10,446 research outputs found

    A Theory of Explicit Substitutions with Safe and Full Composition

    Full text link
    Many different systems with explicit substitutions have been proposed to implement a large class of higher-order languages. Motivations and challenges that guided the development of such calculi in functional frameworks are surveyed in the first part of this paper. Then, very simple technology in named variable-style notation is used to establish a theory of explicit substitutions for the lambda-calculus which enjoys a whole set of useful properties such as full composition, simulation of one-step beta-reduction, preservation of beta-strong normalisation, strong normalisation of typed terms and confluence on metaterms. Normalisation of related calculi is also discussed.Comment: 29 pages Special Issue: Selected Papers of the Conference "International Colloquium on Automata, Languages and Programming 2008" edited by Giuseppe Castagna and Igor Walukiewic

    A Polynomial Translation of pi-calculus FCPs to Safe Petri Nets

    Full text link
    We develop a polynomial translation from finite control pi-calculus processes to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural in that there is a close correspondence between the control flows, enjoys a bisimulation result, and is suitable for practical model checking.Comment: To appear in special issue on best papers of CONCUR'12 of Logical Methods in Computer Scienc

    New Equations for Neutral Terms: A Sound and Complete Decision Procedure, Formalized

    Get PDF
    The definitional equality of an intensional type theory is its test of type compatibility. Today's systems rely on ordinary evaluation semantics to compare expressions in types, frustrating users with type errors arising when evaluation fails to identify two `obviously' equal terms. If only the machine could decide a richer theory! We propose a way to decide theories which supplement evaluation with `ν\nu-rules', rearranging the neutral parts of normal forms, and report a successful initial experiment. We study a simple -calculus with primitive fold, map and append operations on lists and develop in Agda a sound and complete decision procedure for an equational theory enriched with monoid, functor and fusion laws

    Distilling Abstract Machines (Long Version)

    Full text link
    It is well-known that many environment-based abstract machines can be seen as strategies in lambda calculi with explicit substitutions (ES). Recently, graphical syntaxes and linear logic led to the linear substitution calculus (LSC), a new approach to ES that is halfway between big-step calculi and traditional calculi with ES. This paper studies the relationship between the LSC and environment-based abstract machines. While traditional calculi with ES simulate abstract machines, the LSC rather distills them: some transitions are simulated while others vanish, as they map to a notion of structural congruence. The distillation process unveils that abstract machines in fact implement weak linear head reduction, a notion of evaluation having a central role in the theory of linear logic. We show that such a pattern applies uniformly in call-by-name, call-by-value, and call-by-need, catching many machines in the literature. We start by distilling the KAM, the CEK, and the ZINC, and then provide simplified versions of the SECD, the lazy KAM, and Sestoft's machine. Along the way we also introduce some new machines with global environments. Moreover, we show that distillation preserves the time complexity of the executions, i.e. the LSC is a complexity-preserving abstraction of abstract machines.Comment: 63 page

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    On generic context lemmas for lambda calculi with sharing

    Get PDF
    This paper proves several generic variants of context lemmas and thus contributes to improving the tools to develop observational semantics that is based on a reduction semantics for a language. The context lemmas are provided for may- as well as two variants of mustconvergence and a wide class of extended lambda calculi, which satisfy certain abstract conditions. The calculi must have a form of node sharing, e.g. plain beta reduction is not permitted. There are two variants, weakly sharing calculi, where the beta-reduction is only permitted for arguments that are variables, and strongly sharing calculi, which roughly correspond to call-by-need calculi, where beta-reduction is completely replaced by a sharing variant. The calculi must obey three abstract assumptions, which are in general easily recognizable given the syntax and the reduction rules. The generic context lemmas have as instances several context lemmas already proved in the literature for specific lambda calculi with sharing. The scope of the generic context lemmas comprises not only call-by-need calculi, but also call-by-value calculi with a form of built-in sharing. Investigations in other, new variants of extended lambda-calculi with sharing, where the language or the reduction rules and/or strategy varies, will be simplified by our result, since specific context lemmas are immediately derivable from the generic context lemma, provided our abstract conditions are met
    corecore