279 research outputs found

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Modeling Semi-Bounded Support Data using Non-Gaussian Hidden Markov Models with Applications

    Get PDF
    With the exponential growth of data in all formats, and data categorization rapidly becoming one of the most essential components of data analysis, it is crucial to research and identify hidden patterns in order to extract valuable information that promotes accurate and solid decision making. Because data modeling is the first stage in accomplishing any of these tasks, its accuracy and consistency are critical for later development of a complete data processing framework. Furthermore, an appropriate distribution selection that corresponds to the nature of the data is a particularly interesting subject of research. Hidden Markov Models (HMMs) are some of the most impressively powerful probabilistic models, which have recently made a big resurgence in the machine learning industry, despite having been recognized for decades. Their ever-increasing application in a variety of critical practical settings to model varied and heterogeneous data (image, video, audio, time series, etc.) is the subject of countless extensions. Equally prevalent, finite mixture models are a potent tool for modeling heterogeneous data of various natures. The over-use of Gaussian mixture models for data modeling in the literature is one of the main driving forces for this thesis. This work focuses on modeling positive vectors, which naturally occur in a variety of real-life applications, by proposing novel HMMs extensions using the Inverted Dirichlet, the Generalized Inverted Dirichlet and the BetaLiouville mixture models as emission probabilities. These extensions are motivated by the proven capacity of these mixtures to deal with positive vectors and overcome mixture models’ impotence to account for any ordering or temporal limitations relative to the information. We utilize the aforementioned distributions to derive several theoretical approaches for learning and deploying Hidden Markov Modelsinreal-world settings. Further, we study online learning of parameters and explore the integration of a feature selection methodology. Extensive experimentation on highly challenging applications ranging from image categorization, video categorization, indoor occupancy estimation and Natural Language Processing, reveals scenarios in which such models are appropriate to apply, and proves their effectiveness compared to the extensively used Gaussian-based models

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Expressive Modulation of Neutral Visual Speech

    Get PDF
    The need for animated graphical models of the human face is commonplace in the movies, video games and television industries, appearing in everything from low budget advertisements and free mobile apps, to Hollywood blockbusters costing hundreds of millions of dollars. Generative statistical models of animation attempt to address some of the drawbacks of industry standard practices such as labour intensity and creative inflexibility. This work describes one such method for transforming speech animation curves between different expressive styles. Beginning with the assumption that expressive speech animation is a mix of two components, a high-frequency speech component (the content) and a much lower-frequency expressive component (the style), we use Independent Component Analysis (ICA) to identify and manipulate these components independently of one another. Next we learn how the energy for different speaking styles is distributed in terms of the low-dimensional independent components model. Transforming the speaking style involves projecting new animation curves into the lowdimensional ICA space, redistributing the energy in the independent components, and finally reconstructing the animation curves by inverting the projection. We show that a single ICA model can be used for separating multiple expressive styles into their component parts. Subjective evaluations show that viewers can reliably identify the expressive style generated using our approach, and that they have difficulty in identifying transformed animated expressive speech from the equivalent ground-truth

    Towards spatial and temporal analysis of facial expressions in 3D data

    Get PDF
    Facial expressions are one of the most important means for communication of emotions and meaning. They are used to clarify and give emphasis, to express intentions, and form a crucial part of any human interaction. The ability to automatically recognise and analyse expressions could therefore prove to be vital in human behaviour understanding, which has applications in a number of areas such as psychology, medicine and security. 3D and 4D (3D+time) facial expression analysis is an expanding field, providing the ability to deal with problems inherent to 2D images, such as out-of-plane motion, head pose, and lighting and illumination issues. Analysis of data of this kind requires extending successful approaches applied to the 2D problem, as well as the development of new techniques. The introduction of recent new databases containing appropriate expression data, recorded in 3D or 4D, has allowed research into this exciting area for the first time. This thesis develops a number of techniques, both in 2D and 3D, that build towards a complete system for analysis of 4D expressions. Suitable feature types, designed by employing binary pattern methods, are developed for analysis of 3D facial geometry data. The full dynamics of 4D expressions are modelled, through a system reliant on motion-based features, to demonstrate how the different components of the expression (neutral-onset-apex-offset) can be distinguished and harnessed. Further, the spatial structure of expressions is harnessed to improve expression component intensity estimation in 2D videos. Finally, it is discussed how this latter step could be extended to 3D facial expression analysis, and also combined with temporal analysis. Thus, it is demonstrated that both spatial and temporal information, when combined with appropriate 3D features, is critical in analysis of 4D expression data.Open Acces

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    Fast human behavior analysis for scene understanding

    Get PDF
    Human behavior analysis has become an active topic of great interest and relevance for a number of applications and areas of research. The research in recent years has been considerably driven by the growing level of criminal behavior in large urban areas and increase of terroristic actions. Also, accurate behavior studies have been applied to sports analysis systems and are emerging in healthcare. When compared to conventional action recognition used in security applications, human behavior analysis techniques designed for embedded applications should satisfy the following technical requirements: (1) Behavior analysis should provide scalable and robust results; (2) High-processing efficiency to achieve (near) real-time operation with low-cost hardware; (3) Extensibility for multiple-camera setup including 3-D modeling to facilitate human behavior understanding and description in various events. The key to our problem statement is that we intend to improve behavior analysis performance while preserving the efficiency of the designed techniques, to allow implementation in embedded environments. More specifically, we look into (1) fast multi-level algorithms incorporating specific domain knowledge, and (2) 3-D configuration techniques for overall enhanced performance. If possible, we explore the performance of the current behavior-analysis techniques for improving accuracy and scalability. To fulfill the above technical requirements and tackle the research problems, we propose a flexible behavior-analysis framework consisting of three processing-layers: (1) pixel-based processing (background modeling with pixel labeling), (2) object-based modeling (human detection, tracking and posture analysis), and (3) event-based analysis (semantic event understanding). In Chapter 3, we specifically contribute to the analysis of individual human behavior. A novel body representation is proposed for posture classification based on a silhouette feature. Only pure binary-shape information is used for posture classification without texture/color or any explicit body models. To this end, we have studied an efficient HV-PCA shape-based descriptor with temporal modeling, which achieves a posture-recognition accuracy rate of about 86% and outperforms other existing proposals. As our human motion scheme is efficient and achieves a fast performance (6-8 frames/second), it enables a fast surveillance system or further analysis of human behavior. In addition, a body-part detection approach is presented. The color and body ratio are combined to provide clues for human body detection and classification. The conventional assumption of up-right body posture is not required. Afterwards, we design and construct a specific framework for fast algorithms and apply them in two applications: tennis sports analysis and surveillance. Chapter 4 deals with tennis sports analysis and presents an automatic real-time system for multi-level analysis of tennis video sequences. First, we employ a 3-D camera model to bridge the pixel-level, object-level and scene-level of tennis sports analysis. Second, a weighted linear model combining the visual cues in the real-world domain is proposed to identify various events. The experimentally found event extraction rate of the system is about 90%. Also, audio signals are combined to enhance the scene analysis performance. The complete proposed application is efficient enough to obtain a real-time or near real-time performance (2-3 frames/second for 720Ă—576 resolution, and 5-7 frames/second for 320Ă—240 resolution, with a P-IV PC running at 3GHz). Chapter 5 addresses surveillance and presents a full real-time behavior-analysis framework, featuring layers at pixel, object, event and visualization level. More specifically, this framework captures the human motion, classifies its posture, infers the semantic event exploiting interaction modeling, and performs the 3-D scene reconstruction. We have introduced our system design based on a specific software architecture, by employing the well-known "4+1" view model. In addition, human behavior analysis algorithms are directly designed for real-time operation and embedded in an experimental runtime AV content-analysis architecture. This executable system is designed to be generic for multiple streaming applications with component-based architectures. To evaluate the performance, we have applied this networked system in a single-camera setup. The experimental platform operates with two Pentium Quadcore engines (2.33 GHz) and 4-GB memory. Performance evaluations have shown that this networked framework is efficient and achieves a fast performance (13-15 frames/second) for monocular video sequences. Moreover, a dual-camera setup is tested within the behavior-analysis framework. After automatic camera calibration is conducted, the 3-D reconstruction and communication among different cameras are achieved. The extra view in the multi-camera setup improves the human tracking and event detection in case of occlusion. This extension of multiple-view fusion improves the event-based semantic analysis by 8.3-16.7% in accuracy rate. The detailed studies of two experimental intelligent applications, i.e., tennis sports analysis and surveillance, have proven their value in several extensive tests in the framework of the European Candela and Cantata ITEA research programs, where our proposed system has demonstrated competitive performance with respect to accuracy and efficiency

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction
    • …
    corecore