504 research outputs found

    A Thumb Stroke-Based Virtual Keyboard for Sight-Free Text Entry on Touch-Screen Mobile Phones

    Get PDF
    The use of QWERTY on most of the current mobile devices for text entry usually requires users’ full visual attention and both hands, which is not always possible due to situational or physical impairments of users. Prior research has shown that users prefer to hold and interact with a mobile device with a single hand when possible, which is challenging and poorly supported by current mobile devices. We propose a novel thumb-stroke based keyboard called ThumbStroke, which can support both sight-free and one-handed text entry on touch-screen mobile devices. Selecting a character for text entry via ThumbStroke completely relies on the directions of thumb movements at anywhere on a device screen. We evaluated ThumbStroke through a longitudinal lab experiment including 20 sessions with 13 participants. ThumbStroke shows advantages in typing accuracy and user perceptions in comparison to Escape and QWERTY and results in faster typing speed than QWERTY for sight-free text entry

    Interaction Methods for Smart Glasses : A Survey

    Get PDF
    Since the launch of Google Glass in 2014, smart glasses have mainly been designed to support micro-interactions. The ultimate goal for them to become an augmented reality interface has not yet been attained due to an encumbrance of controls. Augmented reality involves superimposing interactive computer graphics images onto physical objects in the real world. This survey reviews current research issues in the area of human-computer interaction for smart glasses. The survey first studies the smart glasses available in the market and afterwards investigates the interaction methods proposed in the wide body of literature. The interaction methods can be classified into hand-held, touch, and touchless input. This paper mainly focuses on the touch and touchless input. Touch input can be further divided into on-device and on-body, while touchless input can be classified into hands-free and freehand. Next, we summarize the existing research efforts and trends, in which touch and touchless input are evaluated by a total of eight interaction goals. Finally, we discuss several key design challenges and the possibility of multi-modal input for smart glasses.Peer reviewe

    Understanding Mode and Modality Transfer in Unistroke Gesture Input

    Get PDF
    Unistroke gestures are an attractive input method with an extensive research history, but one challenge with their usage is that the gestures are not always self-revealing. To obtain expertise with these gestures, interaction designers often deploy a guided novice mode -- where users can rely on recognizing visual UI elements to perform a gestural command. Once a user knows the gesture and associated command, they can perform it without guidance; thus, relying on recall. The primary aim of my thesis is to obtain a comprehensive understanding of why, when, and how users transfer from guided modes or modalities to potentially more efficient, or novel, methods of interaction -- through symbolic-abstract unistroke gestures. The goal of my work is to not only study user behaviour from novice to more efficient interaction mechanisms, but also to expand upon the concept of intermodal transfer to different contexts. We garner this understanding by empirically evaluating three different use cases of mode and/or modality transitions. Leveraging marking menus, the first piece investigates whether or not designers should force expertise transfer by penalizing use of the guided mode, in an effort to encourage use of the recall mode. Second, we investigate how well users can transfer skills between modalities, particularly when it is impractical to present guidance in the target or recall modality. Lastly, we assess how well users' pre-existing spatial knowledge of an input method (the QWERTY keyboard layout), transfers to performance in a new modality. Applying lessons from these three assessments, we segment intermodal transfer into three possible characterizations -- beyond the traditional novice to expert contextualization. This is followed by a series of implications and potential areas of future exploration spawning from our work

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games

    Predictive text-entry in immersive environments

    Get PDF
    Virtual Reality (VR) has progressed significantly since its conception, enabling previously impossible applications such as virtual prototyping, telepresence, and augmented reality However, text-entry remains a difficult problem for immersive environments (Bowman et al, 2001b, Mine et al , 1997). Wearing a head-mounted display (HMD) and datagloves affords a wealth of new interaction techniques. However, users no longer have access to traditional input devices such as a keyboard. Although VR allows for more natural interfaces, there is still a need for simple, yet effective, data-entry techniques. Examples include communicating in a collaborative environment, accessing system commands, or leaving an annotation for a designer m an architectural walkthrough (Bowman et al, 2001b). This thesis presents the design, implementation, and evaluation of a predictive text-entry technique for immersive environments which combines 5DT datagloves, a graphically represented keyboard, and a predictive spelling paradigm. It evaluates the fundamental factors affecting the use of such a technique. These include keyboard layout, prediction accuracy, gesture recognition, and interaction techniques. Finally, it details the results of user experiments, and provides a set of recommendations for the future use of such a technique in immersive environments

    Gloved Human-Machine Interface

    Get PDF
    Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human

    Barehand Mode Switching in Touch and Mid-Air Interfaces

    Get PDF
    Raskin defines a mode as a distinct setting within an interface where the same user input will produce results different to those it would produce in other settings. Most interfaces have multiple modes in which input is mapped to different actions, and, mode-switching is simply the transition from one mode to another. In touch interfaces, the current mode can change how a single touch is interpreted: for example, it could draw a line, pan the canvas, select a shape, or enter a command. In Virtual Reality (VR), a hand gesture-based 3D modelling application may have different modes for object creation, selection, and transformation. Depending on the mode, the movement of the hand is interpreted differently. However, one of the crucial factors determining the effectiveness of an interface is user productivity. Mode-switching time of different input techniques, either in a touch interface or in a mid-air interface, affects user productivity. Moreover, when touch and mid-air interfaces like VR are combined, making informed decisions pertaining to the mode assignment gets even more complicated. This thesis provides an empirical investigation to characterize the mode switching phenomenon in barehand touch-based and mid-air interfaces. It explores the potential of using these input spaces together for a productivity application in VR. And, it concludes with a step towards defining and evaluating the multi-faceted mode concept, its characteristics and its utility, when designing user interfaces more generally
    corecore