
tionary algorithms for simple pseudo-boolean functions were quite technical
and complicated, it is not surprising that the analysis of the Single Source
Shortest Path problem in [STW04] is tight only for certain instances.

4.1.1 Related Work

In [STW04], Scharnow, Tinnefeld, and Wegener propose a natural (1 + 1)
evolutionary algorithm for the problem of finding shortest paths from a single
vertex (the “source”) to all other vertices in a graph with edge weights (see
below for a precise definition of the problem). They show an upper bound
of O(n3) for the expected optimization time on n-vertex graphs. This bound
is tight if (and only if, as we shall see) the graph and edge weights are such
that there is a vertex such that all shortest paths to the source contain Ω(n)
edges.
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The proof given by Scharnow, Tinnefeld, and Wegener in [STW04] reveals
an in fact stronger upper bound of O(n2

∑n
i=1 log(ni)), where ni is the num-

ber of vertices for which the shortest path (with respect to the weights) to the
source with the minimum number of edges consists of exactly i edges. In par-
ticular, since

∑n
i=1 ni = n − 1 and thus

∑n
i=1 log(ni) ≤ maxℓ

j=1{j log(n−1
j

)},
this yields a bound of O(n2ℓ log(n

ℓ
)), where ℓ is the smallest integer such that

any vertex can be reached from the source via a shortest path having at most
ℓ edges.

4.1.2 Our Results

In this chapter, we give a tight analysis of the (1 + 1) evolutionary algo-
rithm proposed in [STW04]. This leads to an improved upper bound for
the expected optimization time of O(n2 max{log(n), ℓ}). In addition, this
bound not only holds in expectation, but is fulfilled with high probability,
that is, with probability 1 − O(n−c) for an arbitrary constant c. The bound
on the optimization time is tight for all ℓ. For all values of ℓ we present a
problem instance such that all shortest paths have length at most ℓ, but the
optimization time is Ω(n2 max{log(n), ℓ}) with high probability.

To prove the upper bound, we develop a method that might see further
applications in the future. We closely analyze how nodes become connected
to the source via shortest paths. The growth of such shortest paths (note
that they do not have to be unique) displays a strong concentration behav-
ior. Although we use a union bound argument over all paths needed, it is
still strong enough to obtain bounds that hold with high probability. To
show the lower bound, we use the Chernoff type strong concentration bound
introduced in Section 3.1.

4.2 An Evolutionary Algorithm for the SSSP

Problem

Let G = (V,E) with V = [1..n], E ⊆ V 2 be a directed graph with edge
weights w : E → N. Given a vertex s ∈ V called “source”, the Single Source
Shortest Path (SSSP) problem is the problem of finding a shortest path
from s to all other vertices v ∈ V \ {s}. A path from u to v is a sequence
u = v0, . . . , vk = v of vertices such that (vi−1, vi) ∈ E for all i ∈ [1..k] and
vi 6= vj for i, j ∈ [0..k], i 6= j. The length of a path is the sum of the
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Figure 4.1: The graph representation and the vector representation of an indi-
vidual not representing a tree. The fitness of vertex 7 is d18+d84+d47, as indicated
by the edge weights in the graph representation and next to the arrows below the
vector representation. The fitness of vertex 2 is ∞, since there is no path from
vertex 2 to vertex 1, as shown by the arrows above the vector representation.

weights of the edges it traverses. Dijkstra’s famous algorithm [Dij59] solves
the problem in time O(n2).

If we allow the edge weight w(e) = ∞ for not existing edges e /∈ E we
can consider the complete graph Kn on n vertices. The problem instance
is given by the distance matrix D = (dij)1≤i,j≤n of the graph, where dij =
w((i, j)) ∈ N ∪ {∞}. Note that the below described algorithm also works in
the case of undirected graphs. For each undirected edge e = {i, j} simply set
dij = dji = w(e).

In this chapter, we analyze the (1 + 1) evolutionary algorithm (from now
on called (1 + 1)-EAsssp) for the SSSP problem introduced in [STW04]. We
describe and analyze this algorithm assuming that the source is s = 1.

4.2.1 Individuals

It is easy to see that we can choose shortest paths from s to any other
vertex i ∈ V \ {s} in such a way that the union of these paths forms a
tree. Hence we may represent solutions to the SSSP problem by giving for
each vertex i ∈ V \ {s} its predecessor p(i) on a shortest path from s to i.
Thus, the candidate solutions can be represented as vectors of predecessors
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I = (p(2), . . . , p(n)) ∈ [1..n]n−1. Note that this representation does not
assure that an individual forms a tree. See Figure 4.1 for an example.

4.2.2 Fitness Function

The (1 + 1)-EAsssp uses a multi-criteria fitness function f : [1..n]n−1 → N ∪
{∞}. For an individual I, it is defined by f(I) := (f2(I), . . . , fn(I)) with

fi(I) :=

{

∞ if I does not connect s to i,

w(P (s, i)) otherwise.

Here, w(P (s, i)) is the cost of the path P from s to i implied by I. If this
path is P = (s = v1, v2, . . . , vj = i) for v1, . . . , vj ∈ V then w(P (s, i)) =
dv1v2 + · · · + dvj−1vj

. See Figure 4.1 for an example. When comparing the
fitness values of two individuals I and I ′, we use f(I ′) ≤ f(I) if fi(I

′) ≤ fi(I)
for all 2 ≤ i ≤ n.

4.2.3 Mutation Operator

As we have explained in Section 2.4, to simulated the behavior of the “clas-
sical” (1 + 1)-EA on bit-strings, the mutation step should perform a number
of elementary mutations that locally change the individual. The number
S + 1 of elementary mutations performed is distributed according to a Pois-
son distribution Pois(ζ = 1) with parameter ζ = 1. Thus, the probability
that in a mutation step S + 1 = k + 1 elementary mutations are performed
is Pr[S = k] = 1

ek!
.

An elementary mutation of the vector I consists of randomly choosing a
vertex v with v ∈ V \{s} and setting its predecessor p(v) to a vertex w chosen
uniformly at random with w ∈ V \{v}. Obviously, there are (n−1)2 possible
ways to choose a vertex and its predecessor and thus to do an elementary
mutation on individual I.

4.2.4 The (1 + 1)-EAsssp

At the beginning, the (1 + 1)-EAsssp generates the initial population I con-
sisting of an initial individual I. I is created by assigning to each vertex
v ∈ V \ {s} a predecessor p(v) ∈ V \ {v} uniformly at random. In the fol-
lowing mutation step, I is modified to generate a new individual I ′. Then, a
selection step is done replacing the individual I by I ′ if the fitness of I ′ is not
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(1 + 1)-EA for SSSP

Initialization:
1 I ← {I} = {(p(2), . . . , p(n))},

p(i) ∈ V \ {i} chosen u. a. r.
2 repeat

Mutation:
3 Pick S according to Pr[S = k] = 1

e·k!

4 I0 ← I
5 for m = 1 to S + 1
6 do
7 Choose i ∈ [2..n] u. a. r.
8 Choose j ∈ [1..n] \ {i} u. a. r.
9 Generate Im from Im−1 by setting p(i) to j.

Selection:
10 if fi(I

S+1) ≤ fi(I) for all i ∈ [2..n]
11 then I ← {IS+1}
12 until I contains an optimal solution

Figure 4.2: Pseudocode for the (1 + 1)-EAsssp for the SSSP problem.

worse than I’s fitness. Mutation and selection are repeated until an optimal
solution is found. Pseudocode for the (1 + 1)-EAsssp for the SSSP problem
is given in Figure 4.2.

Note that the selection step accepts a new individual I ′ only if f(I ′) ≤
f(I) which is the case if fi(I

′) ≤ fi(I) for all 2 ≤ i ≤ n. That means that
for every vertex i ∈ [2..n] the path from s to i in I ′ is at most as long as the
path from s to i in I. Therefore, once we have found an optimal path for a
vertex v, the (1 + 1)-EAsssp does not accept mutations that would cause s to
be connected to v using a suboptimal path.

4.3 Upper Bound on the Optimization Time

In this section we show that the optimization time of the (1 + 1)-EAsssp for
the SSSP problem is O(n2 max{log(n), ℓ}) with high probability. Here, ℓ is
the maximum number of edges of all shortest paths with a minimum number
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of edges (see definition below). Recall that with high probability means that
an event happens with probability at least 1−O(n−c), where c is an arbitrary
constant.

The key observation in the proof is that the actual growth of the shortest
path tree deviates only little from its expected growth. This phenomenon is
called strong concentration and can be quantized through so-called Chernoff
bounds as described in Section 3.1.

We will need the following definition.

Definition 4.1 (Edge Radius). The edge radius ℓG(u) of a vertex u in a
weighted graph G is the maximum number of edges of a shortest path with
minimum number of edges from u to a vertex v in G. That is

ℓG(u) = max
v∈V

min
P∈Puv

ℓ(P )

with Puv := {P | P is a shortest path from u to v} and ℓ(P ) being the num-
ber of edges of path P .

For the rest of this chapter, we will denote by ℓ := ℓG(s) the edge radius
of the source s in G.

Now we can prove the upper bound.

Theorem 4.1. The optimization time of the (1 + 1)-EAsssp is with high prob-
ability O(n2 max{log(n), ℓ}).

This follows immediately from the following lemma.

Lemma 4.1. Let ℓ∗ := max{log(n), ℓ}, c > 0 be a constant, η ≥ 8(c +
1) > 8 and t := eηℓ∗(n − 1)2. Then the optimization time needed by the
(1 + 1)-EAsssp to find all shortest paths is less than t with probability p >
1 − n−c.

Proof. Because of the multi-criteria fitness function, the (1 + 1)-EAsssp can-
not replace any path in the individual I by a longer path. Thus, in the result
of a successful mutation step all paths are either the same as before or are
replaced by a path that is not longer. Hence, any successful mutation step
that would apply more than one elementary mutation can be simulated by a
number of successful mutation steps applying a single elementary mutation.
Since the probability for a mutation step consisting of a single elementary
mutation is 1

e
and thus constant, for the upper bound analysis we can as-

sume that only mutation steps performing a single elementary mutation are
successfully applied.
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The (1 + 1)-EAsssp has to find n − 1 shortest paths from the source s to
all other vertices. Note that there may be many different possible shortest
paths for a vertex v.

Pick a vertex v and a shortest path P := (v1, . . . , vℓ′+1) from s = v1 to
v = vℓ′+1. Note that by the definition of the edge radius ℓ we can pick P
so that it has ℓ′ ≤ ℓ edges. We call a mutation step performing a single
elementary mutation the j-th improvement in P if prior to the mutation the
individual I contains a shortest path from s to vj for some 1 ≤ j ≤ ℓ′ and
after the mutation step the predecessor of vj+1 is p(vj+1) = vj. Note that
after the j-th improvement I contains a shortest path from s to vj+1, but
that it might have already contained such a shortest path before. If the
(1 + 1)-EAsssp has performed the ℓ′-th improvement we say it has followed
P . Obviously, a shortest path from s to v = vℓ′+1 has been found by then.

Let t := eηℓ∗(n− 1)2 and let t′ be the number of steps the (1 + 1)-EAsssp

needs to follow P . Define the random variables Xi for 1 ≤ i ≤ t′ by Xi = 1
if the i-th mutation step is an improvement in P and Xi = 0 otherwise.
Then independent of the i − 1 steps before, Pr[Xi = 1] ≥ p := 1

e
1

(n−1)2
, since

either the corresponding predecessor is already set correctly before or the
i-th mutation step consists of a single elementary mutation (with probability
1
e
), picks the correct vertex (with probability 1

n−1
), and sets it to its correct

predecessor (with probability 1
n−1

). For t′ < i ≤ t define the random variables
Xi by Pr[Xi = 1] := p and Pr[Xi = 0] := 1−p. Obviously, Xi is independent
of Xj for all 1 ≤ i < j ≤ t.

Now, let X∗
i for i ∈ [1..t] be mutually independent random binary vari-

ables with Pr[X∗
i = 1] := p and Pr[X∗

i = 0] := 1− p and let X∗ :=
∑t

i=1 X∗
i .

The expected value of X :=
∑t

i=1 Xi is

E[X] ≥ E[X∗] = pt =
1

e

1

(n − 1)2
eηℓ∗(n − 1)2 = ηℓ∗.

If the (1 + 1)-EAsssp has not found an optimal path from s to v, it ob-
viously has not followed P and thus X < ℓ. Since Pr[Xi = 1 | X1 =
x1, . . . , Xi−1 = xi−1] ≥ Pr[X∗

i = 1] for all i and all x1, . . . , xi−1 ∈ {0, 1}, we
can apply Lemma 3.1 to bound the probability of not finding a shortest path
from s to v in time t by

Pr

[
no shortest path from
s to v found in time t

]

≤ Pr

[
P not followed

in time t

]

≤ Pr[X < ℓ]

≤ Pr[X < ℓ∗]

≤ Pr[X∗ < ℓ∗].
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Using α := 1
η

< 1, we can use the first inequality of Theorem 3.1 to
bound the probability of not finding a shortest path from s to v in time
t = eηℓ∗(n − 1)2 by

Pr

[
no shortest path from
s to v found in time t

]

≤ Pr[X∗ < ℓ∗]

= Pr[X∗ < αE[X∗]]

≤ exp(−1

2
(1 − α)2

E[X∗])

= exp

(

−1

2

(η − 1)2

η2
ηℓ∗

)

≤ exp

(

−(η
2
)2ℓ∗

2η

)

= exp
(

−η

8
ℓ∗

)

since η > 8.

Using a union bound argument we get

Pr

[
not for all vi a shortest path
from s to vi found in time t

]

≤
n∑

i=2

Pr

[
no shortest path from s

to vi found in time t

]

≤
n∑

i=2

exp
(

−η

8
ℓ∗

)

≤ n exp
(

−η

8
log(n)

)

≤ n1− η
8

≤ n−c.

Note that we did not optimize for η.

From the fact that the upper bound of O(n2 max{log(n), ℓ}) holds with
high probability, we can derive an upper bound on the expected optimization
time.

Theorem 4.2. The (1 + 1)-EAsssp has an expected optimization time of
O(n2 max{log(n), ℓ}).

Proof. This follows directly from Lemma 4.1 in combination with Lemma 3.2.
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ℓ2 3 4 ℓ + 11

Figure 4.3: The SSSP tree of Gn,ℓ with source s = 1.

1 2 3 4 5

7

6

Figure 4.4: The weighted graph G7,4. The solid edges have weight one and form
the shortest path tree. All other edges have weight 14. The dotted edges are the
second shortest path from 1 to i for i ∈ {3, 4, 5}.

4.4 Lower Bound on the Optimization Time

In this section we show a lower bound matching the upper bound presented
in the previous section. More precisely, for any n ∈ N and ℓ ∈ [1..n − 1] we
define a weighted graph Gn,ℓ on n vertices with edge radius ℓGn,ℓ

(s) = ℓ for
which the algorithm has an optimization time of at least Ω(n2 max{log(n), ℓ})
with high probability.

4.4.1 A Worst Case Graph Class

Let n ∈ N, V = [1..n]. For all ℓ ∈ [1..n − 1] we define the weighted graph
Gn,ℓ = (V,E) such that the source of the SSSP tree to be computed is s = 1
and ℓGn,ℓ

(s) = ℓ. We show that the optimization time of the (1 + 1)-EAsssp

is Ω(n2 max{log(n), ℓ}) with high probability.

We will set the weights in such a way that (1, 2, . . . , ℓ, ℓ+1) is the unique
shortest path from s = 1 to ℓ+1. For all other vertices k with k > ℓ+1, the
edge (s, k) shall be the unique shortest path from s to k. Figure 4.3 shows
the SSSP tree of Gn,ℓ. For simplicity, we assign the weight 1 to all edges in
the SSSP tree.
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To guarantee that the optimization time depends linearly on ℓ, the edges
on the shortest path should be added one by one. To this purpose, each
vertex i ∈ [3..ℓ + 1] should be connected to vertex s with a sufficiently cheap
edge ensuring that, as long as vertex i − 1 is not correctly connected, it is
cheaper to connect s and i directly than to connect s to i via i − 1. These
requirements are fulfilled by Gn,ℓ := ([1..n], {(i, j) | u, v ∈ [1..n], u 6= v}) with
edge weights

w(i, j) :=







1, if j = i + 1 ≤ ℓ + 1,
1, if i = 1 ∧ j > ℓ + 1,
2n, otherwise.

The graph G7,4 is shown in Figure 4.4. Note that Gn,1 is the graph with
edge weight 1 for each edge (s, i), i ∈ [2..n] and 2n for all other edges.

4.4.2 A Lower Bound

We now give a lower bound depending on n and ℓ on the number of steps
needed by the (1 + 1)-EAsssp to find an optimal solution. To prove that
Ω(n2 max{log(n), ℓ}) is a lower bound on the optimization time, we first
prove that Ω(n2 log(n)) is a lower bound on the optimization time of the
(1 + 1)-EAsssp. Observe that this bound holds for all graphs that have a
unique SSSP tree.

Lemma 4.2. Let G = (V,E) be a graph on n vertices and s ∈ V a vertex
such that the SSSP tree of G with source s is unique. Then the number of
steps needed by the (1 + 1)-EAsssp to compute the SSSP tree of G with source
s is Ω(n2 log(n)) with high probability.

Proof. To proof this bound our approach is as follows. First we bound the
probability that a fixed elementary mutation connecting one vertex to its
predecessor is never tried during t− 1 steps. From this we bound the proba-
bility that at least one of the vertices is not connected to its predecessor after
t − 1 steps. This is the probability that the (1 + 1)-EAsssp needs at least t
steps to connect all vertices to their predecessors and thus to find an optimal
solution.

Some arguments of this proof are similar to the proof for the coupon
collector’s problem (cf. the book by Motwani and Raghavan [MR95]).

Due to the uniqueness of the SSSP tree and the fact that each vertex of
G is incident with n − 1 edges, the probability that a vertex is connected
correctly after the initialization step is Θ(n−1). Thus, the probability that
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c vertices are correctly initialized is Θ(n−c). Since we know that the upper
bound on the optimization time is O(n2 max{ℓ, log(n)}) we get that with high
probability c is constant. Thus, with high probability n−1−c vertices remain
that are not connected correctly after the initialization. For these vertices,
the (1 + 1)-EAsssp has to perform the corresponding n − 1 − c elementary
mutations that connect them to their correct predecessor.

Let T denote the random variable describing the number of steps needed
by the (1 + 1)-EAsssp to find the shortest path tree with source s. We now
calculate the probability Pr[T ≥ t] that the (1 + 1)-EAsssp needs at least t
steps. This is the same as the probability that the (1 + 1)-EAsssp will not
finish after t− 1 steps, meaning that at least one of the n− 1− c remaining
vertices are not connected to their correct predecessor during these t − 1
steps.

Consider one of the n−1− c vertices not yet connected correctly. During
the construction of the shortest path tree, this vertex v has to be chosen at
least once together with its correct predecessor v′ to connect it using the right
edge. The probability that this happens in a single elementary mutation is

1
n−1

· 1
n−1

= 1
(n−1)2

.

By the definition of the Poisson distribution, the probability that during
a single step exactly S + 1 elementary mutations are performed is 1

eS!
. Since

each of the S + 1 elementary mutations in this step are done independently,
the probability that a fixed elementary mutation is performed in this step
consisting of S + 1 elementary mutations is at most S+1

(n−1)2
.

Hence, the probability that a fixed elementary mutation is performed in
one step is at most

∞∑

S=0

1

e · S!
· S + 1

(n − 1)2
=

2

(n − 1)2

since

∞∑

S=0

S + 1

S!
=

∞∑

S=1

S

S!
+

∞∑

S=0

1

S!

=
∞∑

S=1

1

(S − 1)!
+ e

= 2e.

By this, the probability that a fixed elementary mutation is never chosen
during t − 1 steps is at least (1 − 2

(n−1)2
)t−1. Hence it follows that this fixed
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elementary mutation is tried at least once in t − 1 steps with probability at
most 1 − (1 − 2

(n−1)2
)t−1.

There are n − 1 − c correct elementary mutations that have to be per-
formed. Denote by Ei for i ∈ [1..n − 1 − c] the event that the i-th of the
n − 1 − c vertices is connected to the correct predecessor within t − 1 steps.
The order in which they are connected does not matter. By the above cal-
culations Pr[E1] ≤ 1 − (1 − 2

(n−1)2
)t−1.

Note that the events Ei are negatively correlated, meaning that if one
event Ei is true, the probability for another Ej decreases. The reason for this
is the following: Since one of the elementary mutations performed connects
the i-th vertex to its correct predecessor, there are less elementary mutations
remaining that can possibly connect the j-th vertex to its correct predecessor.
Hence, the probability that all events Ei take place, that is all necessary
n− 1− c elementary mutations are performed within t− 1 steps, is bounded
by

Pr[E1, . . . , En−1−c] =
n−1−c∏

i=1

Pr[Ei | E1, . . . , Ei−1]

<

n−1−c∏

i=1

Pr[E1]

≤ (1 − (1 − 2

(n − 1)2
)t−1)n−1−c.

But this means that with probability at least 1−(1−(1− 2
(n−1)2

)t−1)n−1−c

at least one of the combinations of a vertex and its correct predecessor is
never chosen during the t − 1 steps. This is the probability Pr[T ≥ t] that
the (1 + 1)-EAsssp needs at least t steps.

We now choose t := 1+(1
2
(n−1)2−1)1

2
log(n−1−c) = Ω(n2 log(n)). Using

the inequality (1 − 1
k
)k < e−1 < (1 − 1

k
)k−1 we obtain the following bound

for the probability Pr[T ≥ t] that not all n − 1 − c vertices are connected to
their predecessors within t − 1 steps.
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Pr[T ≥ t] ≥ 1 −
(

1 −
(

1 − 2

(n − 1)2

)( 1
2
(n−1)2−1) 1

2
log(n−1−c)

)n−1−c

= 1 −



1 −
((

1 − 2

(n − 1)2

) 1
2
(n−1)2−1

) 1
2

log(n−1−c)




n−1−c

≥ 1 −
(

1 −
(
e−1

) 1
2

log(n−1−c)
)n−1−c

= 1 −
(

1 − 1√
n − 1 − c

)n−1−c

= 1 −
((

1 − 1√
n − 1 − c

)√
n−1−c

)√
n−1−c

≥ 1 − e−
√

n−1−c.

Hence the (1 + 1)-EAsssp will need at least t = Ω(n2 log(n)) steps with high
probability.

By the above lemma, our lower bound is tight as long as ℓ ∈ O(log(n)).
To complete our claim, however, we need to prove that for larger ℓ the opti-
mization time linearly depends on ℓ.

Lemma 4.3. Let n ∈ N and ℓ ∈ ω(log(n)). Then the optimization time of
the (1 + 1)-EAsssp on Gn,ℓ is Ω(n2ℓ) with high probability.

Proof. The idea of this proof is similar to the one used in [DJW02] for the
proof of the lower bound on the runtime of the (1 + 1)-EA on leading ones
(LO).

To prove the claim, we analyze how long it takes until the individual I
contains the path P := (s = 1, 2, . . . , ℓ, ℓ + 1). To this aim, we analyze how
the length L(I) of the longest subpath of P starting with s that is contained
in I grows. Note that this length L(I) never decreases, since for each vertex
on P this subpath is the unique shortest path to s. In the following, we
show that with high probability (i) L(I) initially is constant, (ii) in Θ(n2ℓ)
iterations L(I) increases at most O(ℓ) times, and (iii) the total increase in
these O(ℓ) relevant iterations (plus the initial constant length) is less than ℓ.

The probability that in the initial individual some vertex i ∈ [2..ℓ + 1] is
already linked to i− 1 is exactly 1

n−1
. Hence the probability that L(I) ≥ c is

O(n−c) for all c ∈ N, that is, with high probability L(I) is initially constant.
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Let t := η(n−1)2ℓ and let t∗ be the time step when L(I) increases for the
4ηℓ-th time for a constant η which we will determine later on. For i ∈ [1..t∗],
we define a binary random variable Xi by Xi = 1 if L(I) increases in step
i. To increase L(I), one of the S + 1 elementary mutations in the current
mutation step has to connect vertex L(I) + 2 to vertex L(I) + 1 and this
mutation step to be accepted. The probability that an elementary mutation
succeeds in connecting L(I) + 2 to L(I) + 1 is obviously 1

(n−1)2
. Hence, as in

the proof of Lemma 4.2, the probability that one mutation step does so is at
most 2

(n−1)2
and hence Pr[Xi = 1] ≤ p := 2

(n−1)2
. For i ∈ [t∗ + 1..t] define Xi

by Pr[Xi = 1] := p and Pr[Xi = 0] := 1 − p. Clearly, Xi is independent of
Xj for 1 ≤ i < i ≤ t.

Now define X∗
i for i ∈ [1..t] to be mutually independent random binary

variables with Pr[X∗
i = 1] := p and Pr[X∗

i = 0] := 1 − p for all i and let
X∗ :=

∑t
i=1 X∗

i . Then Pr[X∗
i = 1] ≥ Pr[Xi = 1 | X1 = x1, . . . Xi−1 = xi−1]

for all x1, . . . , xi−1 ∈ {0, 1}. Then the expected value of X :=
∑t

i=1 Xi is

E[X] ≤ E[X∗] = η(n − 1)2ℓ
2

(n − 1)2
= 2ηℓ.

Hence, by applying Lemma 3.1 and using the third Chernoff bound from
Theorem 3.1 with γ = 1 we get

Pr[X ≥ 4ηℓ] ≤ Pr[X∗ ≥ 2E[X∗]]

≤ exp

(

−E[X]

3

)

= exp

(

−2ηℓ

3

)

= exp

(

−2η

3
log(n)

ℓ

log(n)

)

= n− 2η
3

ℓ
log(n)

= n−ω(1).

In the last lines we used that since ℓ ∈ ω(log(n)) we have ℓ
log n

= ω(1) for any

constant η. But this means, that with high probability the (1 + 1)-EA does
at most t′ := 4ηℓ improvements during the t steps.

Finally, we analyze how many additional vertices might become connected
to s via the shortest path during the t′ improvements. For that, we analyze
the additional amount by which such an improvement increases L(I). To
this end, note that there are two ways how an additional vertex i can be
connected to the longest subpath of P starting in s. Either (i) there may be
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an elementary mutation in the mutation step that causes the improvement
that changes the pointer of i to its predecessor i − 1 in P , or (ii), i may
coincidentally be connected to i − 1, which becomes part of the subpath by
an event of type (i) or (ii). We shall argue that both events happen only
with a probability of at most 1

2
.

(i) Suppose first that i enlarges the path of interest through an elemen-
tary mutation. For this to happen (among other things), the following has
to occur. Among the possible more than one elementary mutations in the
current step that connect i to some other vertex, the last one has to connect
i to its predecessor i − 1 in P . By definition of the mutation operator, this
happens with a probability of 1

n−1
≤ 1

2
for n ≥ 3.

(ii) Now suppose that the predecessor i − 1 of i becomes part of the
subpath of interest. We argue that the probability that i is coincidentally
pointing to i − 1 is at most the probability that it is pointing to s, and in
consequence, at most 1

2
. There are two possible reasons why i might point

to i − 1, either (a) in the initialization i’s predecessor is set to i − 1 or (b)
i’s predecessor is set to i − 1 in some mutation step.

(a) For the initially chosen individual the probability that i points to i−1
is clearly as big as the probability that it points to s, since the predecessor
if i is chosen uniformly at random from all vertices different from i.

(b) Consider an iteration that does not result in making i − 1 part of
the subpath of interest, and fix a sequence of elementary mutations to be
conducted in this iteration. Assume that at the start of the iteration i’s
predecessor is vertex j ∈ [1..n] \ {i}, for which the path from s to j in I has
length w−(s, j), and that at the end of the iteration the length of the path
from s to i−1 in I is w+(s, i−1). If w+(s, i−1) ≤ w−(s, j), the acceptance of
the iteration does not depend on whether i’s pointer is changed to i−1 or to
s, since both events would not increase the length of the shortest path from
i to s in I. On the other hand, if w+(s, i− 1) > w−(s, j), only a change of i’s
pointer to s, but not to i − 1, would be accepted. Thus, any iteration that
does not make i − 1 part of the path rather increases the probability that i
points to s compared to the probability of pointing to i− 1. In consequence,
the probability that i coincidentally points at i − 1 in the iteration in which
i − 1 becomes part of the subpath of interest, is at most 1

2
.

Summarizing, an additional vertex may either already be coincidentally
connected correctly (with probability at most 1

2
), or, if this is not the case

(which happens with probability at least 1
2
), it may become connected by an

elementary mutation (with probability at most 1
2
). Hence, the probability

that an additional vertex becomes connected is at most 3
4
.
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Let t′′ be the number of improvement steps the (1 + 1)-EAsssp performs
until it finds the optimal solution. For i ∈ [1..t′′] let Yi be the random vari-
able describing the number of additional vertices that are added in the i-th
improvement step. By the above arguments, independent of the outcome
of the random choice of S, Pr[Yi = m] ≤ (3

4
)m−1 1

4
. If t′′ < t′ = 4ηℓ let Yi

for i ∈ [t′′ + 1..t′] be defined by Pr[Yi = m] := (3
4
)m−1 1

4
. Obviously, Yi is

independent of all Yj for i < j. Define Y ∗
i for i ∈ [1..t′] to be mutually inde-

pendent random variables that are geometrically distributed with parameter
q = 1

4
, that is, Pr[Y ∗

i = m] := (3
4
)m−1 1

4
for all m ∈ N. The expected value

of Y ∗
i is E[Y ∗

i ] = q−1 = 4. Let Y :=
∑t′

i=1 Yi and Y ∗ :=
∑t′

i=1 Y ∗
i . Then

E[Y ] ≤ E[Y ∗] = 4t′.

Applying Lemma 3.1 and the bound in Theorem 3.2 with δ = 1 and
assuming t′ = 4ηℓ ≥ 2 we get

Pr[Y > 8t′] ≤ Pr[Y ∗ > 8t′]

= Pr[Y ∗ > 32ηℓ]

≤ exp

(

−(t′ − 1)

4

)

≤ exp

(

− t′

2 · 4

)

= exp

(

−ηℓ

2

)

= exp

(

−η

2
log(n)

ℓ

log(n)

)

= n− η
2

ℓ
log(n)

= n−ω(1).

Thus, with probability at most n−ω(1) during up to t′ = 4ηℓ improvements
more than 32ηℓ additional vertices become part of the shortest path. Since
with high probability the number t′ of improvements done in t = η(n −
1)2ℓ steps is smaller than t′, with high probability the number of additional
vertices added during t steps is at most 32ηℓ.

Now let c be the (constant) number of vertices that are initially correctly
linked, X∗ is an upper bound on the number of improvements done in t =
η(n − 1)2ℓ steps, and Y ∗ is with high probability an upper bound on the
number of additional vertices discovered during these improvements. Hence
with high probability, after t steps, the discovered part of P has length at
most c + X∗ + Y ∗. By the above considerations, at most c + X∗ + Y ∗ ≤
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c+4ηℓ+32ηℓ = c+36ηℓ vertices are discovered in time t with high probability.
Choosing η := 1

72
concludes the proof for ℓ > 2(c + 1).

Combining Lemma 4.2 and Lemma 4.3 yields the following theorem.

Theorem 4.3. The optimization time needed by the (1 + 1)-EAsssp to solve
the SSSP problem is Ω(n2 max{log(n), ℓ}) with high probability.

Observe that this theorem also implies an expected optimization time of
Ω(n2 max{log(n), ℓ}).

4.5 Summary

In this chapter, we gave a tight runtime analysis of the (1 + 1)-EAsssp for
the SSSP problem introduced in [STW04]. This includes an improvement
of the previous upper bound of O(n2ℓ log(n

ℓ
)) (which is implicit in a proof)

to O(n2 max{ℓ, log(n)}) and a carefully selected lower bound example for all
values of n and ℓ.

At least as important as the precise bounds for this particular problem
are the methods developed in this chapter. Past arguments suggested a
coupon-collector like behavior in finding the shortest paths. Those, however,
cannot be employed to obtain such sharp bounds. Indeed, our analysis shows
that the true behavior is different. Namely, the different shortest paths grow
at comparable speeds that are strongly concentrated around their expected
values.

While our work is very satisfying from the methodological point of view,
some particular questions for the SSSP problem remain open. The most
challenging one from a broader perspective is whether the multi-criterial
fitness function is necessary. Recall that we accept a newly created individual
only if for no vertex the distance to the source is increased. A natural (single-
criterial) alternative would be to consider the average distance. Scharnow et
al. argue in [STW04] that the multi-criterial fitness function is necessary for
the algorithm to run properly. However, their counterexample only works if
vertices not connected to the source are assumed to have an infinite distance
to the source. In this case, changing the number of ∞–distance vertices does
not change the average distance, and hence the EA finds itself on a large
plateau of constant fitness. A simple way to overcome this (and the one you
would choose naturally in an implementation) would be to replace the infinite
distance of such vertices by a large, but finite number. We strongly believe
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that in this case, taking the average distance as fitness would result in the
same runtime behavior. However, the analysis seems to be much harder, due
to the fact that the individual can develop in less conservative ways.

This problem resembles the problem of maximizing a linear function
g : {0, 1}n → R, x 7→ ∑n

i=1 aixi with positive coefficients ai. Employ-
ing a (1 + 1) evolutionary algorithm using the multi-criterial fitness function
f : {0, 1}n → R

n, x 7→ (a1x1, . . . , anxn), a simple coupon collector argument
shows an optimization time of Θ(n log(n)). That the same bound also holds
if we use g itself as the fitness function is the result of a highly complex
analysis [DJW02]. Attempts to simplify this result later led to the invention
of the drift analysis method in evolutionary computation (cf. [HY04]). With
this development in mind, it seems likely that it is very difficult to prove that
a single-criterial EA can solve the SSSP problem efficiently.



Chapter 5

The All-Pairs Shortest Path

Problem

This Chapter is based on the paper “Crossover Can Provably be Useful
in Evolutionary Computation” by Benjamin Doerr, E. H., and Christian
Klein [DHK08].

5.1 Introduction

The paradigm of nature-inspired computing suggests to use both a muta-
tion and a crossover operator. However, the fundamental question whether
crossover is really useful is still not answered in a satisfying way. Most evo-
lutionary algorithms used in practice employ both a mutation operator (that
generates a new individual by slightly altering a single parent individual)
and a crossover operator (that generates a new individual by recombining
information from two parents).

So far, apart from a few artificial examples, no problem was known where
an evolutionary algorithm using crossover and mutation is superior to one
that only uses mutation.

5.1.1 Related Work

In contrast to the positive practical application of a crossover operator, there
is little evidence for the need of crossover. In fact, early work in this direction
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suggests the opposite. In [MHF93], Mitchell, Holland and Forrest experimen-
tally compared the runtime of a simple genetic algorithm (using crossover)
and several hill-climbing heuristics on so-called royal road functions. Accord-
ing to Holland’s [Hol75] building block hypothesis, these functions should be
particularly suited to be optimized by an algorithm employing crossover. The
experiments conducted in [MHF93], however, clearly demonstrated that this
advantage does not exist. In fact, an elementary randomized hill-climbing
heuristic (repeated mutation and selection of the fitter one of parent and
offspring) was found to be far superior to the genetic algorithm.

The first theoretical analysis indicating that crossover can be useful was
given by Jansen and Wegener [JW99] in 1999 (see also [JW02]). For m < n,
they defined a pseudo-Boolean jump function jm : {0, 1}n → R such that
(more or less) jm(x) is the number of ones in the bit-string x if this is at
most n − m or equal to n, but small otherwise. A typical mutation based
evolutionary algorithm (flipping each bit independently with probability 1/n)
will easily find an individual x such that jm(x) = n − m, but will need ex-
pected time Ω(nm) to flip the remaining m bits (all in one mutation step).
However, if we add the uniform crossover operator (here, each bit of the off-
spring is randomly chosen from one of the two parents) and use it sufficiently
seldom compared to the mutation operator, then the runtime reduces to
O(n2 log n+22mn log n). While the precise computations are far from trivial,
this behavior stems naturally from the definition of the jump function.

The work of Jansen and Wegener [JW99, JW02] was subsequently ex-
tended by different authors in several directions [SW04, JW05], partly to
overcome the critique that in the first works the crossover operator necessar-
ily had to be used very sparingly. While these works enlarged the theoretical
understanding of different crossover operators, they could not resolve the
feeling that all these pseudo-Boolean functions were artificially tailored to
demonstrate a particular phenomenon. In [JW05], the authors state that “It
will take many major steps to prove rigorously that crossover is essential for
typical applications.”

The only two works (that we are aware of) that address the use of
crossover for other problems than maximizing a pseudo-Boolean function
are “Crossover is Provably Essential for the Ising Model on Trees” [Sud05]
by Sudholt and “The Ising Model on the Ring: Mutation Versus Recombina-
tion” [FW04] by Fischer and Wegener. They show that crossover also helps
when considering a simplified Ising model on special graph classes, namely
rings and trees. The simplified Ising model, however, is equivalent to looking
for a vertex coloring of a graph such that all vertices receive the same color.
While it is interesting to see that evolutionary algorithms have difficulties
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addressing such problems, proving “rigorously that crossover is essential for
typical applications” remains an open problem.

Though not the focus of this theory-driven work, we note that path prob-
lems do find significant attention from the evolutionary algorithms commu-
nity, see ,e. g., [LZHH02, LZHH06, AR02, IHK99].

5.1.2 Our Results

We answer the question of whether crossover is really useful positively. In
this chapter, we present the first non-artificial problem for which crossover
provably reduces the order of magnitude of the optimization time. This
problem is the All-Pairs Shortest Path (APSP) problem, that is, the problem
to find, for all pairs of vertices of a directed graph with edge weights, the
shortest path from the first vertex to the second. This is one of the most
fundamental problems in graph algorithms, see for example the books by
Mehlhorn and Näher [MN99] or Cormen et al. [CLRS03].

We present a natural evolutionary algorithm for the APSP problem. It
has a population consisting of at most one path for every pair of vertices
(connecting the first to the second vertex). Initially, it contains all paths
consisting of one edge. A mutation step consists of taking a single path from
the population uniformly at random and adding or deleting a (Poisson dis-
tributed) random number of times an edge at one of its endpoints. The newly
generated individual replaces an existing one (connecting the same vertices)
if it is not longer. Hence our fitness function (which is to be minimized) is
the length of the path.

We analyze this algorithm and prove that, in the worst case, it has with
high probability an optimization time of Θ(n4), where n is the number of
vertices of the input graph.

We additionally state three different crossover operators for this problem.
They all take two random individuals from the population and try to combine
them to form a new one. In most cases, of course, this will not generate a
path. In this case, we define the fitness of the new individual to be infinite
(or some number larger than n times the longest edge). Again, the new
individual replaces one having the same endpoints and not smaller fitness.

Using an arbitrary constant crossover rate for any of these crossover op-
erators, we prove an upper bound of O(n3.5+ε) for the expected optimization
time. Hence for the APSP problem, crossover leads to a reduction of the
optimization time. While the improvement of order n0.5−ε might not be too
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important, this work solves a long-standing problem in the theory of evo-
lutionary computation. It justifies to use both a mutation and crossover
operator in applications of evolutionary computation.

While our proofs seem to use only simple probabilistic arguments, a closer
look reveals that we also invented an interesting tool for the analysis of evo-
lutionary algorithms. A classical problem in the analysis of such algorithms
is that the mutation operator may change an individual at several places
(multi-bit flips in the bit-string model). Hence unlike for the heuristic of
Randomized Local Search (RLS), with evolutionary algorithms we cannot
rely on the fact that our offspring is in a close neighborhood of the origi-
nal search point. While this is intended from the view-point of algorithm
design (to prevent being stuck in local optima), this is a major difficulty
in the theoretical analysis of such algorithms. Things seem to become even
harder, when (as here) we do not use bit-strings as representations for the
individuals. We overcome these problems via what we call c-trails. These
are hypothetical ways of how to move from one individual to another using
simple mutations only. While still some difficulties remain, this allows to
analyze the evolutionary algorithms we consider in this chapter. We employ
methods similar to the ones we used in Chapter 4 to obtain a tight analysis
for the Single Source Shortest Path problem.

We conduct several experiments that show that the proven reduction of
the optimization time caused by the use of any of the crossover operators
already becomes apparent for small input sizes.

5.2 A Genetic Algorithm for the APSP Problem

Let G = (V,E) be a directed graph with n := |V | vertices and m := |E|
edges. Let w : E → N be a function that assigns to each edge e ∈ E a weight
w(e). Then the APSP problem is to compute a shortest path from every
vertex u ∈ V to every other vertex v ∈ V . A walk from u to v is a sequence
u = v0, v1, . . . , vk = v of vertices such that (vi−1, vi) ∈ E for all i ∈ [1..k].
The walk is called path if it contains each vertex at most once. We will
usually describe a walk by the sequence (e1, . . . , ek), ei = (vi−1, vi), of edges
it traverses. The length of a walk is defined as the sum of the weights of all
its edges.

There are two classical algorithms for this problem. The Floyd-Warshall
algorithm ([Flo62, War62]) has a cubic runtime and is quite easy to imple-
ment. In contrast, Johnson’s algorithm [Joh77] is more complicated, but has
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a superior runtime on sparse graphs. Since the problem is NP-hard [GJ79]
if negative cycles exist and simple paths are sought, we will always assume
that all weights are non-negative.

One of the strengths of evolutionary computation is that the algorithms
are composed of generic components like mutation, crossover and selection.
We now give the different components needed for a genetic algorithm that
solves the APSP problem.

5.2.1 Individuals and Population

Evolutionary algorithms usually keep a set (population) of solution candi-
dates (individuals), which they gradually improve. In the APSP problem
we are aiming for a population containing a shortest path for each pair of
distinct vertices. Hence it makes sense to allow paths or walks as individuals.
To have more freedom in defining the crossover operator, an individual will
simply be a sequence of edges, (e1, . . . , ek), e1, . . . ek ∈ E, k ∈ N. However,
the selection operator (see below) will ensure that only individuals that are
walks can enter the population.

For the APSP problem, a natural choice for the initial population is the
set I := {(e) | e ∈ E} of all paths consisting of one edge.

5.2.2 Fitness Function and Selection Operator

The natural choice for the fitness function f : S → R is the length of the
walk represented by the individual (which in this case has to be minimized).
As a result of a crossover operation (see below), we may generate individuals
that are not walks. These shall have fitness ∞ and will never be included in
the population. Thus, we get as fitness function

f(I) =

{

w(W (u, v)) if I represents a walk from u to v,

∞ otherwise.

with w(W (u, v)) being the cost of the walk W from u to v implied by I.

For the APSP problem, diversity is an issue in the sense that we need
to end up with one path for each pair of vertices. However, if we ensure
directly that the selection operator does not eliminate all paths between a
pair of vertices, we can be strict in the selection otherwise. In fact, for each
pair (u, v) of vertices our selection operator eliminates all but the fittest
individual connecting u to v. Thus, we only need to compare the fitness
values of individuals having identical start and end vertices.
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I1 ⊗3 I2 :

I1 ⊗2 I2 :

I1 ⊗1 I2 :

I1 : I2 :
I ′1 I ′′1 I ′2 I ′′2

I ′′2I ′2I ′′1I ′1

I ′1

I ′1 I ′′2

I ′2 I ′′2

Figure 5.1: The effects of the three crossover operators.

5.2.3 Mutation and Crossover Operators

In evolutionary computation, new individuals are generated by variation op-
erators, namely by mutation or crossover (or both).

A mutation operator changes an individual slightly at some random po-
sitions. This is done by first choosing a number S at random according to
a Poisson distribution Pois(ζ = 1) with parameter ζ = 1, making the prob-
ability that S is set to k Pr[S = k] = 1

ek!
. An individual is then mutated

by applying the following elementary mutation S + 1 times. Let (u, v) ∈ E
be the first edge of the individual and (u′, v′) ∈ E be the last edge. Pick an
edge e from the set of all edges incident to u or v′ uniformly at random. If
this edge is (u, v) or (u′, v′), remove it from the individual, otherwise append
it at the corresponding end of the individual. However, if the individual is
a single edge (u, v′), pick an edge uniformly at random from the set of all
edges incident to u or v′ except (u, v′) and append it.

A crossover of two individuals combines parts of them to a new indi-
vidual. In this chapter we consider three variations of the so-called 1-point
crossover. For individuals that are bit-strings of length h, it is defined by
picking a random position and merging the initial part of the first individ-
ual up to the chosen position with the ending part of the second individual
starting from the chosen position. Since we do not represent individuals as
bit-strings, this cannot be applied directly. Instead, we propose the following
three crossover operators to combine two individuals I1, I2 containing ℓ1 and
ℓ2 edges respectively. The crossover operator ⊗1 simply combines both indi-
viduals by appending I2 to I1. The second operator, ⊗2, chooses a random
number i ∈ [0..ℓ1] and appends I2 to the first i edges of I1. Finally, the
operator ⊗3 chooses two random numbers i ∈ [0..ℓ1] and j ∈ [0..ℓ2]. The
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new individual created by this operator consists of the first i edges of I1 and
the last ℓ2 − j edges of I2. In Figure 5.1 the effects of the three crossover
operators are depicted.

Observe that, unlike mutation, crossover may combine two individuals
representing walks to a new individual that no longer represents a walk, and
hence has infinite fitness.

5.2.4 (µ+1)-EAapsp and (µ+1)-GAapsp

The algorithms we consider repeatedly apply variation and selection to a set
of individuals. We study both an algorithm that only uses mutation (EA)
and an algorithm that uses both mutation and one of the crossover operators
(GA).

Both algorithms share the following common framework (cf. also Sec-
tion 2.5). First, the population I is initialized. Then, depending on the
kind of algorithm, it is decided randomly with a certain probability p⊗ if a
mutation or a crossover step should be done. If a mutation step is done,
the algorithm picks an individual uniformly at random from the population
and applies the mutation operator to it to generate a new individual. If a
crossover step is done, the algorithm picks two individuals uniformly at ran-
dom from the population and applies a crossover operator to generate a new
individual. Afterwards, it checks if there is an individual in the population
that connects the same two points as the newly generated individual. If not,
the new individual is added to the population. If yes, the old individual is
replaced if it is not fitter than the new one. These variation and selection
steps are then repeated forever. The pseudocode in Figure 5.2 illustrates this
procedure.

If only mutation is used, we get a classical evolutionary algorithm, the
so-called (µ + 1)-EA. This means that the population consists of up to µ
individuals, and each step one new individual is generated by mutation. Since
the population will consist of up to n(n−1) individuals, namely one shortest
path candidate for each pair of distinct vertices, µ := n(n − 1) in our case.
For sake of simplicity, and to better distinguish this algorithm from the ones
analyzed in the other chapters, we will call the algorithm (µ + 1)-EAapsp

instead of (n(n− 1) + 1)-EA. If also crossover is used, we get a more general
genetic algorithm, which we call (µ + 1)-GAapsp.
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(1 + 1)-EA for APSP

Initialization:
1 I ← {(e) | e ∈ E}
2 repeat
3 Set x := 1 with probability p⊗
4 if x = 1
5 then

Crossover:
6 Pick two Individuals I1, I2 ∈ I u.a.r.
7 Generate a new Individual I ′ by applying

a crossover operator to I1 and I2

8 else
Mutation:

9 Pick I ∈ I uniformly at random
10 Pick S according to Pr[S = k] = 1

e·k!

11 Generate a new Individual I ′ by S + 1
times adding or removing an edge from I

12
Selection:

13 Let I ′′ ∈ I be the individual with the same
start-vertex and end-vertex as I ′, if any.

14 if I ′ is a walk and w(I ′) ≤ w(I ′′)
15 then
16 Add I ′ to I and remove I ′′ from I if it exists.
17 until I is an optimal solution

Figure 5.2: Pseudocode for the two algorithms studied by us. If p⊗ < 1 is a
constant greater than zero, both mutation and crossover are used and the resulting
algorithm will be called (µ + 1)-GAapsp. For p⊗ = 0, only mutation is used as
variation operator. We call the resulting algorithm (µ + 1)-EAapsp.



5.3 Analysis of the (µ + 1)-EAapsp 45

5.3 Analysis of the (µ+1)-EAapsp

In this section we show that both in expectation and with high probability1

the worst case optimization time of the (µ + 1)-EAapsp is Θ(n4).

In general, a pair of vertices may be connected by more than one shortest
path, and these different paths may consist of different numbers of edges.
For our purposes, paths consisting of few edges are more important. To ease
the language, we introduce the following notation.

Definition 5.1. Let G = (V,E) be a graph and let ℓ ∈ N. We define

V 2
ℓ := {(u, v) ∈ V 2 | u 6= v and there exists a shortest path

from u to v consisting of at most ℓ edges}.

5.3.1 Upper Bound on the Optimization Time

The main ideas to prove the upper bound of O(n4) for the (µ + 1)-EAapsp

are as follows. Being pessimistic, we may assume that shortest paths are
found exclusively by adding edges to already found shortest paths, and more
specifically, by only adding a single edge in each iteration. Then, to find a
shortest path from u to v for (u, v) ∈ V 2

ℓ , it suffices that the (µ + 1)-EAapsp

chooses ℓ times the adequate shortest path already in the solution (with
probability O(n−2)) and adds the appropriate edge (with probability O(n−1)).
If ℓ ≥ log n, the time needed for this is that sharply concentrated around
the mean of Θ(ℓn3), that we may use a union bound argument over all
(u, v) ∈ V 2

ℓ .

Lemma 5.1. Let ℓ ≥ log(n). Within O(ℓn3) steps, the (µ + 1)-EAapsp finds
with high probability a shortest path from u to v for all (u, v) ∈ V 2

ℓ .

Proof. Let (u, v) ∈ V 2
ℓ . We first analyze the probability that a shortest path

from u to v is not found within a certain time. For the analysis, we fix a path
P = ((u, v1), (v1, v2), . . . , (vℓ′−1, vℓ′ = v)) of length ℓ′ ≤ ℓ. Note that P will
be a technical tool only and we do not aim at finding this particular path.

In the following, we shall only consider mutation steps that perform a
single elementary mutation. Note that a mutation consists of a single ele-
mentary mutation with probability 1

e
.

1Recall that “with high probability” means with probability 1−O(n−c) for an arbitrary
but fixed constant c.
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We call a mutation step the j-th pessimistic improvement in P if it (i) con-
sists of a single elementary mutation, (ii) creates a shortest path from u to
vj+1 out of a shortest path from u to vj that is already in the population, and
(iii) the pessimistic improvements 1, . . . , j − 1 have already been done. Note
that this implies that pessimistic improvements appear in ascending order.
Obviously, when the (µ + 1)-EAapsp has performed the (ℓ′− 1)-st pessimistic
improvement in P , a shortest path from u to v has been found.

Let t := eηℓn3 for some η > 2 and let the random variable t′ denote the
number of steps the (µ + 1)-EAapsp executes until it performs the (ℓ′ − 1)-st
pessimistic improvement in P . For i ∈ [1..t′] define the random variable Xi

by Xi = 1 if the i-th mutation step is a pessimistic improvement in P and
Xi = 0 otherwise. Then, independent of the first i − 1 steps,

Pr[Xi = 1] ≥ 1

e

1

n(n − 1)2
>

1

en3
=: p,

since (i) the probability that the mutation step consists of a single elementary
mutation is 1

e
, (ii) the probability to pick the correct individual is at least

1
n(n−1)

, and (iii) the probability to pick the correct edge is at least 1
n−1

. For

i ∈ [t′ + 1..t] we independently define Xi by Pr[Xi = 1] := p and Pr[Xi =
0] := 1 − p. Obviously, Xi is independent of Xj for 1 ≤ i < j ≤ t.

Now define the mutually independent binary random variables X∗
i by

Pr[X∗
i = 1] := p and Pr[X∗

i = 0] := 1−p for i ∈ [1..t] and let X∗ :=
∑t

i=1 X∗
i .

Then the expected value of X :=
∑t

i=1 Xi is bounded by

E[X] ≥ E[X∗] = pt =
1

en3
eηℓn3 = ηℓ.

If the (µ + 1)-EAapsp has not found a shortest path from u to v after t
steps, it obviously has not performed the (ℓ′− 1)-st pessimistic improvement
in P , and thus X < ℓ′ − 1 < ℓ′. Denote by Puv := {P | P is shortest
path from u to v} the set of shortest paths from u to v. Since for every
i ∈ [1..t] the random variable Xi fulfills Pr[Xi = 1 | X1 = x1, . . . , Xi−1 =
xi−1] ≥ Pr[Xi = 1] for all x1, . . . , xi−1 ∈ {0, 1}, we can use Lemma 3.1 to
bound the probability that no shortest path P ∈ Puv from u to v is found in
t steps by

Pr
[
no P ∈ Puv found in t steps

]
≤ Pr[X < ℓ′]

= 1 − Pr[X ≥ ℓ′]

≤ 1 − Pr[X∗ ≥ ℓ′]

= Pr[X∗ < ℓ′].
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Now we can use Theorem 3.1 with α := ℓ′

E[X∗]
≤ ℓ

ηℓ
= 1

η
to bound this

probability of not finding a shortest path from u to v in t steps by

Pr
[
no P ∈ Puv found in t steps

]
≤ Pr[X∗ < ℓ′]

= Pr[X∗ < αE[X∗]]

≤ exp(−1
2
(1 − α)2

E[X∗])

≤ exp
(

− 1
2

(η − 1

η

)2

ηℓ
)

≤ exp(−1
8
ηℓ).

A simple union bound argument now reveals that the probability that
the (µ + 1)-EAapsp does not find for all vertex pairs (u, v) ∈ V 2

ℓ a shortest
path connecting them (P ∈ Puv) in t steps is bounded by

Pr

[
there exists (u, v) ∈ V 2

ℓ such that
no P ∈ Puv is found in t steps

]

≤
∑

(u,v)∈V 2
ℓ

Pr

[
no P ∈ Puv

found in t steps

]

≤ n(n − 1) exp(−1
8
ηℓ) (5.1)

< n2 exp(−1
8
η log(n))

= n2− η
8 .

For any constant c we can choose η ≥ 8(c + 2). Thus, with probability
1 − O(n−c) the optimization time is at most eηℓn3.

Note that we did not try to optimize the constant η. For ℓ = n − 1,
Lemma 5.1 yields the following upper bound.

Theorem 5.1. The optimization time of the (µ + 1)-EAapsp is with high
probability O(n4).

From the strong concentration bound of inequality 5.1 we also derive an
O(n4) bound for the expected optimization time.

Theorem 5.2. Let ℓ ≥ log(n). The expected number of steps until the
(1 + 1)-EA finds a shortest path from u to v for all (u, v) ∈ V 2

ℓ is O(ℓn3). In
particular it holds that the expected optimization time of the (µ + 1)-EAapsp

is O(n4).

Proof. Let tℓ be the number of steps until the (1 + 1)-EA finds for all (u, v) ∈
V 2

ℓ a shortest path from u to v. In the proof of Lemma 5.1 we showed that
the probability that tℓ is higher than eηℓn3 is Pr[tℓ > eηℓn3] ≤ n2− η

8 . By
Lemma 3.2 the expected value E[tℓ] of tℓ is thus O(ℓn3). Setting ℓ = n we
get the upper bound for the expected optimization time.
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11 1

nn − 1321

Figure 5.3: The complete graph Kn with edge weights w used for the lower bound
analysis. The shown edge weights of 1 apply to both directions of the indicated
edge. The edges not shown in the figure have weight n.

5.3.2 Lower Bound on the Optimization Time

For the lower bound analysis, we consider the complete directed graph Kn =
([1..n], {(u, v) | u, v ∈ [1..n], u 6= v}) with edge weights

w(u, v) =

{

1 if |v − u| = 1,

n else.

For two distinct vertices u, v the unique shortest path from u to v is ((u, u +
1), . . . , (v − 1, v)) if u < v and ((u, u − 1), . . . , (v + 1, v)) otherwise (cf. Fig-
ure 5.3). These edge weights, together with initialization and selection, en-
sure that at any time all individuals in the population consist of a single edge
or are a shortest path.

Definition 5.2. The distance of two paths is the minimal number of ele-
mentary mutations needed to mutate one path into the other. A mutation
step crosses a distance of c if the path it chooses to mutate and the one it
creates by mutation have distance c.

Note that for the graph Kn with edge weights w the distance of two
shortest paths P1, P2 is the size of the symmetric difference △ of the set of
edges E(P1), E(P2) of the two paths |E(P1)△E(P2)|.

Lemma 5.2. For any c ∈ N, the probability that an accepted mutation step
crosses a distance of c is at most 4c

e(n−2)c
n−2
n−3

= O(cn−c).

Proof. Let P1 be the shortest path the mutation step chooses for mutation
and P2 be the shortest path resulting from the mutation step. Each elemen-
tary mutation of the mutation step either decreases or increases the distance
of the resulting solution to P2. Hence a shortest path P2 having a distance
of c to P1 can only be obtained via a sequence of c + 2i elementary muta-
tions for some i ∈ N0. In this case, c + i of them decrease and i of them
increase the distance of the intermediate solution to P2. The probability that
a certain one of the c + 2i elementary mutations decreases this distance is at
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most (n−2)−1, since there are at most 2 additions/deletions that achieve the
distance reduction out of at least 2(n − 2) possible elementary mutations.

Assume in the next two paragraphs that our mutation consists of exactly
c + 2i elementary mutations. Then there are at most

(
c+2i

i

)
choices for the i

elementary mutations that increase the distance to P2. In consequence, the
probability to end up with P2 is at most

(
c+2i

i

)
(n − 2)−(c+i).

It is easy to see that there are at most 2c shortest paths P2 that have
exactly a distance of c to P1. Thus, if the mutation step performs c + 2i
elementary mutations, the probability to end up with any shortest path P2

having a distance of c to P1 is at most 2c
(

c+2i
i

)
(n − 2)−(c+i).

Recall that the probability that our mutation consists of c+2i elementary
mutations is (e(c + 2i− 1)!)−1. Hence the probability that a single mutation
step crosses a distance of c is at most

∞∑

i=0

1

e(c + 2i − 1)!

(
c + 2i

i

)
2c

(n − 2)c+i
=

2c

e(n − 2)c

∞∑

i=0

c + 2i

i!(c + i)!

1

(n − 2)i

≤ 4c

e(n − 2)c

∞∑

i=0

1

(n − 2)i

≤ 4c

e(n − 2)c

n − 2

n − 3

= O(cn−c).

Lemma 5.3. For any constant c1, there exists a constant c := c1+3 such that
with probability 1−O(n−c1), during its optimization time the (µ + 1)-EAapsp

will only accept mutation steps that cross a distance of at most c.

Proof. We know from Theorem 5.1 that for any arbitrary but fixed constant
c1 the (µ + 1)-EAapsp has with probability 1−O(n−c1) an optimization time of
O(n4) and from Lemma 5.2 that a mutation step that crosses a distance of c2

is accepted with probability O(c2n
−c2). Thus, the probability that during the

optimization time of the (µ + 1)-EAapsp a mutation step crossing a distance
of exactly c2 is accepted is at most

(1 − O(n−c1)) · O(n4) · O(c2n
−c2) + O(n−c1) = O(c2n

4−c2) + O(n−c1).

Equivalently, the probability that during the optimization time of the
(µ + 1)-EAapsp an accepted mutation step crosses a distance of more than c
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is bounded by

O(n−c1) +
∞∑

c2=c+1

O(c2n
4−c2) = O(n−c1) +

∞∑

c2=c1

O(c2n
−c2) = O(c1n

−c1).

Let P ∗ := ((1, 2), (2, 3), . . . , (n − 1, n)) be the shortest path from 1 to n
in Kn with edge weights w. Consider a sequence of mutation steps (each
changing at least one edge) that may create P ∗. Of these steps consider the
last ⌊n−3

c
⌋ where c is the constant from Lemma 5.3. Let the paths that are

created during these steps be P0, P1, . . . P⌊n−3
c

⌋ = P ∗. Since P ∗ consists of

|P ∗| = n − 1 edges and since Pj has with high probability at most c edges
more than Pj−1, we have that |Pj| ≥ 2 for all j ∈ [0..⌊n−3

c
⌋] and thus all Pj

are shortest paths. Thus, these paths fulfill the requirements of the following
definition.

Definition 5.3 (c-Trail). A c-trail T := (P0, P1, . . . , P⌊n−3
c

⌋) of P ∗ is a se-

quence of shortest paths such that P0 consists of at least 2 edges, P⌊n−3
c

⌋ =

P ∗, and for all j ∈ [1..⌊n−3
c
⌋] Pj−1 and Pj have a distance of at most c.

Since there are at most (2c)2 shortest paths that have a positive distance

of at most c from Pj, there are at most (4c2)⌊
n−3

c
⌋ such c-trails.

Theorem 5.3. The optimization time of the (µ + 1)-EAapsp on Kn with edge
weights w is with high probability Ω(n4).

Proof. Let c be the constant from Lemma 5.3. In order to create P ∗ the
(µ + 1)-EAapsp has to perform all ⌊n−3

c
⌋ mutation steps that create Pj out of

Pj−1 for j ∈ [1..⌊n−3
c
⌋] of one of the c-trails of P ∗ (and the mutation steps

leading to P0, which we will ignore in this proof). First, we will analyze the
number of steps the (µ + 1)-EAapsp needs to follow one particular c-trail of
P ∗. Then, we will prove that with high probability the (µ + 1)-EAapsp will
not follow any of the c-trails of P ∗ in less than Ω(n4) steps.

Fix one c-trail T = (P0, P1, . . . , P⌊n−3
c

⌋) of P ∗. We call a mutation step

an improvement in T if it creates Pj out of Pj−1 for some 1 ≤ j ≤ ⌊n−3
c
⌋. If

all ⌊n−3
c
⌋ improvements in T have been done, we say that the (µ + 1)-EAapsp

has followed T .

Let t := 1
80c4

(n− 1)4 and let the random variable t′ denote the number of
steps the (µ + 1)-EAapsp needs to follow T . For i ∈ [1..t′] define the binary
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random variables Xi by Xi = 1 if the i-th mutation step is an improvement
in T . An improvement changes at least 1 and at most c edges of a path.
In order to change c′ edges, it first has to pick the right individual with
probability 1

n(n−1)
and then change the c′ edges with probability 4c′

e(n−2)c′
n−2
n−3

(cf. Lemma 5.2). Thus, for n ≥ 6, the probability that Xi = 1 is independent
of the steps before bounded by

Pr[Xi = 1] ≤
c∑

c′=1

1

n(n − 1)

4c′

e(n − 2)c′

n − 2

n − 3

≤ 4

en(n − 1)(n − 2)
· n − 2

n − 3
·

c−1∑

c′=0

c′

(n − 2)c′

<
4c

en(n − 1)(n − 2)
· n − 2

n − 3
· n − 2

n − 3

<
8c

e(n − 1)3
.

Let p := 8c
e(n−1)3

. For t′ < i ≤ t define the binary random variable Xi by

Pr[Xi = 1] := p and Pr[Xi = 0] := 1 − p. As needed in Lemma 3.1, for
all i ∈ [1..t] and all x1, . . . , xi−1 ∈ {0, 1} it holds that Pr[Xi = 1 | X1 =
x1, . . . , Xi−1 = xi−1] ≤ p. Thus, we define the binary random variables X∗

i

by Pr[X∗
i = 1] := p and Pr[X∗

i = 0] := 1 − p.

The expected value of X∗ :=
∑t

i=1 X∗
i is

E[X∗] =
t∑

i=1

Pr[X∗
i = 1] = pt =

8c

e(n − 1)3

1

80c4
(n − 1)4 =

n − 1

10ec3
.

If the (µ + 1)-EAapsp has found P ∗ in t steps by following the c-trail T ,
then obviously X :=

∑t
i=1 Xi ≥ |T | = ⌊n−3

c
⌋. Hence,

Pr[P ∗ found in t steps by following T ] = Pr[X ≥ |T |].

Let β := |T |
E[X∗]

. Then for n ≥ 5 + 2c it holds that

β = ⌊n − 3

c
⌋ · 10ec3

n − 1
≥ n − 3 − c

c
· 2c

n − 1
· 5ec2 ≥ 5ec2.

Hence, by Lemma 3.1 and Theorem 3.1, the probability of finding P ∗ in
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t = 1
80c4

(n − 1)4 steps by following c-trail T is bounded by

Pr[X ≥ |T |] ≤ Pr[X∗ ≥ |T |]
= Pr[X∗ ≥ βE[X∗]]

< (eβ−1β−β)E[X∗]

≤ (
e

β
)βE[X∗]

≤ (5c2)−|T |

= (5c2)−⌊n−3
s

⌋.

Since the (µ + 1)-EAapsp has to follow one of the c-trails of P ∗ in order to
find P ∗, the probability that the (µ + 1)-EAapsp finds P ∗ in t = 1

80c4
(n − 1)4

steps is bounded by

Pr[P ∗ found in t steps] ≤
∑

T∈T
Pr[P ∗ found in t steps by following T ]

≤
∑

T∈T
(5c2)−⌊n−3

c
⌋

= (4
5
)⌊

n−3
c

⌋.

Here T denotes the set of all c-trails of P ∗. In the penultimate line we used the
fact that there are at most (4c2)⌊

n−3
c

⌋ c-trails of P ∗. Since the (µ + 1)-EAapsp

has to find P ∗ to solve the APSP it needs with high probability at least Ω(n4)
steps.

Observe that this theorem implies an expected optimization time of Ω(n4).

5.4 Upper Bound on the Optimization Time of

the (µ+1)-GAapsp

We now prove that if we use the (µ + 1)-GAapsp for the APSP problem, that
is, we enrich the (µ + 1)-EAapsp with a crossover operator, then the expected
optimization time drops to O(n3.5+ε) for any ε > 0. This bound holds for
any constant crossover probability 0 < p⊗ < 1.

While it seems natural that the additional use of powerful variation oper-
ators should speed up computation, this behavior could so far not be proven
for a non-artificial problem. Several reasons for this have been discussed in
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the literature. In our setting, the following aspect seems crucial. The hoped
for strength of the crossover operator lies in the fact that it can advance a
solution significantly. E. g., it can combine two shortest paths consisting of
ℓ1 and ℓ2 edges to one consisting of ℓ1 + ℓ2 edges in one operation. On the
negative side, for this to work, the two individuals we try to combine have to
fit together. Thus with relatively high probability, the crossover operator will
produce an invalid solution (here, no path at all). Often, this disadvantage
seems to outnumber the chance of faster progress.

Our analysis shows that this does not happen in our setting. In fact,
from the point on when our population contains all shortest paths having
O(n1/2+ε) edges, crossover becomes so powerful that we would not even need
mutation anymore.

We can prove the claimed upper bound for all three crossover operators
introduced in Section 5.2.3. However, as the crossover operators we use
become more elaborate, for the proof we need to comply to the following
restrictions.

R1: Among two shortest paths the fitness function prefers the one consisting
of fewer edges. (Needed for ⊗2.)

R2: The input graph has unique shortest paths. (Needed for ⊗3.)

Given these restrictions, we show for each crossover operator a certain prob-
ability that it successfully creates a longer path by combining two shorter
paths. Using these success probabilities we prove the expected optimization
time of O(n3.5+ε).

Lemma 5.4. Let k > 1. Assume the population I contains a shortest path
for any pair of vertices (u′, v′) ∈ V 2

k . Let ℓ ∈ [k + 1..2k] and (u, v) ∈ V 2
ℓ .

Then the following holds.

a) A single execution of the ⊗1-operator generates a shortest path from u
to v with probability Ω(2k+1−ℓ

n4 ).

b) Assume R1. A single execution of the ⊗2-operator generates a shortest

path from u to v having at most ℓ edges with probability Ω( (2k+1−ℓ)2

kn4 ).

c) Assume R2. A single execution of the ⊗3-operator generates the short-

est path from u to v with probability Ω( (2k+1−ℓ)3

k2n4 ).
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Proof. a) The ⊗1-operator can generate a shortest path from u to v by picking
a path Pu starting in u and a path Pv ending in v, such that Pu together
with Pv forms a path from u to v. A particular pair (Pu, Pv) is chosen with
probability at least

(n(n − 1))−2 = Ω( 1
n4 ).

This leaves the task of counting the number of pairs that generate a shortest
path from u to v. Let P = ((u,w1), (w1, w2), . . . , (wℓ−1, v)) be a shortest
path from u to v having ℓ edges. Then, for every vertex wi, i ∈ [ℓ − k, k],
a shortest path from u to wi and a shortest path from wi to v are in the
population. Hence, there are at least 2k + 1 − ℓ pairs of paths that the
⊗1-operator can combine to a shortest path from u to v. In summary, the
probability that a single crossover step generates a shortest path from u to
v is at least Ω(2k+1−ℓ

n4 ).

b) To generate a shortest path from u to v, it suffices that the ⊗2-operator
picks a path Pu starting in u, a path Pv ending in v, and a number i ∈ [0..|Pu|]
such that the first i edges of Pu together with Pv form a path from u to v. The
probability that a particular triple (Pu, Pv, i) with |Pu| ≤ k, |Pv| ≤ k, i ≤ |Pu|
is chosen is at least

(n(n − 1))−2(k + 1)−1 = Ω( 1
kn4 ).

It remains to count how many such triples generate a shortest path from u to
v. Let P = ((u,w1), . . . , (wℓ−1, v)) be such a shortest path having ℓ edges. Let
ℓ−k ≤ j ≤ k. Then I contains a shortest path Pu = ((u,w′

1), . . . , (w
′
j−1, wj))

from u to wj having j edges. For each i ∈ [ℓ − k..j], I contains a shortest
path Pv from w′

i to v, since ℓ − i ≤ k. Obviously, the first i edges of Pu

combined with Pv form a shortest path from u to v. Hence, the total number
of triples yielding a shortest path from u to v having ℓ edges is at least

k∑

j=ℓ−k

(j − (ℓ − k) + 1) = Ω((2k + 1 − ℓ)2).

Thus, the probability that ⊗2 generates such a path in a single step is at

least Ω( (2k+1−ℓ)2

kn4 ).

c) To generate P , the ⊗3-operator has to pick a path Pu starting in u,
a path Pv ending in v, and numbers i ∈ [0..|Pu|], j ∈ [0..|Pv|] such that the
first i edges of Pu together with the last j edges of Pv form the path P . The
probability that a particular 4-tuple (Pu, Pv, i, j) with |Pu| ≤ k, |Pv| ≤ k, i ≤
|Pu|, j ≤ |Pv| is chosen is at least

(n(n − 1))−2(k + 1)−2 = Ω( 1
k2n4 ).
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It remains to count the number of such 4-tuples that generate P . For
this, consider two sub-paths of P , one starting at u, the other ending at v.
Observe that those sub-paths are also shortest paths. Since we assume all
shortest paths to be unique, both sub-paths will be in the population if they
consist of at most k edges. If the sum of the numbers of edges of both paths
is some i ∈ [ℓ..2k], they have i − ℓ edges in common and the number of
successful crossover positions is i − ℓ + 1. The number of pairs of sub-paths
that have i − ℓ edges in common is 2k + 1 − i. Hence, the total number of
4-tuples yielding P is at least

2k∑

i=ℓ

(i − ℓ + 1) · (2k + 1 − i) =
2k−ℓ∑

i=0

(i + 1) · (2k + 1 − i − ℓ)

= Ω((2k + 1 − ℓ)3).

Thus, the probability that ⊗3 generates the shortest path P in a single step

is at least Ω( (2k+1−ℓ)3

k2n4 ).

Corollary 5.1. Let k > 1 and ℓ = 3k
2
. Assume the population I contains

for any pair of vertices (u′, v′) ∈ V 2
k a shortest path. Assuming R1 for ⊗2

and R2 for ⊗3 the following holds.

a) Let (u, v) ∈ V 2
ℓ . A single execution of the ⊗i-operator for i ∈ {1, 2, 3}

will create a shortest path from u to v with probability at least Ω( k
n4 ).

b) The expected number of crossover steps until I contains for all (u, v) ∈
V 2

ℓ a shortest path from u to v is O(n4 log(n)
k

).

Proof. a) This follows directly by plugging ℓ into Lemma 5.4.

b) This proof is similar to the proof of the coupon collector’s theorem
(cf. [AS00]). Let r = |V 2

ℓ | − |V 2
k | = O(n2) be the number of paths that have

to be found. By a) the first of the sought after paths will be found after an
expected number of O(n4

k
1
r
) steps. If i paths have been found, it will take an

expected number of O(n4

k
1

r−i
) steps until the (i + 1)-st path is found. Hence,

to find all r paths takes

r−1∑

i=0

O

(
n4

k

)
1

r − i
= O

(
n4

k

) r∑

i=1

1

i
= O

(
n4 log(n)

k

)

steps.
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Theorem 5.4. Let i ∈ [1..3]. If the conditions for the ⊗i-operator hold,
then the (µ + 1)-GAapsp using mutation and ⊗i-crossover with any constant

crossover probability 0 < p⊗ < 1 needs an expected number of O(n3.5
√

log(n))
steps to solve the APSP problem.

Proof. Let k :=
√

n log(n). Both the ⊗i and the mutation operator hap-
pen with constant probability and neither can decrease the fitness of the
population. Thus, for an upper bound we may consider the steps of one
of the operators only. Considering the steps of the mutation operator only,
according to Theorem 5.2, the algorithm will need in expectation at most
O(n3.5

√

log(n)) steps to find for every (u, v) ∈ V 2
k a shortest path from u to

v. (Note that Theorem 5.2 also holds if a fitness function preferring fewer
edges is used.) To find the remaining shortest paths, we only consider the
steps of the ⊗i-operator and apply Corollary 5.1 repeatedly until ℓ = n − 1.
Hence the expected number of steps is

⌈logc(n)⌉
∑

j=⌊logc(k)⌋
O

(
n4 log(n)

cj

)

= O



n4 log(n)

⌈logc(n)⌉
∑

j=⌊logc(k)⌋

1

cj





= O




n4 log(n)

clogc(k)

⌈logc(
n
k
)⌉

∑

j=0

1

cj





= O
(

n3.5
√

log(n)
)

where c := 3
2
.

Necessity of the Restrictions

We now demonstrate where the proof of the optimization time would fail
without the additional constraints for ⊗2 and ⊗3.

To see the necessity of assumption R1 (the fitness function prefers paths
consisting of fewer edges), consider for even n the complete graph Kn =
([1..n], {(u, v) | u, v ∈ [1..n], u 6= v}) with edge weights

w′(u, v) =







1 if |v − u| = 1 and u, v ≤ n
2

+ 1},
2
n

if |v − u| = 1 and u, v ≥ n
2

+ 2}
2
n

if (u, v) ∈ {(2, n
2

+ 2), (n
2

+ 2, 2), (n, 1), (1, n)}
1 + w2

uv else
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2
n

n
2 + 3

n
2 edges

Figure 5.4: The complete graph Kn with edge weights w′ for which the analysis
of the ⊗2-operator fails if the fitness function does not prefer individuals with
fewer edges. The shown edge weights apply to both directions of the indicated
edge. The edges not shown in the figure are longer than the shortest paths shown.

(0, 1)

(1, 1) (2, 1)

(1, 2) (2, 2) (n
2 − 2, 2) (n

2 − 1, 2)

(n
2 − 2, 1) (n

2 − 1, 1)

(n
2 , 1)

Figure 5.5: The complete graph K ′′
n with edge weights w′′ for which the analysis

of the ⊗3-operator fails, since the shortest paths are not unique. The edges shown
in the figure have weight 1 in both directions and the ones not depicted are longer
than the shortest paths shown.

depicted in Figure 5.4. Here, wuv is the cost of the shortest path using the
edges of weight 1 and 2

n
from u to v.

Assume, as in Lemma 5.4, that for all vertex pairs (u, v) ∈ V 2
k a shortest

path is in the population I, and that ℓ ∈ [k+1..2k] and ℓ ≤ n
2
. Now consider

the computation of a shortest path from u := 1 to v := ℓ + 1 using the
⊗2-operator. Two such shortest paths exist, namely P1 which uses the edge
(1, 2) of cost 1 and has ℓ edges and P2 which uses the n

2
edges of cost 2

n
and

has ℓ − 1 + n
2

edges. If I contains for the paths from u to i for i ∈ [2..k + 1]
the paths using the edge (1, 2), the proof of Lemma 5.4b) works. However,
if I contains the paths using the n

2
edges of cost 2

n
, the probability that the

⊗2-operator picks a convenient triple (Pu, Pv, i) drops from Ω( 1
kn4 ) to Ω( 1

n5 )
since there are Ω(n) possible positions to cut Pu.

The assumption R2 that the shortest paths are unique is essential for
the proof for the ⊗3-operator. To see this, consider for even n the complete
graph K ′′

n := (V, {(u, v) | u, v ∈ V, u 6= v}) with V := [1..n
2
− 1] × {1, 2} ∪
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u

v

Set of Shortest Paths to v

Set of Shortest Paths from u

Figure 5.6: An example for sets of shortest paths in K ′′
n that do not overlap

enough and thus do not fulfill the requirements for the proof of Lemma 5.4c).

{(0, 1), (n
2
, 1)} and with edge weights

w′′(u, v) =

{

1 if |v1 − u1| = 1,

1 + w2
uv else

depicted in Figure 5.5. Similar to above, wuv is the length of the shortest
path using the edges of weight 1 from u to v. Observe that there are many
different shortest paths connecting two vertices, all having an equal number
of edges.

Assume that I contains the shortest paths from u := (0, 1) to i for i ∈
[1..k] × {0, 1} and from j to v := (n

2
, 1) for j ∈ [n

2
− k..n

2
] × {0, 1} as given

in Figure 5.6. Then for any shortest path from u to v (having ℓ := n
2

edges)
the population will not contain all sub-paths of length up to k, as needed
by Lemma 5.4. Even more, any pair of paths, one starting in u, the other
ending in v, will only overlap on at most two vertices.

5.5 Experimental Results

In the previous sections we saw that the asymptotic worst case optimization
time of the (µ + 1)-EAapsp is Θ(n4), while that of the (µ + 1)-GAapsp is
O(n3.5+ε). To show that this difference is in fact noticeable in practice, we
implemented the algorithm given in Section 5.2.4 with the three different
crossover operators and ran it on the following three graph classes.

The first graph class are the weighted complete graphs Kn with edge
weights w from Section 5.3.2, that have edge weights 1 for all edges (u, v) with
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Figure 5.7: Optimization time for the various crossover operators on the complete
graph Kn with edge weights w (see Section 5.3.2).

|v−u| = 1, and weight n for all other edges. The second and third graph class
are the complete graphs Kn with edge weights w′ and the complete graphs
K ′′

n with edge weights w′′ used in Section 5.4 to show why we need additional
assumptions in the proofs concerning the operators ⊗2 and ⊗3. All edge
weights of w′ have been multiplied by n

2
to ensure their integrality. Note that,

although we put restrictions on ⊗2 and ⊗3 in the proofs, our implementation
does not prefer paths with fewer edges nor does it need unique shortest paths
when applying ⊗3.

We ran the implementation of our algorithm on all three graph classes
mentioned above, once using mutation only and once for each crossover op-
erator with crossover probability 1

4
. For all graph classes we considered the

graphs having an even number of vertices between 8 and 100. On each in-
stance the algorithm was run 50 times. The average optimization times for
the experiments are shown in Figure 5.7, Figure 5.8, and Figure 5.9. To keep
the plots legible we did not plot the standard deviations. However, they
are below 10% for all instances of 40 or more edges. It can clearly be seen
that adding any of the crossover operators does speed up the computation
considerably. The results also show that the “bad graphs” Kn with edge
weights w′ and K ′′

n with edge weights w′′ from Section 5.4 are not hard to
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Figure 5.8: Optimization time for the various crossover operators on the complete
graph Kn with edge weights w′ (see Figure 5.4).

solve for the corresponding crossover operators. In comparison to the other
graph classes, the mutation operator is more effective on K ′′

n with w′′. The
reason is probably that due to the structure of w′′ the mutation operator has
a lot of possibilities to create shortest paths. Thus, the difference between
runs with and without crossover are not quite so noticeable.

To estimate the different exponents of the runtimes with and without
crossover, we additionally ran the algorithm 20 times each on instances of
size 50, 60, 70, . . . , 250. We chose these bigger input sizes to weaken the effect
of the lower order terms of the runtime. To see the different exponents, we
use log-log plots2. For any polynomial f(x) = axn +o(xn), a log-log plot will
plot the function

log
(
f(log−1(x)

)
= log (a(ex)n + o((ex)n)) = nx + o(x)

hence exposing the exponent of f(x). Figure 5.10, Figure 5.11, and Fig-
ure 5.12 show the log-log plots. The difference in the exponent of the run-
time between the mutation-only algorithm and any of the algorithms using
crossover can easily be discerned in the plots. We also calculated the slope of

2In other words, both the x and the y-axis are scaled logarithmically.
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Figure 5.9: Optimization time for the various crossover operators on the complete
graph K ′′

n with edge weights w′′ (see Figure 5.5).
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Figure 5.10: Log-log plots for Kn with edge weights w.
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Figure 5.11: Log-log plots for Kn with edge weights w′.
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Figure 5.12: Log-log plots for K ′′
n with edge weights w′′.
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the plots. Figure 5.13 shows the results of these calculations. The numbers
for Kn using w and w′ and K ′′

n using w′′ show that when using only mutation
some graphs may indeed cause a quartic runtime. Also, on all three examples
crossover seems to be slightly faster than the O(n3.5) suggested by our upper
bound.

w w′ w′′

Mutation Only 4.00 4.01 3.90
Crossover (⊗1) 3.37 3.38 3.43
Crossover (⊗2) 3.41 3.42 3.41
Crossover (⊗3) 3.44 3.36 3.41

Figure 5.13: The slope of the log-log plots in Figure 5.10, Figure 5.11 and
Figure 5.12.

The experiments also show that ⊗1 seems to have a slight edge over ⊗2

which in turn is slightly faster than ⊗3. We conjecture that this is caused
by the fact that the simpler crossover operators on average combine longer
paths than the more complicated ones.

5.6 Summary

In this chapter, we presented the first non-artificial problem for which a nat-
ural evolutionary algorithm using only mutation is provably outperformed by
one using mutation and crossover. By a rigorous analysis of the optimization
time, we proved that the All-Pairs Shortest Path problem can be solved by
an evolutionary algorithm using crossover in an expected optimization time
of O(n3.5+ε), whereas the corresponding algorithm using only mutation needs
an expected optimization time of Ω(n4) in the worst case. While this clearly
does not beat the best classical algorithm custom tailored for the All-Pairs
Shortest Path problem, this result does give a better theoretical foundation
for the use of crossover in practical applications than previous results on
artificially defined pseudo-boolean functions.
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Chapter 6

Sorting

This Chapter is based on the paper “Directed Trees: A Powerful Representa-
tion for Sorting and Ordering Problems” by Benjamin Doerr and E. H [DH08].

6.1 Introduction

Evolutionary algorithms, as all randomized search heuristics, are composed
of generic, reusable parts (e. g., representations, mutation operators, fitness
functions). An expert in such methods can hopefully solve algorithmic prob-
lems easily by plugging together appropriate generic components without
fully analyzing the problem itself. To this aim suitable representations and
mutation operators must be known. A series of papers on the Euler tour
problem [DHN06, DKS07, DJ07] demonstrates how more adequate represen-
tations yield better algorithms.

In this chapter, we develop a new representation for permutations which
is based on trees. This representation admits a natural mutation operator.
Building on this framework, we obtain a natural (1 + 1) evolutionary algo-
rithm for the classical problem of sorting n elements. As we shall see, this
algorithm is significantly faster than previous evolutionary approaches to
the Sorting problem. Additionally, by distinguishing between wrong and un-
known information, we may extract some reliable information already before
the algorithm has found the terminal solution.
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6.1.1 Related Work

To the best of our knowledge, there is only one theoretical investigation
on how to solve the Sorting problem via evolutionary means. Scharnow,
Tinnefeld, and Wegener [STW04] designed a (1 + 1) evolutionary algorithm
for the Sorting problem based on the following components.

As search space they use the union of all possible permutations π =
(π(1), . . . , π(n)) of the elements. For this representation, they propose the
following two mutation operators.

• EXCHANGE(i, j) swaps the elements in positions i and j.

• JUMP(i, j) places the element in position i in position j and moves the
elements in between one position towards i.

To determine how close the current solution is to being sorted, they use
the following well-known measures of presortedness known in adaptive Sort-
ing [PM95] as fitness functions.

• HAM(π) is the number of elements in the correct position (the Ham-
ming distance).

• EXC(π) is the number of exchanges necessary to sort the sequence.

• INV(π) is the number of pairs of elements (π(i), π(j)) that are in the
wrong order.

• LAS(π) is the length of the longest ascending subsequence.

• RUN(π) is the number of maximal sorted blocks (called runs).

For this (1 + 1) evolutionary algorithm using any fitness function expect
RUN they give a lower bound on the expected optimization time of Ω(n2)
independent of whether EXCHANGE, JUMP, or both mutation operators
are used. They prove an expected upper bound of O(n2 log n) for all fit-
ness functions except RUN, which holds when both mutation operators are
used. However, for most fitness functions only one operator is used in the
proof. For the combinations of the fitness functions HAM and EXC with
the mutation operator EXCHANGE and of the fitness function INV with
either EXCHANGE or JUMP they give a tight bound of Θ(n2 log n). For
the fitness function RUN they propose an expected exponential optimization
time if only JUMPs are used.
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a1 a2 an−1 an

a0

Figure 6.1: The initial solution. The elements of G = {a1, . . . , an} are incompa-
rable in this order.

6.1.2 Our Results

While a sorted sequence of elements can conveniently be represented by a
permutation, intermediate results of many Sorting algorithms cannot. There-
fore, a more natural view of Sorting is that we start with an unsorted set
of elements and successively by comparing elements add order to the set.
Hence the approach we propose in this chapter is to use a sufficiently rich set
of orders on the ground set of elements to be sorted as search space. This
should include the empty order as natural initial solution and all linear orders
(permutations) as possible final solutions. The advantage of a search space
built on this paradigm is that by punishing incorrectly ordered element pairs
in the fitness function, we can easily and in a natural manner ensure that
no solution ever found contains incorrectly ordered pairs of elements. This
means that also intermediate solutions contain some reliable information.
Note that this cannot be realized with permutations only as search space.

We defer the detail to the following sections, but sketch the main concepts
and results now. We shall not need all orders on the ground set G (which
consists of the elements to be sorted) in our search space. Since we aim at a
linear order on G, we can restrict ourselves to orders that can be defined via
assigning a predecessor to some elements of the set (meaning that the prede-
cessor is ‘smaller’ than the element itself). In our case, this leads to directed
forests in which each tree is directed towards a unique root. Since dealing
with separate trees may be less convenient, we add an artificial element a0

that is known to be smaller than all elements and arcs from the tree roots
to this new element. This ensures that our search space can be represented
by all directed trees on G ∪ {a0} such that the tree is directed towards its
root a0. As desired, this search space includes the empty order, represented
by the tree having all elements of G as children of a0 (cf. Figure 6.1), and all
permutations, represented by trees that are simple directed paths ending in
a0 (cf. Figure 6.2).

This representation admits a natural elementary mutation: We choose
two elements having the same predecessor (thus being sibling vertices in
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aπ(n−1)

aπ(2)

aπ(1)

a0

aπ(n)

Figure 6.2: A permutation. If aπ(i) ≤ aπ(i+1) for all 1 ≤ π(i) < n this is the
optimal (sorted) solution.

ai

ak

aj

ak

aj

⇒ ai

Figure 6.3: An elementary mutation.

the tree) and make the first one the new predecessor (i. e., the father) of
the second one (cf. Figure 6.3). We present two probability distributions to
choose the sibling vertices.

As fitness function, we use the number of correctly ordered element pairs
which corresponds to the fitness function INV used in [STW04]. Since we
aim at having no incorrectly ordered element pairs (an element having a
predecessor that actually is larger than itself), we punish occurrences of such
situations heavily.

As already discussed, this framework ensures that we shall only have
correct ordering information about elements (meaning that if one element
is the predecessor of another, than the first element is not larger than the
other) in our population. We feel that this is a very desirable feature.

To analyze the algorithmic efficiency, we build a simple (1 + 1) evolu-
tionary algorithm from the components just discussed and analyze its op-
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timization time. We will see that the optimization time and the number
of element comparisons (the common measure when analyzing Sorting algo-
rithms) have the same order of magnitude. We prove that our algorithm has
with overwhelming probability and in expectation an optimization time of
O(n2), where n := |G| is the number of elements to be sorted. Note that this
is already faster than the current best evolutionary solution [STW04] having
a proven expected optimization time of O(n2 log n).

Our O(n2) bound is relatively robust with respect to the fitness function.
It holds for any fitness function that punishes incorrectly ordered element
pairs heavily, but does not punish finding new correctly ordered element pairs.
Examples include the number of correctly ordered father-child pairs in the
individual or the sum of distances between elements and their predecessors.

Next, we show that the optimization time is in fact a useful measurement
of the efficiency of the algorithm, since each step of the algorithm can be
computed efficiently (i. e., in constant or in logarithmic time, depending on
which probability distribution we use to choose the sibling vertices for an
elementary mutation).

On the experimental basis, our approach is even better than the O(n2)
bound. We conduct several experiments that suggest that the expected op-
timization time is around Θ(n log n). They clearly show that it is of smaller
order than n log2 n. To have a comparison with the previous work, we also
implemented their algorithms. The results indicate that the expected opti-
mization time coincides with the proven upper bounds of O(n2 log n).

6.2 An Evolutionary Algorithm for Sorting

Given a ground set G = {a1, . . . , an} and a total order ≤ on G. The Sorting
problem is the problem of finding an ordered sequence (aπ(1), . . . aπ(n)) such
that aπ(i) ≤ aπ(i+1) for all 1 ≤ π(i) < n where π is a permutation of {1, . . . , n}.
It is well known that any Sorting algorithm based on comparisons only needs
in the worst case a runtime of Ω(n log n).

We now introduce a representation of the individuals for the Sorting prob-
lem. From this representation we directly get a useful initial solution. A mu-
tation operator for the individuals can also be derived from the representa-
tion. The definition of a fitness function completes the necessary components
for a (1 + 1) evolutionary algorithm.
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6.2.1 Individuals

An ordered sequence, and thus an optimal solution to the Sorting problem,
can be identified with a permutation of the elements of G. However, the
intermediate results of many Sorting algorithms cannot be represented this
way. Thus, we consider a different search space that can represent a wider
range of orders, namely directed forests where each component is directed
towards its root and an arc (ai, aj) means aj ≤ ai. This can nicely be achieved
by assigning predecessors to some of the elements. Since it is more convenient
to work with a single connected component instead of with different trees, we
add an artificial element a0 not belonging to G that is known to be smaller
than all other elements. We then connect all tree roots by an arc to this
new element a0 (in other words, the predecessors of the tree roots is set
to a0). Thus, an individual I is represented by a vector of predecessors
I = (p(a1), . . . , p(an)) ∈ (G ∪ {a0})n. Note that not all partial orders can be
represented by such a tree, however the representation can help evolutionary
algorithms to find linear orders more efficiently.

We aim at algorithms that successively find new ordering information
(information that indicates the correct order of two elements) and add it
to the current solution. Using our representation and an adequate fitness
function (see below) it is easy to achieve that any intermediate solution
contains for any two elements of G either the correct order (if ai ≤ aj than ai

is an ancestor of aj in the tree) or no information. In the beginning we have
no information, and thus instead of a random initial solution we use as initial
solution I the empty order in which all elements ai are unordered. This is
represented by a tree in which the predecessor of every ai for 1 ≤ i ≤ n is
p(ai) = a0 (cf. Figure 6.1). This way, all elements of G are incomparable in
I.

The final solution is a permutation of the elements of G which in the tree
representation is a simple directed path ending in a0 (cf. Figure 6.2). If for
every arc (aπ(i+1), aπ(i)) it holds that aπ(i) ≤ aπ(i+1), then this permutation is
sorted.

6.2.2 Fitness Function

We propose one fitness function here and will show later that it can be
replaced by several other fitness functions.

Since we search for a correct ordering of the n elements of G, it is intuitive
to give a positive reward (e.g., 1) for every correctly ordered pair of vertices
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in the tree. Since we want to avoid incorrect orderings completely, we give
a sufficiently high punishment (e.g., −n2) for any wrong ordering of two
elements. That way, we get the following fitness function f : (G∪{a0})n → Z

with
f(I) :=

∑

1≤i,j≤n

f(ai, aj)

where

f(ai, aj) :=







1 if ai ≤ aj and ai = pk(aj) for some 1 ≤ k < n,

−n2 if ai ≤ aj and aj = pk(ai) for some 1 ≤ k < n,

0 otherwise

and pk(aj) =

k
︷ ︸︸ ︷

p(p(. . . p(aj))) = ai for some 1 ≤ k < n if ai is an ancestor of
aj in I.

This fitness function f has to be maximized. The value of f is 0 for
the initial individual and 1

2
n(n − 1) for the optimal one. We will see in

Section 6.3 that we can use a number of other (and possibly easier) fitness
functions instead and in Section 6.4 how the fitness function can be computed
efficiently.

6.2.3 Mutation Operator

A natural mutation operator for this representation will try to add informa-
tion to the current solution by randomly assigning new predecessors to some
vertices.

Hence, an elementary mutation is to assign a new predecessor to one of
the vertices aj ∈ G. Since the ordering contained in an intermediate solution
is correct and we do not wish to destroy correct ordering information, an
elementary mutation picks two vertices ai and aj having the same father
(two sibling vertices with p(ai) = p(aj)) and makes the first one the new
father of the second p(aj) = ai (cf. Figure 6.3).

We propose and use the following two probability distributions to choose
the sibling vertices.

D1: Pick one of the fathers having at least two children uniformly at random
and then pick two of its children uniformly at random.
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D2: Choose a pair of sibling vertices uniformly at random from all pairs of
sibling vertices.

Both probability distributions comply with the following property.

P1: The probability that one elementary mutation makes aj the predecessor
of ai is the same as the probability that it makes ai the predecessor of
aj.

As we have explained in Section 2.4, the mutation operator picks a number
S at random according to a Poisson distribution Pois(ζ = 1) with parameter
ζ = 1. Hence, the probability that S is set to k is Pr[S = k] = 1

ek!
. The

mutation operator then repeats the elementary mutation described above
S + 1 times on I.

6.2.4 The (1 + 1)-EAsort

Given the described representation, mutation operator, and fitness function,
the following (1 + 1) evolutionary algorithm for Sorting (from now on called
(1 + 1)-EAsort) naturally arises from these components. The (1 + 1)-EAsort

starts with the initial population consisting of the initial solution I described
above. This solution I is modified by a mutation step to get a new solution I ′.
A selection step replaces I by I ′ if the fitness f(I ′) of the new solution I ′ is not
worse than the fitness of I. The mutation and selection steps are repeated
until the optimal solution is found. Pseudocode for the (1 + 1)-EAsort for
sorting n elements is given in Figure 6.4.

The selection step (together with the above described fitness function)
assures that no solution containing incorrectly ordered vertex pairs is ever
accepted.

The (1 + 1)-EAsort has several benefits over the (1+1) evolutionary algo-
rithm based on permutations proposed by Scharnow, Tinnefeld, and Wegener
[STW04]. For one, using the tree representation our algorithm can also be
used to find a wider range of partial orders. Another advantage is that even
if the algorithm has not finished sorting the elements completely, the pre-
liminary result is still useful, as for every pair of elements it either gives
the correct order of the elements or no order. Last but not least, we will
see that using this data structure we outperform the algorithms based on
permutations.



6.3 Analysis of the Optimization Time 73

(1 + 1)-EA for Sorting

Initialization:
1 I ← {I} where I is the empty order.
2 repeat

Mutation:
3 Pick S according to Pr[S = k] = 1

e·k!
.

4 I0 ← I
5 for m = 1 to S + 1
6 do
7 Pick two sibling vertices ai, aj

by Dist1 or Dist2.
8 Generate Im from Im−1 by making ai

9 the father of aj.
Selection:

10 if f(IS+1) ≥ f(I)
11 then I ← {IS+1}
12 until I contains the optimal solution

Dist1:
13 Choose an element having at least 2 children uniformly at

random.
14 Choose 2 of the children uniformly at random.

Dist2:
15 Choose 2 sibling vertices uniformly at random from all

pairs of sibling vertices.

Figure 6.4: Pseudocode for the (1 + 1)-EAsort for Sorting.

6.3 Analysis of the Optimization Time

In this section, we prove upper and lower bounds for the optimization time
of the (1 + 1)-EAsort. We show that an upper bound of O(n2) holds in expec-
tation and also with overwhelming probability. A natural Ω(n log n) lower
bound is derived from classical theory. Finally, we show that both bounds
in fact hold for any fitness function that rewards finding additional correct
ordering information but forbids accepting wrong ordering information.
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The following upper bound on the optimization time of the (1 + 1)-EAsort

holds, regardless of which of the two probability distributions D1 and D2
proposed in the previous section is used to choose the two elements for the
mutation step.

Theorem 6.1. As long as the elementary mutations comply with the property
P1, the (1 + 1)-EAsort needs in expectation and with overwhelming probabil-
ity1 at most O(n2) steps to find the optimal solution.

Proof. Since P1 holds, for any two elements ai and aj the probability to
choose ai and aj in an elementary mutation, and thus to make ai the pre-
decessor of aj, is the same as the probability to choose aj and ai. Since one
of the two elementary mutations increases the fitness by at least one and
the other one is rejected, with a probability of 1

2
an elementary mutation

increases the fitness by at least one.

In the previous section we have seen that the fitness of the initial solution
is 0 and the fitness of the optimal solution is 1

2
n(n− 1). If the (1 + 1)-EAsort

has not found the optimal solution yet, the fitness of the individual is smaller
than 1

2
n(n − 1). Since every step that is accepted increases the fitness by

at least 1, the fitness has then been increased by less then 1
2
n(n − 1) mu-

tation steps. We show for any constant η > e that if the (1 + 1)-EAsort

performs ηn(n − 1) steps with overwhelming probability at least 1
2
n(n − 1)

of the mutation steps would consist of a single elementary mutation and be
accepted.

Let t := ηn(n − 1) for some constant η > e and let t′ be the number
of mutation steps the (1 + 1)-EAsort needs to find the optimal solution. We
count the number of accepted mutation steps that consist of a single ele-
mentary mutation. For that we define for 1 ≤ i ≤ t′ the binary random
variables Xi by Xi = 1 if the i-th mutation step of the (1 + 1)-EAsort con-
sists of a single elementary mutation and increases the fitness and Xi = 0
otherwise. The probability that the i-th mutation step consists of a single
elementary mutation is 1

e
by definition of the Poisson distribution, and the

probability that the mutation step consisting of this elementary mutation is
accepted is 1

2
. Thus independent of the steps before, Pr[Xi = 1] = p := 1

2e

and Pr[Xi = 0] = 1 − p. For t′ < i ≤ t, define the mutually independent
random variables Xi by Pr[Xi = 1] := p and Pr[Xi = 0] := 1 − p. Then, all
Xi are mutually independent.

The expected value of X :=
∑t

i=1 Xi is then E[X] = η
2e

n(n − 1).

1Recall that “with overwhelming probability” means that an event happens with prob-
ability at least 1 − 2−Ω(nǫ) for a constant ǫ > 0.
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Thus, if the (1 + 1)-EAsort has not found the optimal solution after t =
ηn(n−1) steps, the fitness has been increased by less then 1

2
n(n−1) mutation

steps, and X < 1
2
n(n − 1). If we use α = e

η
< 1, we have that αE[X] =

1
2
n(n − 1). Thus, we can use the first inequality of Theorem 3.1 to bound

the probability that the (1 + 1)-EAsort does not find the optimal solution in
t steps by

Pr

[
The (1 + 1)-EAsort does not find
the optimal solution in t steps

]

≤ Pr[X < 1
2
n(n − 1)]

= Pr[X < αE[X]]

< exp
(
−1

2
(1 − α)2

E[X]
)

= exp

(

−(η − e)2

η2

η

4e
n(n − 1)

)

= exp

(

−(η − e)2

4eη
n(n − 1)

)

.

Thus, we have shown that the (1 + 1)-EAsort needs with overwhelming
probability at most O(n2) mutation steps to find the optimal solution.

The expected upper bound follows from Lemma 3.3.

Theorem 6.2. In the worst case, the (1 + 1)-EAsort needs at least an expected
number of Ω(n log n) steps to find the optimal solution.

Proof. A mutation step chooses a random number S drawn from a Poisson
distribution Pois(ζ = 1) with parameter ζ = 1 and performs S + 1 elemen-
tary mutations, each changing the predecessor of one element. The selection
step compares the fitness function values of the new and the old individual.
However, it would suffice if the selection step compared only the elements
for which the predecessor has changed with the new predecessor of these
elements (cf. Section 6.4), thus performing one comparison per elementary
mutation.

Since the expected value for a Poisson distribution is ζ, a mutation step
performs in expectation two comparisons. Thus, if the (1 + 1)-EAsort applies
t mutation steps to find the optimal solution, this corresponds in expectation
to performing 2t comparisons. Since any randomized algorithm needs at least
an expected number of Ω(n log n) comparisons [CLRS03], the (1 + 1)-EAsort

needs in expectation at least Ω(n log n) mutation steps to find the optimal
solution.
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This proof also reveals that the optimization time and the number of
element comparisons, the common measure for analyzing Sorting algorithms,
have the same order of magnitude.

Although the fitness function f given in Section 6.2 is the natural choice
for a fitness function, it may not be the one that is easiest to analyze. How-
ever, we can easily choose a different fitness function, as long as the following
two restrictions are followed.

R1: The fitness function awards additional correct ordering information
with a non-negative reward.

R2: The fitness function prevents the acceptance of incorrect ordering infor-
mation (e. g., by punishing the incorrect order of two elements heavily).

Lemma 6.1. If the (1 + 1)-EAsort uses instead of the original fitness function
f a fitness function f ′ that complies with the restrictions R1 and R2, the
behavior of the (1 + 1)-EAsort is the same as if it uses f .

Proof. An elementary mutation chooses two sibling vertices and makes one
the father of the other. Differently put, it chooses two elements that are
incomparable in the current solution and makes them comparable.

Consider a mutation step consisting of S + 1 ≥ 1 elementary mutations.
Assume one of the S + 1 elementary mutations introduces incorrect ordering
information in the current individual I, in other words it makes ai the father
of aj and ai > aj. Now ai and aj are comparable in I. Since an elemen-
tary mutation always chooses sibling vertices, there is no way to make two
comparable elements incomparable, and thus no other elementary mutation
can destroy the effects of this elementary mutation. Thus, after the S + 1
elementary mutations, ai is still a predecessor of aj and the newly created
individual contains incorrect ordering information. Due to the restriction
R2, both fitness function, f and f ′, reject the new individual.

Otherwise, only correct ordering information is introduced. Due to the
restriction R1, the fitness function value of the new individual is not smaller
than the fitness of the old individual, and thus the new individual is accepted
using either of the two fitness functions.

Thus we have proven that if the original fitness function f accepts or
rejects the new individual so does the alternative fitness function f ′.

Note that this lemma only guarantees that the acceptance behavior of the
(1 + 1)-EAsort is the same no matter whether it uses f or f ′. Differently put,
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f(I ′) ≥ f(I) if and only if f ′(I ′) ≥ f ′(I). However, the fitness values of f and
f ′ can differ for the same individual. Hence Lemma 6.1 is not transferable
to evolutionary algorithms working with more than one candidate solution
in the population and one as offspring.

The following two fitness functions f ′ : (G ∪ {a0})n → Z and f ′′ : (G ∪
{a0})n → R are examples for fitness functions following the restrictions R1
and R2. The first example is

f ′(I) :=
∑

1≤i,j≤n

f ′(ai, aj)

where

f ′(ai, aj) :=







1 if ai ≤ aj and ai = p(aj),

−n2 if ai ≤ aj and aj = p(ai),

0 otherwise.

This function f ′ counts the number of correctly ordered father-child pairs in
the individual. The second function f ′′ can only be used if some distance
metric is defined on the elements {a0, . . . , an}.

f ′′(I) :=
∑

1≤i,j≤n

f ′′(ai, aj)

where

f ′′(ai, aj) :=







|aj − ai| if ai ≤ aj and ai = p(aj),

−n · max
i,j∈[1..n]

{|aj − ai|} if ai ≤ aj and aj = p(ai),

0 otherwise.

The fitness function f ′′ sums the distances between elements and their pre-
decessors in an individual.

6.4 Implementation Details and Analysis of

the Actual Runtime

In this section we show that each component of the (1 + 1)-EAsort can be
computed highly efficiently. That implies that the bounds for the optimiza-
tion time given in the previous section also hold up to a constant factor for
the runtime if we choose the father of the two sibling vertices uniformly at
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name use, size, initialization
pred: An array that contains a solution tree by storing for each ele-

ment ai its predecessor p(ai).
n, [a0, . . . , a0]

father: An array that contains in arbitrary order the elements having
at least 2 children.
n, [0,−1, . . . ,−1]

#child: An array that contains for every element the number of its
children.
n + 1, [n, 0, . . . , 0]

childi: n + 1 arrays that contain for every element ai for i ∈ [0..n] its
children in arbitrary order.
(n + 1) · n, [a1, . . . , an] for i = 0 and [−1, . . . ,−1] for i ∈ [1..n]

#desc: An array that contains for every element the number of its
descendants.
n + 1, [n, 0, . . . , 0]

Figure 6.5: The datastructures used by the (1 + 1)-EAsort if the elementary
mutations use probability distribution D1.

random (according to probability distribution D1). If we choose the two sib-
ling vertices uniformly at random from all pairs of sibling vertices (according
to probability distribution D2), the runtime increases by a factor of O(log n).

Assume first that the elementary mutations of the (1 + 1)-EAsort use the
probability distribution D1. The first step of the algorithm is the initial-
ization. For that, it creates and initializes the datastructures listed in Fig-
ure 6.5. Additionally, it uses counters for father and childi to keep track
of how many elements the arrays currently contain. This is done once and
since the accumulated size of initial entries into the datastructures is O(n) it
needs O(n) time.

To avoid the creation of a new array pred in every step of the algorithm,
we keep two copies of pred, one holding the current individual I and the
other one holding the newly created individual I ′.

Then, the (1 + 1)-EAsort performs a number of mutation and selection
steps. Each mutation step consists in expectation of two elementary mu-
tations (cf. the previous section). For each elementary mutation, it first
chooses randomly one of the fathers having at least two children (using the
array father and the corresponding counter). Let this father be element ak.
Using the array #child, the (1 + 1)-EAsort can determine how many pairs of
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a2 a3 a4 a5 a6a0 a1

6 2

6

0 0 0 0 0

0 2

a5

10
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a7

a6 a4 a3a1

2

2

2

I

a7 8 > 6

8 ≤ 8

8

8 − 6

≤ 2

a2

a0

Figure 6.6: The figure shows an individual I (on the left) and its corresponding
datastructure siblings (on the right). Most of the elements have no children (no
sibling pairs), a0 has 3 children (6 sibling pairs), and a2 and a7 have 2 children
(2 sibling pairs) each. Thus, in total there are 10 sibling pairs. If an elementary
mutation chooses the 8-th sibling pair, it descends the tree siblings as indicated
in bold. It finds that this is the second of the sibling pairs being children of a2.

sibling vertices are ak’s children. After it has chosen a random one of these
pairs, the corresponding pair (ai, aj) can be found with help of the array
childk. Then, the algorithm sets p(aj) = ai in the copy of pred correspond-
ing to I ′. All of the above and the updates of the arrays father, #child,
childk, and #desc can be done in constant time (for father and childi the
constant time can be achieved because the elements are unordered and the
counters store how many elements are in the arrays). Hence, in expectation,
a mutation step can be performed in constant time.

The fitness function can be computed in linear time by doing a depth-first
traversal of the tree during which the tree-levels of the elements are summed
up. If an incorrect ordering of some vertex and its father is found, a negative
number is returned. However, by remembering which elementary mutations
were performed, instead of recomputing the fitness function in every step, we
can update the fitness function in constant time using the information stored
in #desc.

Depending on the fitness values of the individuals I and I ′, the selection
step either ignores I ′ or it replaces I by I ′. In the first case, we simply set the
copy of pred for I ′ to the values of the copy of pred for I to be ready for the
next mutation step. Since we remembered which elementary mutations were
performed for the efficient computation of the fitness function, this can be
done in expected constant time. Otherwise, the selection step replaces I by
I ′ by updating the datastructures father, #child, childi, #desc, and the
copy of pred for I. Again, these updates can be done in expected constant
time.
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Now assume the probability distribution D2 is used for the elementary
mutations. We use the datastructure siblings instead of father. siblings
is a complete binary tree of size 2⌈log2(n+1)⌉. The i-th leaf is associated with
element ai for i ∈ [0..n] and the label of this leaf holds the number of pairs
of sibling vertices that are sons of element ai in the current solution I. The
internal vertices hold the sum of the values of its two sons. Thus, a label
of an internal vertex u holds the number of pairs of sibling vertices that
are children of one of the elements associated with a leaf in u’s subtree (cf.
Figure 6.6). Consequently, the label of the root of the tree siblings holds
the total number of pairs of sibling vertices in I.

Since only the computation of the sibling pair on which an elementary
mutation is performed has changed, we only have to consider this compu-
tation and the initialization and the updates on the datastructure siblings.
The tree siblings is initialized by setting the label of the leaf associated with
a0 to n(n − 1) which is the number of possible sorted pairs of n elements.
The labels of the ancestors of this leaf are also set to n(n−1), all other labels
are set to 0. This has to be done once and can be achieved in linear time. D2
chooses one of all pairs of sibling vertices at random. For that it chooses a
number between 1 and the number of sibling pairs in the individual (given by
the label of the root of siblings). To find the corresponding pair, it descends
the tree siblings according to the labels (cf. Figure 6.6) until it has found the
correct father ak. Using childk, the (1 + 1)-EAsort can compute the correct
sibling pair. Descending the tree siblings and its subsequent update can
be done in O(log n) time. Thus, a mutation step consisting of an expected
number of two elementary mutations (which use the D2) can be performed
in expected logarithmic time.

Hence, we have shown that a step of the (1 + 1)-EAsort can be performed
in expected constant time if the elementary mutations use the probability
distribution D1. If the elementary mutations use instead probability distri-
bution D2, a step of the algorithm can be performed in expected logarithmic
time.

6.5 Experimental Results

We implemented the (1 + 1)-EAsort described in the previous sections as well
as the evolutionary algorithm for Sorting presented in [STW04] (in this sec-
tion referred to as (1 + 1)-EAp since it uses permutations as representation).
This section contains the results of the experiments we carried out using both
implementations.
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The bounds we proved in Section 6.3 are not tight. However, they already
show that the expected optimization time of our (1 + 1)-EAsort using a tree
representation is at least as good as the expected optimization time of the
(1+1)-EAp given in [STW04]. Our upper bound is O(n2), whereas the general
lower bound of the (1 + 1)-EAp is Ω(n2) and Ω(n2 log n) for several of the
combinations of fitness function and mutation operator (in particular those
combinations that seem most adequate). We will see that the real expected
optimization time of our algorithm seems to be much closer to the lower
bound of Ω(n log n) than to the upper bound. The expected optimization
time of the (1 + 1)-EAp appears to be close to Θ(n2 log n) as the proven
bounds indicate.

As described in Section 6.2, an elementary mutation of our evolutionary
algorithm chooses two elements having the same father and makes the first
one the father of the second. The two probability distributions we proposed
to choose these elements are choosing the father of the two elements uniformly
at random (D1) or choosing a sibling pair uniformly at random from all pairs
of sibling vertices (D2). We implemented both variants of the algorithm
and conducted test runs. For each variant we let the algorithm solve 100
instances for the input sizes 100, 300, . . . , 5900. The results (cf. Figure 6.7)
clearly indicate that the average optimization time of our algorithm is only
slightly higher than linear in the number of elements to be sorted. The
smaller graphs in the figure shows the same optimization times divided by
n log n in the first graph and divided by n log2 n in the second graph. These
graphs show that the real expected optimization time seems to lie between
Ω(n log n) and O(n log2 n).

The (1 + 1)-EAp to which we compare our algorithm comes in many fla-
vors. For one, 5 different fitness functions are used (cf. also Section 6.1.1),
namely HAM, EXC, INV, LAS, and RUN. Additionally, two different mu-
tation operators, JUMP and EXCHANGE, were proposed.

First we wanted to find out for each fitness function whether it is best to
use both mutation operators or only one of them, and if so which one. To
this aim, we let the (1+1)-EAp solve for each fitness function except RUN 10
random instances for the input sizes 10, 20, . . . 100 either using only JUMP
or only EXCHANGE or using both with probability 1

2
each. Since RUN has

a very high optimization time, we chose to let this variant of the (1+1)-EAp

solve 10 random instances for the input sizes 2, 4, . . . , 20. The results (cf.
Figure 6.8) indicate that for the following experiments we should choose the
mutation operator EXCHANGE for the fitness functions HAM and EXC and
for the fitness functions LAS and RUN only JUMP. The fitness function INV
is the only fitness function where all three variants are comparable, however
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Figure 6.7: The main graph shows the optimization times for the (1 + 1)-EAsort

using the probability distributions D1 and D2 for the elementary mutations, aver-
aged over 100 runs each. Additionally the minimum and maximum optimization
times over all 200 runs are given. The smaller graphs show the average optimiza-
tion times divided by n log n (left graph) and n log2 n (right graph). These plots
indicate that the actual expected optimization time is around Θ(n log n).

using only JUMP seems to be slightly superior. Note that the tight bounds in
[STW04] were given for HAM and EXC using only the EXCHANGE operator
and for INV using either operator, which coincides with the best mutation
operators we determined for these fitness functions.
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Figure 6.8: The first graph shows the average optimization times of the (1 +
1)-EAp using the fitness function HAM and either only the JUMP or only the
EXCHANGE operator or both. The next graphs show the same for the (1+1)-EAp

using the fitness functions EXC, INV, LAS, and RUN.

Having found the adequate mutation operators for each fitness func-
tion, we chose to first have 10 runs for each fitness function on input sizes
{1, 2, . . . , 19}. Since RUN seems to have an expected exponential optimiza-
tion time, we then let the (1 + 1)-EAp for the other fitness functions make
10 runs of the input sizes between 10 and 300 with a step size of 10. As can
easily be seen (cf. Figure 6.9), RUN has a very high and probably exponen-
tial expected runtime, as suggested in [STW04]. The others seem to have an
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Figure 6.9: The main graph shows the average optimization times of the (1 +
1)-EAp for all fitness functions using the best mutation operator for the respective
fitness function. The smaller graphs show the same optimization times (excepting
the times for RUN) divided by n2 (left graph) and by n2 log n (right graph).

expected optimization time of O(n2 log n).

Finally, we directly compare our (1 + 1)-EAsort and the (1 + 1)-EAp. For
this, we let the (1 + 1)-EAsort (with both probability distributions used for
the elementary mutations) and the (1 + 1)-EAp (with the fitness functions
HAM, EXC, INV, and LAS and the according mutation operators) solve 10
random instances for the input sizes 10, 20, . . . , 200 (cf. Figure 6.10). Note
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Figure 6.10: The main graph shows the average optimization times of the
(1 + 1)-EAsort versus the average optimization times of the (1 + 1)-EAp. The
smaller one shows the same optimization times scaling the y-axis logarithmically.

that even using the logarithmic scale it is barely possible to distinguish the
two variants of the (1 + 1)-EAsort. The comparison clearly shows that our
algorithm outclasses the (1+1)-EAp. Allowing, e. g., an optimization time of
50000, all variants of th (1 + 1)-EAp can only handle instances with n ≤ 100
whereas our algorithm works up to n ≤ 2000 (cf. Figures 6.7 and 6.8).
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6.6 Summary

In this chapter, we suggested a novel approach to problems where the final
solution is a permutation (linear order). When applied to the problem of
sorting n comparable elements, it has the structural advantage of disallow-
ing incorrect ordering information. A simple (1 + 1) evolutionary algorithm
built upon this framework was faster than previous such algorithms both the-
oretically (proven asymptotic bounds) and experimentally. A problem left
open in this chapter is giving a mathematical proof that the evolutionary
algorithm proposed indeed has an expected optimization time of Θ(n log n)
as observed in the experiments. We are optimistic that our approach via
orders instead of permutations will also be useful for other (non-linear) order
problems.



Chapter 7

Summary

This work contains runtime analyses for evolutionary algorithms for three
prominent problems from computer science, i. e., the Single Source Shortest
Path problem, the All-Pairs Shortest Path problem, and the Sorting problem.
For the analyses, we developed and used several probability theoretical tools
that will probably be helpful for future analyses of such algorithms.

For the Single Source Shortest Path problem, we analyzed an already
known and analyzed (1 + 1) evolutionary algorithm. Devising a new method
for the analysis, we gave a tight runtime analysis for this algorithm. Fol-
lowing this, we designed a natural evolutionary algorithm for the All-Pairs
Shortest Path problem. We proved that adding a natural crossover opera-
tor to this algorithm provably reduces the runtime. Experimental studies
reveal that this is already the case for small instances. This is the first time
that the usefulness of crossover could be shown for a non-artificial problem.
Last, we designed a new representation based on trees for Sorting / Ordering
problems. We showed that the (1 + 1) evolutionary algorithm for Sorting
that naturally arises from this representation is provably faster than previ-
ous evolutionary algorithms for this problem. Experiments demonstrate that
this improvement is evident even on small instances. Our new representa-
tion additionally has the advantage that it distinguishes between correct and
unknown information. This way, even before the algorithm has finished, one
can already extract a partial, correct solution.
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Appendix A

Further Contributions

The main contributions of my time as PhD student have been thoroughly
described in this theses. However, during my studies I have additionally
worked on the following two topics.

• Virtual Private Network Design: Virtual private network design
deals with the reservation of capacities in a weighted graph such that
the terminals in this network can communicate with one another. Each
terminal is equipped with an upper bound on the amount of traffic that
the terminal can send or receive. The task is to install capacities at
minimum cost and to compute paths for each unordered terminal pair
such that each valid traffic matrix can be routed along those paths.

We considered a variant of the virtual private network design problem
which generalizes the previously studied symmetric and asymmetric
case. In our model the terminal set is partitioned into a number of
groups, where terminals of each group do not communicate with each
other. For this problem we designed an approximation algorithm which
has an approximation guarantee of 4.74.

“Provisioning a Virtual Private Network Under the Presence of Non-
Communicating Groups” by Friedrich Eisenbrand and E. H. [EH06]

• Fitness-Proportional Selection for Evolutionary Algorithms:
Rigorous runtime analyses of evolutionary algorithms (EAs) mainly
investigate algorithms that use elitist selection strategies. Two algo-
rithms commonly studied are Randomized Local Search (RLS) and the
(1 + 1)-EA and it is well known that both optimize any linear pseudo-
Boolean function on n bits within an expected number of O(n log n)
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fitness evaluations. In this paper, we analyze variants of these algo-
rithms that use fitness proportional selection.

A well-known method in analyzing the local changes in the solutions
of RLS is a reduction to the gambler’s ruin problem. We extend
this method in order to analyze the global changes imposed by the
(1 + 1)-EA. By applying this new technique we show that with high
probability using fitness proportional selection leads to an exponential
optimization time for any linear pseudo-Boolean function with non-
zero weights. Even worse, all solutions of the algorithms during an
exponential number of fitness evaluations differ with high probability
in linearly many bits from the optimal solution.

Our theoretical studies are complemented by experimental investiga-
tions which confirm the asymptotic results on realistic input sizes.

“Rigorous Analyses of Fitness-Proportional Selection for Optimizing
Linear Functions” by E. H., D. Johannsen, C. Klein, and F. Neumann
[HJKN08]
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