27 research outputs found

    Data sparsity in highly inflected languages: the case of morphosyntactic tagging in Polish

    Get PDF
    In morphologically complex languages, many high-level tasks in natural language processing rely on accurate morphosyntactic analyses of the input. However, in light of the risk of error propagation in present-day pipeline architectures for basic linguistic pre-processing, the state of the art for morphosyntactic tagging is still not satisfactory. The main obstacle here is data sparsity inherent to natural lan- guage in general and highly inflected languages in particular. In this work, we investigate whether semi-supervised systems may alleviate the data sparsity problem. Our approach uses word clusters obtained from large amounts of unlabelled text in an unsupervised manner in order to provide a su- pervised probabilistic tagger with morphologically informed features. Our evalua- tions on a number of datasets for the Polish language suggest that this simple technique improves tagging accuracy, especially with regard to out-of-vocabulary words. This may prove useful to increase cross-domain performance of taggers, and to alleviate the dependency on large amounts of supervised training data, which is especially important from the perspective of less-resourced languages

    Real-Time Statistical Speech Translation

    Full text link
    This research investigates the Statistical Machine Translation approaches to translate speech in real time automatically. Such systems can be used in a pipeline with speech recognition and synthesis software in order to produce a real-time voice communication system between foreigners. We obtained three main data sets from spoken proceedings that represent three different types of human speech. TED, Europarl, and OPUS parallel text corpora were used as the basis for training of language models, for developmental tuning and testing of the translation system. We also conducted experiments involving part of speech tagging, compound splitting, linear language model interpolation, TrueCasing and morphosyntactic analysis. We evaluated the effects of variety of data preparations on the translation results using the BLEU, NIST, METEOR and TER metrics and tried to give answer which metric is most suitable for PL-EN language pair.Comment: machine translation, polish englis

    Target-Side Context for Discriminative Models in Statistical Machine Translation

    Get PDF
    Discriminative translation models utilizing source context have been shown to help statistical machine translation performance. We propose a novel extension of this work using target context information. Surprisingly, we show that this model can be efficiently integrated directly in the decoding process. Our approach scales to large training data sizes and results in consistent improvements in translation quality on four language pairs. We also provide an analysis comparing the strengths of the baseline source-context model with our extended source-context and target-context model and we show that our extension allows us to better capture morphological coherence. Our work is freely available as part of Moses.Comment: Accepted as a long paper for ACL 201

    Towards a machine-learning architecture for lexical functional grammar parsing

    Get PDF
    Data-driven grammar induction aims at producing wide-coverage grammars of human languages. Initial efforts in this field produced relatively shallow linguistic representations such as phrase-structure trees, which only encode constituent structure. Recent work on inducing deep grammars from treebanks addresses this shortcoming by also recovering non-local dependencies and grammatical relations. My aim is to investigate the issues arising when adapting an existing Lexical Functional Grammar (LFG) induction method to a new language and treebank, and find solutions which will generalize robustly across multiple languages. The research hypothesis is that by exploiting machine-learning algorithms to learn morphological features, lemmatization classes and grammatical functions from treebanks we can reduce the amount of manual specification and improve robustness, accuracy and domain- and language -independence for LFG parsing systems. Function labels can often be relatively straightforwardly mapped to LFG grammatical functions. Learning them reliably permits grammar induction to depend less on language-specific LFG annotation rules. I therefore propose ways to improve acquisition of function labels from treebanks and translate those improvements into better-quality f-structure parsing. In a lexicalized grammatical formalism such as LFG a large amount of syntactically relevant information comes from lexical entries. It is, therefore, important to be able to perform morphological analysis in an accurate and robust way for morphologically rich languages. I propose a fully data-driven supervised method to simultaneously lemmatize and morphologically analyze text and obtain competitive or improved results on a range of typologically diverse languages
    corecore