25 research outputs found

    Everything you always wanted to know about the parameterized complexity of Subgraph Isomorphism (but were afraid to ask)

    Get PDF
    Given two graphs H and G, the Subgraph Isomorphism problem asks if H is isomorphic to a subgraph of G. While NP-hard in general, algorithms exist for various parameterized versions of the problem. However, the literature contains very little guidance on which combinations of parameters can or cannot be exploited algorithmically. Our goal is to systematically investigate the possible parameterized algorithms that can exist for Subgraph Isomorphism. We develop a framework involving 10 relevant parameters for each of H and G (such as treewidth, pathwidth, genus, maximum degree, number of vertices, number of components, etc.), and ask if an algorithm with running time f1_(p_1,p_2,...,p_l).n^f_2(p_(l+1),...,p_k) exists, where each of p_1,...,p_k is one of the 10 parameters depending only on H or G. We show that all the questions arising in this framework are answered by a set of 11 maximal positive results (algorithms) and a set of 17 maximal negative results (hardness proofs); some of these results already appear in the literature, while others are new in this paper. On the algorithmic side, our study reveals for example that an unexpected combination of bounded degree, genus, and feedback vertex set number of G gives rise to a highly nontrivial algorithm for Subgraph Isomorphism. On the hardness side, we present W[1]-hardness proofs under extremely restricted conditions, such as when H is a bounded-degree tree of constant pathwidth and G is a planar graph of bounded pathwidth

    A tight lower bound for steiner orientation

    Get PDF
    In the STEINER ORIENTATION problem, the input is a mixed graph G (it has both directed and undirected edges) and a set of k terminal pairs T. The question is whether we can orient the undirected edges in a way such that there is a directed s⇝t path for each terminal pair (s,t)∈T. Arkin and Hassin [DAM’02] showed that the STEINER ORIENTATION problem is NP-complete. They also gave a polynomial time algorithm for the special case when k=2 . From the viewpoint of exact algorithms, Cygan, Kortsarz and Nutov [ESA’12, SIDMA’13] designed an XP algorithm running in nO(k) time for all k≄1. Pilipczuk and Wahlström [SODA ’16] showed that the STEINER ORIENTATION problem is W[1]-hard parameterized by k. As a byproduct of their reduction, they were able to show that under the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [JCSS’01] the STEINER ORIENTATION problem does not admit an f(k)⋅no(k/logk) algorithm for any computable function f. That is, the nO(k) algorithm of Cygan et al. is almost optimal. In this paper, we give a short and easy proof that the nO(k) algorithm of Cygan et al. is asymptotically optimal, even if the input graph has genus 1. Formally, we show that the STEINER ORIENTATION problem is W[1]-hard parameterized by the number k of terminal pairs, and, under ETH, cannot be solved in f(k)⋅no(k) time for any function f even if the underlying undirected graph has genus 1. We give a reduction from the GRID TILING problem which has turned out to be very useful in proving W[1]-hardness of several problems on planar graphs. As a result of our work, the main remaining open question is whether STEINER ORIENTATION admits the “square-root phenomenon” on planar graphs (graphs with genus 0): can one obtain an algorithm running in time f(k)⋅nO(k√) for PLANAR STEINER ORIENTATION, or does the lower bound of f(k)⋅no(k) also translate to planar graphs

    Efficient Enumerations for Minimal Multicuts and Multiway Cuts

    Get PDF
    Let G=(V,E)G = (V, E) be an undirected graph and let B⊆V×VB \subseteq V \times V be a set of terminal pairs. A node/edge multicut is a subset of vertices/edges of GG whose removal destroys all the paths between every terminal pair in BB. The problem of computing a {\em minimum} node/edge multicut is NP-hard and extensively studied from several viewpoints. In this paper, we study the problem of enumerating all {\em minimal} node multicuts. We give an incremental polynomial delay enumeration algorithm for minimal node multicuts, which extends an enumeration algorithm due to Khachiyan et al. (Algorithmica, 2008) for minimal edge multicuts. Important special cases of node/edge multicuts are node/edge {\em multiway cuts}, where the set of terminal pairs contains every pair of vertices in some subset T⊆VT \subseteq V, that is, B=T×TB = T \times T. We improve the running time bound for this special case: We devise a polynomial delay and exponential space enumeration algorithm for minimal node multiway cuts and a polynomial delay and space enumeration algorithm for minimal edge multiway cuts

    On the Parameterized Intractability of Determinant Maximization

    Get PDF

    A Tight Algorithm for Strongly Connected Steiner Subgraph On Two Terminals With Demands

    Get PDF
    Given an edge-weighted directed graph G=(V,E)G=(V,E) on nn vertices and a set T={t1,t2,
,tp}T=\{t_1, t_2, \ldots, t_p\} of pp terminals, the objective of the \scss (pp-SCSS) problem is to find an edge set H⊆EH\subseteq E of minimum weight such that G[H]G[H] contains an ti→tjt_{i}\rightarrow t_j path for each 1≀i≠j≀p1\leq i\neq j\leq p. In this paper, we investigate the computational complexity of a variant of 22-SCSS where we have demands for the number of paths between each terminal pair. Formally, the \sharinggeneral problem is defined as follows: given an edge-weighted directed graph G=(V,E)G=(V,E) with weight function ω:E→R≄0\omega: E\rightarrow \mathbb{R}^{\geq 0}, two terminal vertices s,ts, t, and integers k1,k2k_1, k_2 ; the objective is to find a set of k1k_1 paths F1,F2,
,Fk1F_1, F_2, \ldots, F_{k_1} from s⇝ts\leadsto t and k2k_2 paths B1,B2,
,Bk2B_1, B_2, \ldots, B_{k_2} from t⇝st\leadsto s such that ∑e∈Eω(e)⋅ϕ(e)\sum_{e\in E} \omega(e)\cdot \phi(e) is minimized, where ϕ(e)=max⁥{∣{i∈[k1]:e∈Fi}∣ , ∣{j∈[k2]:e∈Bj}∣}\phi(e)= \max \Big\{|\{i\in [k_1] : e\in F_i\}|\ ,\ |\{j\in [k_2] : e\in B_j\}|\Big\}. For each k≄1k\geq 1, we show the following: The \sharing problem can be solved in nO(k)n^{O(k)} time. A matching lower bound for our algorithm: the \sharing problem does not have an f(k)⋅no(k)f(k)\cdot n^{o(k)} algorithm for any computable function ff, unless the Exponential Time Hypothesis (ETH) fails. Our algorithm for \sharing relies on a structural result regarding an optimal solution followed by using the idea of a "token game" similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the \sharinggeneral problem if min⁥{k1,k2}≄2\min\{k_1, k_2\}\geq 2. Therefore \sharing is the most general problem one can attempt to solve with our techniques.Comment: To appear in Algorithmica. An extended abstract appeared in IPEC '1

    Algorithms for Cut Problems on Trees

    Full text link
    We study the {\sc multicut on trees} and the {\sc generalized multiway Cut on trees} problems. For the {\sc multicut on trees} problem, we present a parameterized algorithm that runs in time O∗(ρk)O^{*}(\rho^k), where ρ=2+1≈1.555\rho = \sqrt{\sqrt{2} + 1} \approx 1.555 is the positive root of the polynomial x4−2x2−1x^4-2x^2-1. This improves the current-best algorithm of Chen et al. that runs in time O∗(1.619k)O^{*}(1.619^k). For the {\sc generalized multiway cut on trees} problem, we show that this problem is solvable in polynomial time if the number of terminal sets is fixed; this answers an open question posed in a recent paper by Liu and Zhang. By reducing the {\sc generalized multiway cut on trees} problem to the {\sc multicut on trees} problem, our results give a parameterized algorithm that solves the {\sc generalized multiway cut on trees} problem in time O∗(ρk)O^{*}(\rho^k), where ρ=2+1≈1.555\rho = \sqrt{\sqrt{2} + 1} \approx 1.555 time
    corecore