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Abstract. This paper proves several generic variants of context lemmas
and thus contributes to improving the tools to develop observational
semantics that is based on a reduction semantics for a language. The
context lemmas are provided for may- as well as two variants of must-
convergence and a wide class of extended lambda calculi, which satisfy
certain abstract conditions. The calculi must have a form of node sharing,
e.g. plain beta reduction is not permitted. There are two variants, weakly
sharing calculi, where the beta-reduction is only permitted for arguments
that are variables, and strongly sharing calculi, which roughly correspond
to call-by-need calculi, where beta-reduction is completely replaced by
a sharing variant. The calculi must obey three abstract assumptions,
which are in general easily recognizable given the syntax and the reduc-
tion rules. The generic context lemmas have as instances several context
lemmas already proved in the literature for specific lambda calculi with
sharing. The scope of the generic context lemmas comprises not only
call-by-need calculi, but also call-by-value calculi with a form of built-in
sharing. Investigations in other, new variants of extended lambda-calculi
with sharing, where the language or the reduction rules and/or strat-
egy varies, will be simplified by our result, since specific context lemmas
are immediately derivable from the generic context lemma, provided our
abstract conditions are met.
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1 Introduction

A workable semantics is indispensable for every formal modelling language, in
particular for all kinds of programming languages and process calculi. This paper
will make a contribution to the tools, in particular so-called context-lemmas,
which support operational reasoning about semantical properties of higher-order
functional programming languages, process calculi and lambda-calculi on the
basis of an observational semantics. A semantics is very useful to obtain safe
knowledge about the evaluation and optimizations of programs, correctness of
program transformations, and correctness of implementations in other calculi.
For various higher-order calculi a widely used observational semantics is con-
textual equivalence based on a (small-step) reduction semantics in the style of
[Mor68], i.e. two expressions are equal if their termination behavior is always the
same when they are plugged into an arbitrary program context. We assume that
a calculus is given consisting of a language of terms, a small step reduction rela-
tion → on terms, and a set of answer terms. A term t is called may-convergent
if there exists a finite sequence of →-reductions starting with t and reaching an
answer. Usually answers are weak head normal forms for call-by-need and call-
by-name calculi, weak normal forms for call-by-value calculi, and irreducible (or
successful) processes in process calculi. For non-deterministic calculi, contextual
equivalence must be based on the conjunction of two termination behaviors (see
e.g. [Ong93]): May-convergence and must-convergence, where the latter takes
all reduction possibilities into account. There are two different definitions of
must-convergence in the literature:

1. iff every term t′ reachable from t by a sequence of →-reductions is may-
convergent.

2. iff every maximal sequence of reductions starting with t ends in an answer,
in particular, there are no infinite reductions. We will call this form of must-
convergence also total must-convergence.

The first definition of must-convergence also includes terms that may evaluate
infinitely but the chance of finding an answer is never lost. These terms are
called weakly divergent in [CHS05]. Note that a similar combination of may-
and must-convergence is also known from the use of convex powerdomains in
domain-theoretic models (see [Plo76]).
In this paper we will consider several variants of contextual approximations
and equivalences based on may-, must- and total must-convergence. Usually, a
first step and a strong tool for further proof techniques is to prove a context
lemma that reduces the test for convergence (may- and/or must-) to a subclass
of contexts, the reduction contexts (also called evaluation contexts), instead of
all contexts. This technique dates back to [Mil77] for showing full abstractness
of denotational models of lambda-calculi.
We formulate natural conditions on extended lambda-calculi and process calculi
and their reduction semantics, and then prove generic context lemmas for the
three types of convergences for calculi satisfying these conditions. An informal
account of our results is as follows: We assume that a calculus in a higher-order
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abstract syntax is given together with a small-step reduction relation, and a a
set of answers; Also an algorithm to determine reduction positions is given. The
assumptions are as follows:

1. The set of reduction positions of a term is determined top-down, and does
not depend on non-reduction positions.

2. The property of being an answer-term does not depend on non-reduction
positions.

3. The small-step reduction relation has rather limited abilities to modify sub-
terms at non-reduction positions: it is permitted to remove, transport or
duplicate them; also to apply renaming of bound variables. It is not permit-
ted to modify subterms at non-reduction positions, with the exception of a
restricted form of variable-variable substitution in weakly sharing calculi.

4. All properties are invariant under renaming of bound variables, and also un-
der permutation of free variables, as long as no type conditions are violated.

The obtained results are six context lemmas for the combinations of strongly and
weakly sharing and the three types of convergencies: For strongly sharing calculi,
a context lemma allows to restrict the observation of the convergence to reduction
contexts instead of all contexts, where reduction contexts are exactly the contexts
where the hole is a reduction position. In the case of weakly sharing calculi, we
have to observe the behavior of R[σ(s)], where R[] is a reduction context, and σ
a perhaps non-injective substitution replacing variables by variables.
Our technique works for process calculi like the π-calculus, and program calculi
with sharing variants of β-reduction, which is not a restriction in our opinion,
since programming languages or their respective abstract machines almost al-
ways exploit sharing mechanisms. We consider two forms of sharing lambda
calculi: strongly sharing and weakly sharing calculi. In strongly sharing calculi,
the (normal-order) reduction may only modify non-reduction positions through
renamings of bound variables. E.g. the full beta-rule (λx.s) t → s[t/x] violates
our assumptions, since there may be non-reduction occurrences of x in s that
are replaced by the beta-rule. The restricted beta-rule (λx.s) y → s[y/x] may
be allowed in weakly sharing calculi, but only if the argument position in appli-
cations is syntactically restricted to be a variable. In this case, there may be a
substitution of variables by variables. The rules (λx.s) t → (let x = t in s)
and (let x = v in R[x]) → (let x = v in R[v]) are the sharing vari-
ants of beta-reduction and permitted in strongly sharing calculi. The corre-
sponding rules in explicit substitution calculi (see [ACCL91]) are compatible,
though in connection with non-deterministic operators the set of rules has to
be adapted. Similar considerations hold for other rules like case-rules. Exam-
ples for calculi, where the context-lemma for may-convergence is immediately
applicable are the deterministic calculi in [AFM+95,AF97,MOW98,AS98,SS06].
Non-deterministic calculi where also the must-context lemmas are applicable,
are in [KSS98,Man05,SSS07,NSSSS07], the latter is the calculus in [NSS06] with
some adaptations. The context lemmas also hold in process calculi like variants
of the π-calculus (see [Mil99,SW01]) and the join-calculus (see [FG96,Lan96]),
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which from our point of view are weakly sharing, since a full replacement of
names by names is performed by reduction rules.
The context lemma is an important tool for further investigations into correct-
ness of program transformations and optimizations, for example, the diagram
methods in [SSSS05,SSS07,NSSSS07] demonstrate their strength only if the con-
text lemma holds. There is no context lemma used in [KSS98], which severely
complicates the diagram-proofs.
There is also related work on context lemmas for calculi not satisfying our condi-
tions. For call-by-value languages with beta-reduction, there is a weaker form of
a context lemma, the so-called CIU-theorem, which was first proved in [FH92],
which also holds for a class of languages, and was even formally checked by an
automated reasoner (see [FM01,FM03]). For PCF-like languages, also with full
beta-reduction, there is also a context lemma proved for a class of languages
extending PCF (see [JM97]).
Another related generic tool is bisimilarity for extended lambda-calculi (see
[How89,How96]), and for typed languages (see [Gor99]). An extension for calculi
with sharing w.r.t. may-convergence is done for a non-deterministic calculus in
[Man05] and for a class of calculi in [MSS06].
The structure of this paper is as follows. After presenting the abstract syntax for
higher-order calculi, the assumptions on the calculi are presented and discussed.
Section 4 presents the different convergence relations and contextual approxi-
mations, section 5 contains the proofs of the various generic context lemmas,
and the final section 6 contains a discussion on the range of calculi where the
instances of the generic context lemmas hold.

2 Abstract Syntax and Language

In the following we provide generic mechanisms to describe the language of ex-
pressions, the renamings and the reduction relation of a calculus calc. For the
generic formulation of the language we use higher-order abstract syntax, (see e.g.
[How89,How96]), which is extended by a system of simple types. The construc-
tion of terms of the language requires variables, operators (i.e. symbols with
arity), and variable-binding primitives. We allow the extension by a recursive
letrec which is used as an extra operator with its own binding rules. The main
purpose of the types is to allow different syntactic categories in the respective
languages, for example, channel names and processes, or lambda-expressions
and processes, but also enables to model untyped calculi. It may also be used to
model forms of simple typing.

Definition 2.1. A signature L of a higher order computation language is a
5-tuple (O, T0, α, β, βτ ) where

– O is a (possibly infinite) set of operators, which may contain letrec,
– T0 is the set of basic types, which defines the set of types T YP inductively

as T0 ⊆ T YP and t1 → t2 ∈ T YP if t1, t2 ∈ T YP2.
2 We use the convention of right-association: τ1 → τ2 → τ3 means τ1 → (τ2 → τ3)
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– α : (O \ {letrec}) → IN0 defines the arity for every operator except
forletrec.

– For every operator f ∈ O\{letrec}, β(f) is an α(f)-tuple with components
in IN ∪ {“V ”, “T”}, indicating the number of possible variables that may be
bound at the corresponding argument position, or that there are no binders
and that only variables (“V”) or that any term (“T”) is permitted.

– Let f ∈ O \ {letrec} with α(f) = n and β(f) = (b1, . . . , bn). Then f has a
type βτ (f) ∈ T YP satisfying the following conditions:
• βτ (f) = τ1 → τ2 → . . . → τn+1

• if bi ∈ N, then τi must be of the form τi,1 → τi,2 → . . . → τi,bi+1

Note that we do not insist on τn+1 and τi,bi+1 being base types in the definition
of βτ (f).
Given a signature L the terms of the higher order computation language are
defined as follows, where we assume that there is a subset T YPV ⊆ T YP, such
that for every τ ∈ T YPV , there is an infinite set of variables Vτ of type τ .

Definition 2.2. Let L = (O, T0, α, β, βτ ) be a signature of a higher order com-
putation language, then terms T (L) are inductively defined as follows:

– Every x ∈ Vτ for τ ∈ T YPV is a term of type τ .
– If f ∈ O \ {letrec} with α(f) = 0, then f is a term with type βτ (f).
– If f ∈ O\{letrec}, then f(a1, . . . , an) is a term provided that n = α(f) ≥ 1,

and for every i = 1, . . . , n the following holds:
• if β(f)i = “V”, then ai is a variable,
• if β(f)i = “T”, then ai is a term, and
• if β(f)i = m ∈ IN, then ai is of the form x1, . . . , xm . ti, where x1, . . . , xm

are different variables, and ti is a term3.
The typing must be as follows: if f has type τ1 → . . . → τn → τn+1, then
ai has type τi for all i, and the operands ai = x1, . . . , xm . ti are defined to
have type τi = (τi,1 → . . . τi,m → τi,m+1), where xj has type τi,j for all j and
ti has type τi,m+1.

– If letrec ∈ O, n ≥ 0, x1, . . . , xn are different variables, and if t1, . . . , tn, s
are terms, then (letrec x1 = t1, . . . , xn = tn in s) is a term of type τ which
is the type of s, where the for all i: the terms xi, ti must be equally typed.

As usual, the scope of every variable xi, i = 1, . . . , n in x1, . . . , xm . t is the
term t, and the scope of every variable xi in (letrec x1 = t1, . . . , xn = tn in s)
is the set of terms t1, . . . , tn, s. Variable occurrences that are in the scope of a
binder that binds them, are called bound occurrences of variables, others are free
occurrences of variables.

The set of free variables of a term t is denoted as FV(t). As usual, a term t is
closed if all of its variables are bound, i.e. FV(t) = ∅, otherwise it is called open.
Since we have to deal in depth with different kinds of renamings in later sections,

3 The expressions x1, . . . , xm . ti are called operands in [How96]
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we do not assume anything about implicit renamings, though it is known how
to correctly rename terms (cf. [Bar84]).
Concerning the typing, we assume in the following that only correctly typed
terms are syntactically acceptable, that every correct term has exactly one type,
and that modifications, renamings, reductions do not change the type of a term.
At places, where it is important, we emphasize the typing, whereas we often do
not mention the typing, if it is clear from the context.

Example 2.3. With O = {λ, letrec,@, Cons, Nil, case} a language with
let(rec), application, abstractions, lists and a case is defined. We ob-
tain an untyped lambda-calculus, if Term is the only base type and
the result type of every operator is just Term. The description is
α(λ) = 1, β(λ) = (1), α(@) = 2, β(@) = (“T”, “T”), Cons is spec-
ified like @, α(Nil) = 0, and α(case) = 3, β(case) = (“T”, 2, “T”).
The lambda-term λx.x is represented as λ(x.x)). A term like
let x = (Cons x Nil) in case x of (Cons z1 z2) -> y; Nil -> Nil
would be expressed as (letrec x = Cons(x, Nil) in case(x, z1z2.y, Nil)).

Examples of languages where “V” is necessary, i.e., with the variable restriction
are: [MSC99] where arguments of applications are only variables, and the lan-
guage in [NSSSS07], where e.g. the first argument in cell-expressions (x c t) must
be a variable.

Example 2.4. The π-calculus with the syntax

P,Q ::= (P | Q) | νx.P | 0 | P + Q | x(y1, . . . , yn).P | x〈y1, . . . , yn〉.P | !P

can be represented. We have to use at least two types for an appropriate encod-
ing: “process” and “channel”, and moreover, we assume that there are variables
of type channel , but no variables of type process. The common scoping policy
in x(y1, . . . , yn).P is also easily representable as in(x, (y1, . . . , yn.P )), where the
first argument of in is restricted to variables. The process x〈y1, . . . , yn〉.P can
be represented as outn(x, y1, . . . , yn, P ) with perhaps different operators, where
all arguments but the last one are marked “V” in the arity-tuple.

We will use positions to address subterms and variables in binders using a slightly
extended Dewey decimal notation. The addressing is such that prefixes of ad-
dresses of term positions are again term positions. We write s|p for the subterm
of s at position p, and s(p) for the head-symbol of the subterm s|p. For example,
the term t = Cons(λ(x.@(x,@(y, x)), z) has e.g. the following term positions: y
is at position 1.1.2.1, x occurs at positions 1.1.1 and 1.1.2.2, and t(1) = λ and
t(1.1.1) = x. The binders are addressed using a “B”, such that the binding po-
sition of x above is 1.1.B.1. For the description of “renamings” of free variables
we also assume that there is a virtual binder for free variables at the top of the
term.
A context C is like a term, where the hole [·] is allowed at a single term-position,
but not at a “V”-position, and the hole must be typed according to the abstract
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syntax. If the type τ of the hole is important, then we denote this as C[]τ . The
expression C[s] denotes the result of plugging in a (correctly typed) term s into
C, where capture of variables is permitted. We will also use multi-contexts M
that may have more holes, which are contexts with multiple, distinguishable
holes, where the holes are in left-to right-order. If t1, . . . , tn are terms, and M is
a multicontext with n holes, then M [t1, . . . , tn] is the term after plugging in the
n terms, in left-to-right order.

Definition 2.5 (Distinct Variable Convention). A term t satisfies the dis-
tinct variable convention (DVC), iff all bound variables in t are distinct, and
moreover, all bound variables in t are distinct from all the free variables in t.

2.1 Renamings and Substitutions

We introduce notions around renamings, substitutions and mappings, since we
have to separate reduction-steps and renaming-steps later on. Usually, a renam-
ing renames bound variables in a term. For a uniform treatment, we will also
use the notion “renaming” for a bijective replacement of free variables. We will
use the word “substitution” if we mean a perhaps non-bijective mapping on free
variables. In this and the following sections we tacitly assume that replacements
of variables by variables is only performed if the variables have equal type.
A modification (function) of variables of the term s is described by a finite
set S of pairs (p, x 7→ y), where p is a binding position of x. Modifying a
term means to apply all the replacements x 7→ y to all occurrences of the
variable x in the scope of the binder at p, and also to the binder, where
all the replacements have to be done “in parallel”. Note that also free vari-
ables may be subject to modification. E.g. for s = λx.@(x, (λx.x)), the set
S1 = {(B.1, x 7→ y), (2.B.1, x 7→ z)} represents the modification of s resulting
in λy.@(y, (λz.z)). A modification of t is called capture-free, iff the relation be-
tween occurrence of a variable and its binding position remains unchanged, for
all variable occurrences in the term t. Note that the modifications are always
meant w.r.t. a given term. Modifications do not make sense without mentioning
the term to which they are applied. If it is unambiguous, we represent a modifi-
cation by a set S = {(p1, x1 7→ y1), . . . , (pn, xn 7→ yn)} by omitting the positions
as {x1 7→ y1, . . . , xn 7→ yn}.
Now we define renamings and variable-substitutions as specialized modifications.
A bv-renaming of s is defined as a modification that is capture-free and renames
only bound variables (the virtual binder is not allowed in this case). The relation
s =α t denotes that t can be reached from s by a (perhaps empty) sequence of
bv-renamings. An fvbv-renaming σ is defined as a capture-free modification that
renames free and bound variables of a term s, and that is injective on FV(s).
With fvp(σ) we denote the induced mapping of a fvbv-renaming σ of s on FV(s).
If {x1 7→ y1, . . . , xn 7→ yn} is the representation of the mapping on variables, then
{x1, . . . , xn} is the domain, and {y1, . . . , yn} the codomain. A vvbv-substitution
γ of a term s is a capture-free modification like an fvbv-renaming, but it may
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be not injective on FV(s). We also use fvp(γ), which we call in this case a vv-
substitution, denoted as ν. Given a term s, a set W of variables with FV(s) ⊆ W ,
a vv-substitution ν on W , and a vvbv-substitution γ. Then we say γ is compatible
with ν on W , iff fvp(γ)(x) = ν(x) for all x ∈ W . This notion is also used for
fvbv-renamings.

Example 2.6. The term λy.x can be modified into λx.y by an fvbv-renaming
(or a vvbv-substitution). However, this cannot be represented as σµ1 for a bv-
renaming µ1 and a substitution σ = {x 7→ y}, nor as µ1σ. It can only be
represented as σ1µ1σ2 with two vv-substitutions σ2 = {x 7→ z}, and σ1 = {z 7→
y} and a bv-renaming µ1 = {y 7→ x}.

Lemma 2.7.

– If t1
σ1−→ t2

σ2−→ t3 by vvbv-substitutions σ1, σ2, then the composition σ3 = σ2◦
σ1 with t1

σ3−→ t3 is a vvbv-substitution with fvp(σ3)(x) = fvp(σ2)fvp(σ1)(x)
for all x ∈ FV(t1). This also holds for appropriate restrictions to fvbv-
renamings and bv-renamings.

– s =α t iff s = t or s
σ−→ t by a single bv-renaming σ.

– If s
σ−→ t by an fvbv-renaming, then the reverse renaming is also capture-free,

i.e. a fvbv-renaming. Again this holds also for bv-renamings.
– If s is a term not satisfying the DVC, then there is a term s′ satisfying the

DVC, and a bv-renaming σ with σ(s) = s′. This can be accomplished by
renaming bound variables with fresh variables.

– If s
σ−→ t is a vvbv-substitution, and ρ = fvp(σ), then there are bv-renamings

σ1, σ2, and a vv-substitution ρ, such that s
σ1−→ ρ−→ σ2−→ t, i.e. σ = σ2 ◦ ρ ◦ σ1.

Proof. Easy computations.

It is interesting to note that terms and vvbv-substitutions form a category with
terms as objects and vvbv-substitutions as arrows; the same holds for fvbv-
renamings and bv-renamings. We will also use fvbv-renamings and bv-renamings
for contexts and multicontexts.

Definition 2.8. Let C be a (one-hole) context. Then BPhole(C) is defined as
the set of binder-positions in C that have the hole of C in their scope, BPhole(C)
is the complement, i.e. the set of binder-positions that do not have the hole in
their scope, and Vhole(C) is the set of variables that are bound by the binders
in BPhole(C). For a multi-context M with any number of holes, the notation
BPhole(M, i) and Vhole(M, i) mean the corresponding notions for the ith hole.

It is obvious that all variables bound by binders in BPhole(C) are different, i.e.
there are no binders with equal variables in this set.

Lemma 2.9. Let C be a context, s be a term, and σ be an fvbv-renaming of C[s].
Then σ can be splitted into an fvbv-renaming σC of C, and an fvbv-renaming
σs of s, where σ(C[s]) = σC(C)[σs(s)] and the mapping fvp(σs) is injective on
Vhole(C) as well as on FV(s). Also the mapping induced by σ on Vhole(C) is
injective.
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Example 2.10. Let C = λy1.(x λz.z λy2.[]) and s = (x y2 λu.u). Then Vhole(C) =
{y1, y2}. Let σ be the fvbv-renaming of C[s] with {x 7→ x′, y1 7→ y′1, y2 7→
y′2, z 7→ z′, u 7→ u′}. Then σC = {x 7→ x′, y1 7→ y′1, y2 7→ y′2, z 7→ z′}, and
σs = {x 7→ x′, y1 7→ y′1, y2 7→ y′2, u 7→ u′}. Note that y2 is a bound variable in C,
but free in s.

3 Generic Lambda Calculi with Sharing

We assume that a calculus calc is given and describe the required notions and
properties that are required such that the context lemmas hold. We assume that
for the calculus calc the following is given:

– A language of expressions in the higher-order abstract syntax, according to
Definition 2.1.

– An algorithm unwind, detecting all the potential reduction positions (which
must be term positions). We assume that the algorithm has a term or a multi-
context as input and non-deterministically produces a sequence of positions,
all of which are reduction positions.

– A small-step reduction relation →0 on terms, where s →0 t0 is defined only
for terms s satisfying the DVC, but the term t0 is not further restricted. The
small-step reduction s → t is then defined as s →0 t0 →1 t, where →1 is a
bv-renaming (see Assumption 3.4).

– A set of answers ANS, which are accepted as successful results of reductions.

We distinguish weakly and strongly sharing calculi in the following, where
strongly sharing calculi do not make use of vv-substitutions in the definition
of equivalence. To ease notation we use a set VV of vv-substitutions, with
VV = {Id} for strongly sharing calculi and VV the set of all vv-substitutions
for weakly sharing calculi.
In the example calculi (see Examples 3.5, 3.6, 3.7, and 3.8) the reduction →
is either the (call-by-need) normal-order reduction, and the answers are the
WHNFs, or the reduction is the process-reduction, and answers are processes
without any further communication in 3.7, or successful processes in 3.8.
The algorithm unwind has a term or a multicontext t as input and (perhaps non-
deterministically) produces a sequence of term-positions, starting with p1 = ε.
Given t, the possible sequences p1, p2, . . . produced by unwind are called the
valid unwind-runs of t. We do not enforce the sequences to be maximal. The
following conditions must hold:

Assumption 3.1 (unwind-Assumptions).

1. If p1, . . . , pn is a valid unwind-run of t, then for all 1 ≤ i ≤ n, p1, . . . , pi

is also a valid unwind-run of t, the set {p1, . . . , pn} is a prefix-closed set of
positions, and pn 6∈ {p1, . . . , pn−1}.

2. If t, t′ are terms or multicontexts, p1, . . . , pn is a valid unwind-run for t,
and for all i < n, we have t(pi) = t′(pi), then p1, . . . , pn is also a valid
unwind-run for t′.
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3. If t, t′ are terms or multicontexts with t = σ(t′) for an fvbv-renaming σ, and
p1, . . . , pn is a valid run for t, then p1, . . . , pn is also a valid unwind-run for
t′.

4. For weakly sharing calculi, the following additional assumption is required: If
t, t′ are terms or multicontexts, ν ∈ VV , γ a vvbv-substitution compatible
with ν with t′ = γ(t), and p1, . . . , pn is a valid unwind-run for t, then
p1, . . . , pn is also a valid unwind-run for t′.

Given a term or a multicontext t. Then the position p of t is called
a reduction position in t, iff p is contained in some valid unwind-
run of t. The set of all reduction positions is defined as RP(t) =
{p | p is contained in some valid unwind-run of t}. Note that every reduction
position is a term-position by definition. Since we also apply the formalism to
multicontexts, we can speak of reduction positions of multicontexts as well as of
terms. A single-hole context C[] is defined as a a reduction context, if the hole []
of C is a reduction position in C[]: We denote reduction contexts as R[].

Lemma 3.2. Let M be a multicontext with n holes, and sj , j = 1, . . . , n be
terms, such that for some i: M [s1, . . . , si−1, [], si+1, . . . sn] is a reduction context.
Then there is some j ∈ {1, . . . , n}, such that for all terms tk, k = 1, . . . , n,
M [t1, . . . , tj−1, [], tj+1, . . . tn] is a reduction context.

Proof. Let p be the position of the hole in t := M [s1, . . . , si−1, [], si+1, . . . sn].
By the assumption on unwind, there is a valid unwind-run p1, . . . , pm of t,
such that pm = p. Let Q be the set of the positions of the n holes of M . Then
there is a least k such that p1, . . . , pk is a valid unwind-run of t, pk ∈ Q and
pk is the position of some hole. Minimality of k implies that p1, . . . , pk−1 are
positions within M , but not the position of any hole of M . Now we can apply
the conditions on unwind, in particular condition (2): unwind produces the
valid unwind-run p1, . . . , pk, irrespective of the terms in the holes of M . Hence
the claim of the lemma holds. ut

Assumption 3.3 (Answer-Assumption). There is a set ANS of answer terms. We
assume that the following conditions are satisfied:

1. If t
σ−→ t′ for terms t, t′ by a fvbv-renaming σ, and t ∈ ANS, then t′ ∈ ANS.

2. If t = M [t1, . . . , tn] is an answer for some multicontext M , and no hole of
M is a reduction position, then M [t′1, . . . , t

′
n] is also an answer.

Note that answers are allowed to be reducible.
The essence of the following assumption is that reduction commutes with renam-
ing, and that reduction in strongly sharing calculi does not modify non-reduction
positions up to renamings, and in weakly sharing calculi a replacement of vari-
ables by variables is permitted under further restrictions.

Assumption 3.4 (Reduction-Assumption). It is assumed that calc only defines
a (small-step) relation →0 that is applicable to terms satisfying the DVC, and
that the full small-step relation→ is derived from→0 and a subsequent renaming
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of variables. The relation → is defined such that s → t holds whenever s, t satisfy
the DVC, and s →0 t0

σ−→ t for some t0 and some bv-renaming σ of t0. We assume
that the following conditions are satisfied for → and →0:

1. If s → t, then s, t have the same type.
2. Let t = M [t1, . . . , tn] be a term that satisfies the DVC, where M is a

multicontext with n holes that are at non-reduction positions, and let t′

be a term with t →0 t′. Then there is a multicontext M ′ with n′ holes,
a mapping π : {1, . . . , n′} → {1, . . . , n}, vv-substitutions νi ∈ VV , i ∈
{1, . . . , n′}, where the domain and codomain-variables of all νi already oc-
cur in M , such that for all terms s1, . . . , sn: If M [s1, . . . , sn] satisfies the
DVC, then M [s1, . . . , sn] →0 M ′[ν1(sπ(1)), . . . , νn′(sπ(n′))]. In particular,
t′ = M ′[ν1(tπ(1)), . . . , νn′(tπ(n′))].
Note that ν is capture-free since the DVC holds before reduction and that
the assumption enforces that ν is independent of the terms s1, . . . , sn.

3. If s is a term satisfying the DVC, s →0 t, s
σ−→ s′ an fvbv-

renaming of s, such that s′ := σ(s) satisfies the DVC. Then
there is a term t′ and an fvbv-renaming σ′ of t, where fvp(σ′)
is a restriction of fvp(σ), such that s′ →0 t′ and t′ = σ′(t).

s
σ //

0

��

s′

0

���
�
�

t
σ′

//_____ t′

Note that in (2) the terms si satisfy the DVC, but there may be multiple
occurrences of some si; also the multicontext M ′ may violate the DVC.

We give examples of calculi and illustrate the assumptions:

Example 3.5. Let the call-by-need λ-calculus4 be given with syntax E ::= V |
(E E) | λV.E | (let V = E in E) (see [AFM+95]). Then the search for a normal-
order redex is deterministic and can be specified by a label-shift that starts with
tL and has the rules (t1 t2)L → (tL1 t2); (let x = t1 in t2)L → (let x = t1 in tL2 )
and (let x = t in C[xL]) → (let x = tL in C[x]). It is clear that the unwind-
assumptions are satisfied, since the search for the redex does not depend on
former non-L-positions.
The answers are defined to be of the form A ::= λV.E | (let V = E in A). The
Answer-Assumptions are satisfied.
The small-step reduction is defined at reduction positions and makes local
changes at reduction positions, but non-reduction positions are never substi-
tuted. The full specification is beyond the scope of this paper, but it is easy
to see (cf. [AFM+95]) that the reduction assumptions for a strongly sharing
calculus are satisfied.

Example 3.6. Let a fragment of the untyped non-deterministic call-by-need λ-
calculus with amb be given with syntax E ::= V | (E E) | λV.E | (amb E E) |
(letrec x1 = E1, . . . , xn = En in E) (see [SSS07]). This calculus is strongly
sharing in our sense. The search for a normal-order redex specified by a label-
shift is non-deterministic. The labels are “T” for top-term, “S” for subterm,
4 There may be minor variations in the normal-order redex in the cited calculi
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and “L” standing for “S” or “T”. Let unwind start with tT and let the
rules be (t1 t2)L → (tS1 t2); (letrec Env in r)T → (letrec Env in rS),
(letrec x = t,Env in C[xS ]) → (let x = tS ,Env in C[x]), (letrec x =
t, y = C[xS ],Env in r) → (letrec x = tS , y = C[x],Env in r), and the non-
deterministic rules for amb be: (amb t1 t2)L → (amb tS1 t2) and (amb t1 t2)L →
(amb t1 tS2 ). If a position is visited twice, then the algorithm stops. Again it is
clear that the unwind-assumptions are satisfied, since the search for the redex
does not depend on non-labeled positions.
The answers are abstractions λV.E as well as abstractions with an enclosing
letrec-expression (letrec Env in λV.E). The Answer-Assumptions are satis-
fied.
The small-step reduction is defined at reduction positions and makes lo-
cal changes, but again non-reduction positions are not modified by substi-
tution. It is not hard to check that the reduction assumptions are satisfied.
We give an illustration of one rule: (letrec x = λy.s,Env in C[x]) →
(letrec x = λy.s,Env in C[λy.s]), provided there is an unwind-run with in-
termediate labeling . . . C[xL]. The reduction assumption (2) is satisfied, since
e.g. M [s1, . . . , sn] = (letrec x = λy.M1[s1, . . . , sn],Env in C[x]) is re-
duced to (letrec x = λy.M1[s1, . . . , sn],Env in C[λy.M1[s1, . . . , sn]]), which
can be written as M ′[s1, . . . , sn, s1, . . . , sn], where M ′[. . .] = (letrec x =
λy.M1[. . .],Env in C[λy.M2[. . .]]).
The non-deterministic call-by-need λ-calculus with choice in [MS99] is a bit
different insofar as only variables are permitted as arguments in applications,
and that beta-reduction is always a replacement of variables for variables, the
rule being (λx.r) y → r[y/x]. This calculus is weakly sharing. For the case-rule
(see [MS99]) a joint replacement of several variables will take place, which is not
enforced to act as an injective mapping. Nevertheless, all our assumptions are
satisfied.

Example 3.7. The π-calculus as already mentioned in Example 2.4 can also be
checked for an appropriate representation and for the validity of our assumptions.
In the literature there are different variants of the π-calculus, which are usually
equipped with a theory based on bisimilarity. We will add a variant that is
operationally admissible, though a full analysis is left for future work. Instead
of equivalence axioms for concurrent processes and new name-binders, we view
these as reduction rules, which will turn out to be completely adequate for our
may- and must-convergence definitions, but are not compatible with the notion
of total must convergence, since this encoding will introduce infinite reduction
sequences.
The presentation of unwind as a label-shift algorithm has the following rules,
where we also add the non-deterministic possibilities: (P | Q)L → (PL | Q), or
(P | Q)L → (P | QL); (νx.P )L → νx.PL; and (!P )L → (! PL). This algorithm
for finding reduction positions satisfies our unwind-assumptions. The reduction
rules adapted to our view of calculi are the rules that correspond to “structural
equivalences”, which are replaced by the corresponding rules, like e.g. (P | Q) →
(Q | P ); (P1 | (P2 | P3)) → ((P1 | P2) | P3); (νx.P ) | Q → (νx.(P | Q)), if
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x 6∈ FV(Q), νx.νy.P → νy.νx.P , and the rule !P → P | !P . The important
rules are (P + Q) → P , (P + Q) → Q and the communication rule (COM):
x(y1, . . . , yn).P | x〈z1, . . . , zn〉.Q → P [z1/y1, . . . , zn/yn] | Q. The rules can only
be applied if the redex is a reduction position and not below an !-operator. The
latter restriction shows that the notion of reduction position and the notion of
redex may be different.
An appropriate definition of answers (or successful processes) that satisfies our
assumptions is as follows: A process P is an answer, iff the rules for P + Q
and the communication rules are not applicable, even after a finite number of
“equivalence reductions”. This set of definitions satisfies all our assumptions for
a weakly sharing calculus.
To use the structural equivalences and the definition of reduction modulo this
equivalence is not covered by our framework, where the associative-commutative
rules can be encoded, but the ν-shifting rules have to be made explicit.
Note that the (COM)-reduction rule from the π-calculus is the only rule among
all other considered rules that has a non-linear left hand side, however, the rule
application is severely restricted, insofar as its applicability depends only on
equality of two variable names.

Example 3.8. The calculus λ(fut) in [NSSSS07] is an extension of the lambda-
calculus with features of the π-calculus, however, there are cells and futures
instead of channels. The representation in our syntax requires, similar as in the
π-calculus, the two types process and term, where only variables of type term
are permitted. The structural congruences can be represented as reduction rules
as for the π-calculus. The lambda-calculus evaluation follows a call-by-value
strategy, though there are futures (i.e. variables) used for sharing results instead
of a replacing beta-rule. The answers are so called successful processes, which
have no pending (non-equivalence) reduction possibilities. The calculus λ(fut)
satisfies our assumptions and is a strongly sharing calculus.

Remark 3.9. We give examples of constellations in calculi that do not fall into
the scope of our method to prove context lemmas:

– If reduction within abstractions is not permitted, then the beta-reduction
rule violates our reduction assumption, since non-reduction positions may
be modified: an example being (λx.C[x])(λy.y) → C[(λy.y)]. Using the mul-
ticontext M = (λx.[]) and s1 = x, the only possibility for an M ′ is M ′ = ([]),
however, there is a replacement of x, and hence this is impossible.

– It is not permitted by our assumptions to have a beta-rule replacing only
variables by variables like (λx.C[x]) y → C[y], if y is at a potential position
of a hole: With M = ((λx.[]) []), it is not possible to find an appropriate M ′,
since the vv-substitution must only depend on M , not on the contents of the
holes. If the argument position of applications is restricted to variables then
the reduction assumptions are not violated.

– If we try to extend the assumptions and proof method such that
M [s1, . . . , sn] may have a more general result M ′[σ1(s1), . . . , σn(sn)] after
a single reduction, where σi is a substitution of terms for variables, then we
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run into technical trouble in the proofs of the context lemma(s) since the
substitutions may depend on the terms si and not only on the multicontext
M .

– Similar arguments hold for pattern match or case-rules that reduce
(case (c s1 . . . sn) of(c x1 . . . xn) → s, . . .) to e.g. s[t1/x1, . . . , tn/xn], which
cannot be covered.

– A rule of the form f (g a) → b, where f, g are unary and a, b are constants
and the subterm (g a) is a non-reduction position can not be represented,
since this would imply by our assumptions that f s → b for all subterms s.

4 Contextual Preorder and Equivalence for May- and
Must-Convergence

In this section we define different kinds of convergence properties of terms, and
the corresponding notions of contextual preorder and equivalence. There are
three main notions of convergence of a term t: may-convergence, which means
that t may reduce to an answer, must-convergence, which means that every term
reachable by reduction from t is may-convergent, and total must-convergence,
which means that t has no reduction to a must divergent term (failure term)
and no infinite reduction.

Definition 4.1. A term t is called

– may-convergent iff there is some answer t′ with t
∗−→ t′, denoted as t ↓.

– must-divergent iff t is not may-convergent, denoted as t ⇑.
– may-divergent iff there is some term t′ ⇑ with t

∗−→ t′, denoted as t ↑.
– must-convergent iff t

∗−→ t′ implies t′ ↓, denoted as t ⇓.
– totally must-convergent iff t ⇓ and there is no infinite reduction starting with

t, denoted as t W .
– totally may-divergent iff t ↑, or there is an infinite reduction starting with

t, denoted as t �.

Note that t is not may-divergent iff it is must-convergent.
In calculi with a deterministic →0-reduction the may- and must-predicates are
identical. As a generalization, we call a calculus deterministic iff the may- and
must-convergence predicates are identical for all terms. Terms t with t ⇓, but
not t W , are called weakly divergent in [CHS05]. Must-convergence is interest-
ing because it is linked to fairness (see e.g. [CHS05,SSS07,NSSSS07]); further
justification for non-total may-divergence is in [SS03].

Definition 4.2. Let s, t be two terms of the same type τ , and M ∈ {↓,⇓, W}.
Then s ≤M,τ t iff for all C[]τ : C[s]M =⇒ C[t]M, and
s ≤Mν,τ t, iff for all C[]τ , for all vv-substitutions ν ∈ VV and for all vvbv-
substitutions γs, γt compatible with ν on FV(s) ∪ FV(t): C[γs(s)]M =⇒
C[γt(t)]M.
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In the following we omit mention of τ in the suffix of the relations, if this is not
ambiguous.
Easy consequences are that for all terms s: s W =⇒ s ⇓ =⇒ s ↓, that for
M ∈ {↓,⇓, W}, the relations ≤M are compatible with contexts, and reflexive
and transitive, and that ≤Mν ⊆ ≤M.
Note that for a general proof of transitivity of≤M it is unavoidable that C[s], C[t]
may contain free variables. The corresponding proof w.r.t. a definition of ≤M
that restricts C[s], C[t] to be closed is in general not applicable, since the middle
term C[s2] is not necessarily closed, if C[s1], C[s3] are closed.
Contextual equivalence is defined as ∼↓ :=≤↓ ∩ ≥↓ for deterministic calculi and
for nondeterministic calculi as∼↓⇓ :=∼↓ ∩ ≤⇓ ∩ ≥⇓ or∼↓ W

:= ∼↓ ∩ ≤ W

∩ ≥

W

depending on the used must-convergence predicate. The relations∼↓ν are defined
analogously using the respective ≤-relations.

Example 4.3. The relation ≤↓ν may be different from ≤↓ (in exotic calculi):
Consider the calculus with one binary constructor c and a constant d, and the
reduction rule: c x x → d, let d be the only answer, and let all positions be
reduction positions. Then c x y ≤↓ c x z, but c x y 6≤↓ν c x z.

For simplifying several proofs in the following sections, we introduce a 0-1-
labelled variant of →-reduction sequences, which is nothing else but a reduction
of the form s1,0 →0 s1,1 →1 s2,0 →0 s2,1 →1 . . .. I.e., a reduction, where →0-
reductions and bv-renamings →1 are alternating, and the terms si,0 satisfy the
DVC.

s1,0
σ1,0 //

0
��

t1,0

0���
�

s1,1

1
��

σ1,1
//_____ t1,1

1���
�

s2,0
σ2,0 //_____

0
��

t2,0

0
���
�

. . . . . .

s
σ1 //

σ2

��

t

σ3

���
�
�

s′
σ4

//_____ t′

Fig. 1. Reduction diagrams for Lemma 4.4

Lemma 4.4. Let s, t be terms satisfying the DVC with s
σ−→ t by an fvbv-

renaming σ, and Red be a 0-1-labelled reduction of s as follows: s = s1,0 →0

s1,1 →1 s2,0 →0 s2,1 . . . →0 sn,1 →1 sn+1,0. Then there is also a reduction of t
of the form t = t1,0 →0 t1,1 →1 t2,0 →0 t2,1 . . . →0 tn,1 →1 tn+1,0 with terms
ti,k, such that for all i, k: si,k

σi,k−−→ ti.k by fvbv-renamings σi,k, fvp(σi,k) is a
restriction of fvp(σ), the terms ti,0 satisfy the DVC, and sn+1,0 is an answer iff
tn+1,0 is an answer (see left diagram in figure 1).
The lemma holds also for bv-renamings instead of fvbv-renamings. The lemma
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also holds, if the 0-1-labelled reduction of s starts with a →1-reduction, in which
case the reduction of t also starts with a →1-reduction.

Proof. We show the claim by induction on the number of reductions. The base
case holds using the answer assumption 3.3. Let s, t be terms satisfying the
DVC with s

σ−→ t by a fvbv-renaming σ, and s →0 s′. Then by the reduction

assumption 3.4, there is some t′ with t →0 t′, and s′
σ′

−→ t′, where fvp(σ′) is
a restriction of fvp(σ). Let s, t be terms with s

σ1−→ t by an fvbv-renaming,
and s

σ2−→ s′ by a bv-renaming, and s′ satisfies the DVC. If s already satisfies
the DVC, then σ2 is the identity. The reverse σ−1

2 of σ2 is also a bv-renaming.
Moreover, by Lemma 2.7, there is a bv-renaming σ3, such that t

σ3−→ t′ and t′

satisfies the DVC. With σ4 = σ−1
2 ◦σ1 ◦σ3, we have s′

σ4−→ t′ by Lemma 2.7, since
composition of fvbv-renamings is also a fvbv-renaming. Moreover, the fv-parts
of σ1 and σ4 are the same. (see right diagram in figure 1. ut

Proposition 4.5. Let s, s′ be terms with s′ = σ(s), where σ is a fvbv-
renaming. Then sM⇔ s′M for all M∈ {↓,⇓, ↑,⇑, W ,�}.

Proof. Let s, t be terms with t = σ(s), where σ is an fvbv-renaming.
If s ↓, then Lemma 4.4 and the condition on answer-terms 3.3 shows that a
reduction from s to an answer can be translated to a reduction of t to an answer.
Hence t ↓. Since the reverse of σ is a fvbv-renaming by Lemma 2.7, the converse
also holds. This immediately also shows that s ⇑ ⇐⇒ t ⇑.
Now let s ↑. Then Lemma 4.4 and the first part of the proof shows that a
reduction from s to a must-divergent term can be translated to a reduction of t
to a must-divergent term. Hence t ↑. Since the reverse of σ is a fvbv-renaming
by Lemma 2.7, the converse implication also holds. An immediate consequence
is that s ⇓ ⇐⇒ t ⇓.
Let s �. Then a reduction from s to a must-divergent term or an infinite →-
reduction starting from s can be transferred using Lemma 4.4 to a reduction from
t to a must-divergent term or to an infinite reduction. Hence t �. The reverse
implication also holds. Again, an immediate consequence is s W ⇐⇒ t W . ut

5 Context Lemmas

We define the preorders restricted to reduction contexts and show the context
lemmas for all the combinations of the different notions of convergences and for
the two kinds of calculi.

Definition 5.1. For all terms s, t of equal type τ and M∈ {↓,⇓, W}:
s ≤M,Rν,τ t iff for all reduction contexts R[]τ , all vv-substitutions ν ∈ VV , all
vvbv-substitutions γs, γt of s, t compatible with ν on FV(s) ∪ FV(t), we have
R[γs(s)]M =⇒ R[γt(t)]M.
The relation s ≤M,R,τ t holds iff for all reduction contexts R[]τ , we have
R[s]M =⇒ R[t]M.
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Note that in the following, we will drop the type-suffix τ .
We can slightly restrict the necessary reduction contexts for ≤M,R, by using
renamings and Proposition 4.5:

Lemma 5.2. Let calc be strongly sharing and M ∈ {↓,⇓, W}. Then
≤M,Rν = ≤M,R.

Proof. This follows from Proposition 4.5, since for a reduction context R, σs, σt

(with adapted positions) are also bv-renamings of R[s], R[t], respectively. ut

We separate the proofs for weakly and strongly sharing calculi, since there is
a different treatment of renamings, and the weakly sharing part requires more
arguments w.r.t. vvbv-substitutions.

Lemma 5.3 (May-Convergence and Weakly Sharing). Let calc be
weakly sharing. Then ≤↓,Rν = ≤↓ν .

Proof. We show the following generalized claim:
For all n, all multicontexts M with n holes, all i = 1, . . . , n and all vv-
substitutions νi ∈ VV , and compatible vvbv-substitutions γs,i, γt,i on FV(si) ∪
FV(ti): If for terms si, ti: si ≤↓,Rν ti, then M [γs,1(s1), . . . , γs,n(sn)] ↓ =⇒
M [γt,1(t1), . . . , γt,n(tn)] ↓. For convenience let s′i := γs,i(si), t′i := γt,i(ti). Note
that in the inductive proof below we will only use the weakened precondition
s′i ≤↓,Rν t′i. Proposition 4.5 permits us to assume, by applying bv-renamings,
that the bound variables in s′i and t′i are distinct.
The claim is shown by induction on the length l of 0-1-labelled-reductions of
M [s′1, . . . , s

′
n] to an answer, and second on the number of holes of M .

As a base case, the claim is obviously true, if the number n of holes is equal to
0, since then M [s′1, . . . , s

′
n] = M [t′1, . . . , t

′
n].

There are two cases:

1. In M [s′1, . . . , s
′
n] some s′i is in a reduction position.

This means that at least one of the contexts Mi = M [s′1, . . . , s
′
i−1, [], s

′
i+1, . . . , s

′
n]

is a reduction context. Then Lemma 3.2 shows that there is some j, such
that M [s′1, . . . , s

′
j−1, [], s

′
j+1, . . . , s

′
n] as well as M [t′1, . . . , t

′
j−1, [], t

′
j+1, . . . , t

′
n] is

a reduction context. Using the induction hypothesis for the context M ′ :=
M [[], . . . , [], s′j , [], . . . , []], which has n − 1 holes, it follows that M [s′1, . . . , s

′
n] ↓

=⇒ M [t′1, . . . , t
′
j−1, s

′
j , t

′
j+1, . . . , t

′
n] ↓.

Since M [t′1, . . . , t
′
j−1, [], t

′
j+1, . . . , t

′
n] is a reduction context, the assumption and

M [t′1, . . . , t
′
j−1, s

′
j , t

′
j+1, . . . , t

′
n] ↓ imply that M [t′1, . . . , t

′
j−1, t

′
j , t

′
j+1, . . . , t

′
n] ↓.

2. For all i: None of the contexts Mi = M [s′1, . . . , s
′
i−1, [], s

′
i+1, . . . , s

′
n] is a re-

duction context. Lemma 3.2 implies that none of the holes of M is at a reduction
position. If l = 0, then M [s′1, . . . , s

′
n] is an answer-term, and by Assumption 3.3,

the expression M [t′1, . . . , t
′
n] is also an answer term. Now assume that l > 0:

2a. First we consider the case that M [s′1, . . . , s
′
n] satisfies the DVC and that the

reduction on M [s′1, . . . , s
′
n] is a →0-reduction. Let M [s′1, . . . , s

′
n] →0 s′ be the

start of the 0-1-labelled reduction of length l to an answer. By the assumption
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3.4 (2) on reductions, there is a multicontext M ′ with n′ holes, νi ∈ V V for
i ∈ {1, . . . , n′}, and a mapping π : {1, . . . , n′} → {1, . . . , n}, such that s′ =
M ′[ν1(s′π(1)), . . . , νn′(s′π(n′))].
The same holds by assumption 3.4(2) for M [t′1, . . . , t

′
n]: There is a reduction

M [t′1, . . . , t
′
n] →0 M ′[ν1(t′π(1)), . . . , νn′(t′π(n′))]. Now we can apply the induction

hypothesis, since the number of reductions to an answer of s′ is l − 1, and
the required preconditions hold: For all R, νR and if γRs,i, γRt,i are compatible
with νR on FV(s′i) ∪ FV(t′i), then for all i = 1, . . . , n′: R[γRs,iνi(s′π(i))]) ↓ =⇒
R[γRt,iνi(t′π(i))] ↓ holds, since γRs,iνi and γRt,iνi are also vvbv-substitutions
compatible with a common vv-substitution (see Lemma 2.7).
2b. The other case is that M [s′1, . . . , s

′
n] is the result of a →0-reduction and the

next reduction step in the 0-1-labelled reduction is a bv-renaming. Then the re-
duction consists of applying some bv-renaming M [s′1, . . . , s

′
n] σ−→ M ′[s′′1 , . . . , s′′n],

such that M ′[s′′1 , . . . , s′′n] satisfies the DVC.
Using Lemma 2.9, let σM be the part of the renaming σ for the binder positions
that are in M . Let Wi, i = 1, . . . , n be the set of variables that may be potentially
bound in hole i, i.e. Wi = Vhole(M, i), and let ρi, i = 1, . . . , n be the mappings on
Wi induced by σ. Note that ρi is injective on Wi. The effect of the bv-renaming
σ can be modelled as follows:
It induces a bv-renaming M

σM−−→ M ′, and fvbv-renamings µi with s′i
µi−→ s′′i ,

where µi is compatible with ρi for all i. We construct an appropriate bv-renaming
σ′ for M [t′1, . . . , t

′
n] by using σM again for M , and for every i fvbv-renamings

µ′i for t′i, where for all i: µ′i is compatible with ρi. For the bv-part of µ′i fresh
variables must be used, which ensures that σ′(M [t′1, . . . , t

′
n]) satisfies the DVC.

By construction, we have σ′(M [t′1, . . . , t
′
n]) = M ′[µ′1(t

′
1), . . . , µ

′
n(t′n)].

It remains to show that the preconditions µi(s′i) ≤↓,Rν µ′i(t
′
i)) hold for all pairs

(µi(s′i), µ
′
i(t

′
i)): Let i be fixed in the following, and let R be a reduction context,

let ν′ be a vv-substitution, and γ′s,i be vvbv-substitutions of µi(s′i) compatible
with ν′ such that R[γ′s,iµi(s′i)] ↓. Now let γ′t,i be a vvbv-substitution of µ′i(t

′
i)

compatible with ν′. The ssubstitutions γ′s,iµi and γ′t,iµ
′
i are compatible with the

same vv-substitution νρi|ρi(Wi) by Lemma 2.7. Thus we obtain from si ≤↓,Rν ti
that R[γ′t,iµ

′
i(t

′
i)] ↓.

Since the preconditions are satisfied for all i, the multicontext is the same M ′

for si, ti, i = 1, . . . , n, and the reduction length has been reduced, we can apply
the induction hypothesis. ut

For a finite set of variables W , a context C is called fresh for W , iff for all
variables x ∈ W , x is not bound by a binder in BPhole(C).

Lemma 5.4. Let s, t be terms, M∈ {↓,⇓, W} and W be a finite set of variables
that contains all variables occurring in s, t. Then s ≤M,R t holds, iff for all
reduction contexts R that are fresh for W , we have R[s]M =⇒ R[t]M.

Proof. Let R be an arbitrary reduction context with R[s] ↓. We have to show
that R[t] ↓. Let σ be a bv-renaming that renames all the binders in BPhole(R)
by fresh variables that are not in W . Then σ(R) is a reduction context due
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to the unwind-conditions and satisfies the preconditions. Hence σ(R)[s] ↓ by
Proposition 4.5. The preconditions imply that σ(R)[t] ↓. Since the reverse of σ
is also a bv-renaming, we have also R[t] ↓, again by Proposition 4.5. The same
arguments, but using the other claims of Proposition 4.5, show the other parts
of the lemma. ut

Lemma 5.5 (May-Convergence and Strongly Sharing). Let calc be
strongly sharing. Then ≤↓,R = ≤↓.

Proof. We show the following generalized claim:
For all n and all multicontexts M with n holes: If for terms si, ti, i = 1, . . . , n,
and for all i = 1, . . . , n: si ≤↓,R ti, then M [s1, . . . , sn] ↓ =⇒ M [t1, . . . , tn] ↓.
Note that the induction and the cases are instances of the cases in the proof of
Lemma 5.3, where vv-substitutions can be omitted (see also Lemma 5.2); only
the final part (2b) is different. We will present this part of the proof in detail:
2b. Consider the case that M [s1, . . . , sn] is the result of a →0-reduction, that it
does not satisfy the DVC, and the next reduction step in the 0-1-labelled reduc-
tion is a renaming. Then the reduction consists of applying some bv-renaming
M [s1, . . . , sn] σ−→ M ′[s′1, . . . , s

′
n], such that M ′[s′1, . . . , s

′
n] satisfies the DVC. Note

that every term si satisfies the DVC, but there may be double occurrences of
the same term.
Using Lemma 2.9, let σM be the part of the renaming σ for the binder positions
that are in M . Let Wi = Vhole(M, i), i = 1, . . . , n, and let ρi, i = 1, . . . , n be the
mappings on Wi induced by σ. Note that ρi is injective on Wi. The bv-renaming
σ induces fvbv-renamings µi with si

µi−→ s′i, where µi is compatible with ρi. We
construct an appropriate bv-renaming σ′ for M [t1, . . . , tn] by using σM again
for M , and for every i fvbv-renamings µ′i for ti, where for all i: µ′i is compatible
with ρi. For the bv-part of µ′i fresh variables must be used, which ensures that
σ′(M [t1, . . . , tn]) satisfies the DVC. By construction, we have σ′(M [t1, . . . , tn]) =
M ′[µ′1(t1), . . . , µ

′
n(tn)].

We have to show that the precondition µi(si) ≤↓,R µ′i(ti)) holds for all pairs
(µi(si), µ′i(ti)), i = 1, . . . , n: Let i be fixed in the following, and let R be a
reduction context with R[µi(si)] ↓, where we assume using Lemma 5.4 that the
binders BPhole(R) use fresh variables. We have to show that R[µ′i(ti)] ↓.
We construct an fvbv-renaming σ2 of R[µi(si)] as follows, such that σ2 acts as
the inverse of µi on si; moreover, the mapping of σ2 on Vhole(R) is a restriction
of ρ−1

i . Note that σ2 may also act on free variables in R[µi(si)], since R may
have too few binders. The construction of σ2 is possible due to the freshness
assumption on R and since si satisfies the DVC. Then σ2(R[µi(si)]) = σ2(R)[si],
and σ2(R) is a reduction context by Assumption 3.1 on unwind. Proposition 4.5
shows that σ2(R)[si] ↓. The assumptions si ≤↓,R ti now imply that σ2(R)[ti] ↓.
Now starting with R[µ′i(ti)], we also construct an fvbv-renaming σ3 of R[µ′i(ti)]
that acts as a reverse of µ′i on ti, such that the induced mapping on Vhole(R)
is a restriction of ρ−1

i . We also assume that σ3 renames binders in BPhole(R)
exactly as σ2. Since ti satisfies the DVC, and due to the freshness assumptions
for R, there is no conflict between variables from ti, bound variables in R and
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variables in µ′i(ti), hence σ3 can be constructed and is an fvbv-renaming. Then
σ3(R[µ′i(ti)] = σ3(R)[ti] = σ2(R)[ti]. Now σ2(R)[ti] ↓ and Proposition 4.5 imply
R[µ′i(ti)] ↓. ut

Lemma 5.6 (Must-Convergence and Strongly Sharing). Let calc be
strongly sharing. Then ≤↓,R ∩ ≤⇓,R ⊆ ≤⇓.

Proof. We show the following generalized claim, using may-divergence.
For all n and all multicontexts M with n holes: If for all for terms si, ti, i =
1, . . . , n, and for all i = 1, . . . , n: si ≤↓,R ti ∧ si ≤⇓,R ti, then M [t1, . . . , tn] ↑ =⇒
M [s1, . . . , sn] ↑.
The claim is shown by induction on the number l of →0 and →1-reductions of
0-1-labeled reductions of M [t1, . . . , tn] to a must-divergent term, and second on
the number of holes of M . The proof is almost a copy of the proof of the context
lemma 5.5 for may-divergence; we give a sketch and emphasize the differences:
If some term ti is in a reduction position in M [t1, . . . , tn], then the arguments
are the same as in the proof of Lemma 5.5.
If no hole of M [t1, . . . , tn] is a reduction position, l > 0, and the reduction is a
→0-reduction, then the same arguments as in the in proof of Lemma 5.5 show
that we can use induction on l.
The base case l = 0 is that M [t1, . . . , tn] is must-divergent: Suppose that
M [s1, . . . , sn] is not must-divergent. Then it is may-convergent, which by the as-
sumption ∀i : si ≤↓,R ti and the context lemma 5.5 implies that M [t1, . . . , tn] ↓,
which is a contradiction. Hence M [s1, . . . , sn] ↑, and the base case is proved.
If no hole of M [t1, . . . , tn] is a reduction position, l > 0, and the reduction is
a renaming →1, then the same arguments as in the proof of the may-context
lemma 5.5 apply. ut

An immediate consequence is:

Corollary 5.7. Let calc be strongly sharing. Then ≤↓ ∩ ≤⇓,R ⊆ ≤⇓.

Lemma 5.8 (Must-Convergence and Weakly Sharing). Let calc be
weakly sharing. Then ≤↓,Rν ∩ ≤⇓,Rν ⊆ ≤⇓ν .

Proof. The proof can be done along the argumentation of the proof of Lemma
5.6 with analogous extensions as done in the proof of Lemma 5.3. ut

Lemma 5.9 (Total Must-Convergence and Strongly Sharing). Let calc
be a strongly sharing calculus. Then ≤

W ,R
t = ≤

W

.

Proof. We show the following generalized claim:
For all n and all multicontexts M with n holes: If for all terms si, ti and for all
i = 1, . . . , n: si ≤ W ,R

ti, then M [s1, . . . , sn] W =⇒ M [t1, . . . , tn] W .
Thus, let us assume that M, si, ti are given, that M [s1, . . . , sn] W , and that the
claim holds for all terms that can be reached from M [s1, . . . , sn] by a 0-1-labelled
→-reduction sequence, where at least one →0 reduction is included. Proposi-
tion 4.5 permits us to assume, by applying bv-renamings, that the bound vari-
ables in si and ti are distinct. The claim is shown by well-founded induction on
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the order +−→ defined by the reduction → for all the descendents of M [s1, . . . , sn],
and second on the number of holes of M . As a base case, the claim is obviously
true, if n = 0.
There are several cases: We give a sketch for every case:

1. Some si or ti is in a reduction position in M [s1, . . . , sn] or M [t1, . . . , tn],
respectively. Then some hole of M [., . . . , .] is in a reduction context, and the
arguments in case (1) of the proof of Lemma 5.5 (resp. Lemma 5.3) apply
using induction on the number of holes.

2. None of the contexts Mi = M [s1, . . . , si−1, [], si+1, . . . , sn] is a reduction
context. Then no hole of M is a reduction position. We have to show that all
reduction sequences of M [t1, . . . , tn] terminate. If M [t1, . . . , tn] is an answer-
term, then we are finished. If M [t1, . . . , tn] is irreducible, then by the same
arguments as in in the proof of Lemma 5.5, M [s1, . . . , sn] is also irreducible,
which implies that M [s1, . . . , sn] is an answer, and hence M [t1, . . . , tn] is
an answer, too. If M [t1, . . . , tn] has a reduction, then using the reduction
assumptions 3.4 for →0 and the same arguments as in Lemma 5.5, we can
apply the induction hypothesis. ut

The already demonstrated techniques suffice to prove:

Lemma 5.10 (Total Must-Convergence for Weakly Sharing). Let calc
be weakly sharing. Then ≤

W ,Rν = ≤

W ν
.

Theorem 5.11 (Generic Context Lemma). Let calc be a calculus such
that our assumptions 3.1, 3.3 3.4 are satisfied.

– If calc is strongly sharing calculi, then:
≤↓,R = ≤↓, ≤

W ,R
= ≤

W

, and ≤↓,R ∩ ≤⇓,R ⊆ ≤⇓.
– If calc is weakly sharing, then
≤↓,Rν = ≤↓ν ⊆ ≤↓, ≤

W ,Rν = ≤

W ,ν
⊆ ≤

W

, and
≤↓,Rν ∩ ≤⇓,Rν ⊆ ≤⇓ν ⊆ ≤⇓.

6 Examples for Calculi and Context Lemmas

6.1 Strengthening the Context Lemma for Weakly Sharing Calculi

The context lemma for weakly sharing calculi has the slight disadvantage that in
addition to all reduction contexts, also all vv-substitutions have to be checked,
and also that the resulting contextual preorder is differently defined.
This difference can be avoided in most calculi by simulating s[y1/x1, . . . , yn/xn]
by (letrec x1 = y1, . . . , xn = yn in s) or a similar context, which is usually
of the form R[s]. Note, however, that the relation ∀ . . . : s[y1/x1, . . . , yn/xn] ∼
(letrec x1 = y1, . . . , xn = yn in s), which is sufficient to drop all the ν’s, may
require an extra proof in the respective calculus.
In the π-calculus, which is weakly sharing, it is also possible to avoid this extra
test using the context: νz.(z(x1, . . . , xn).[·] | z〈y1, . . . , yn〉.0), where the variables
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y1, . . . , yn are not necessarily different. The communication operation for channel
z will simulate the vv-substitution [y1/x1, . . . , yn/xn].
The obtained result in weakly sharing calculi is that the check in the context
lemma can be done by ignoring the vv-substitutions, and in addition the con-
textual preorder definition can also ignore the vv-substitutions. This is the case
for the weakly sharing calculus in [Mor98,MSC99].

6.2 Examples for Higher-Order Calculi

Our method to derive context lemmas is applicable in lambda-calculi and other
higher-order calculi, even with letrec, with strict and non-strict reduction pro-
vided there are no substituting rules, which is usually only possible, if a form of
sharing is permitted by e.g. let, letrec or explicit substitutions. As a general
guideline, note that the beta-rule (or similar rules like the case-rules) in general
violates our assumptions. The restricted beta-rule (λx.s) y → s[y/x] may be
allowed in weakly sharing calculi, provided y is a variable-only position. The
rules (λx.s) t → (let x = t in s), (let x = v in R[x]) → (let x = v in R[v])
are permitted in strongly sharing calculi, if the replaced position of x is in a
reduction position. Our result can be used for may- as well as must-convergence
in its two forms, with or without taking infinite reductions into account.
We mention several calculi, where the result is applicable:
The call-by-need-calculi in [AFM+95,AF97,MOW98] are deterministic, use a
let to represent sharing, and use a sharing variant of beta-reduction. All the
assumptions are satisfied, where the answers according to our definition are of the
form let x1 = t1 in let x2 = t2 in ... in λx.s. The context lemma for
may-termination holds for these strongly sharing calculi.
The letrec-calculi in [AS98,SS06] are deterministic and provide letrec
for expressing sharing. The context lemma for may-convergence holds for
these strongly sharing calculi. The non-deterministic call-by-need calculi in
[KSS98,Man05] provide a let and a non-deterministic choice. The assump-
tions are satisfied, where unwind is deterministic. Context lemmas for may-
termination as well as must-termination for these strongly sharing calculi hold.
Note that [KSS98] uses total must-divergence, and makes no use of a context
lemma, whereas the calculus in [Man05] did not treat must-divergence.
The call-by-need calculus in [MSC99] with letrec, choice, case and construc-
tors uses may- and total must-convergence, and satisfies our assumptions. The
calculus is weakly sharing since the beta-rule-variant and the case-rule use vv-
substitutions, and since the arguments in applications as well as the arguments
in constructor expressions (c x1 . . . xn) may only be occupied by variables. The
context lemmas for may- , must and total must-convergence hold in this calculus,
though only the may- and total must-context lemmas are used.
The call-by-need calculi in [SSS07,Mor98] provide amb, letrec, case and con-
structors. They satisfy our criteria, where the first is strongly, and the second is
weakly sharing. unwind and normal-order reduction are non-deterministic. Our
results confirms the respective context lemmas, and also shows a new one for
the call-by-need variant in [Mor98], since there is no proof of a context lemma
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for total must-convergence in [Mor98]. Our method to derive context lemmas is
also applicable for the fair (i.e. using resources by annotations) variant of the
amb-calculi in [Mor98,SSS06], where the encoding of (ambm,n s t) can be done
by using the infinitely many operators ambm,n.
Process calculi like the π-calculus are in the scope of our method, the result is
that process contexts (no vv-substitutions required) are sufficient to check ob-
servational equivalence of processes w.r.t. may- and must-convergence. The call-
by-value concurrent process calculus λ(fut) in [NSSSS07] has a sharing variant
of beta-reduction, and is derived from a calculus with beta-reduction [NSS06].
The sharing variant in [NSSSS07] has mutable cells, and a non-deterministic re-
duction. It satisfies our assumptions for a strongly sharing calculus, and requires
two basic types in our type system. Note that unwind is nondeterministic. After
some preprocessing is done, the context lemmas for may- and must-convergence
for expressions can be derived from our results. Note that the context lemmas
for processes in λ(fut) is trivial, since all process contexts are reduction contexts
in λ(fut).
If the calculus permits substituting rules like beta-reduction, then Theorem 5.11
is not applicable, since then Assumption 3.4.(2) does not hold.

7 Conclusion

We have exhibited a broad class of higher-order calculi including untyped, ex-
tended non-deterministic lambda-calculi with a form of sharing and higher-order
process calculi with a rudimentary type system, where context lemmas for may-
as well as must-convergence can be derived. Three natural assumptions must
hold to validate the context lemmas. This not only paves the way for analyz-
ing calculi modelling programming languages and communicating processes, but
also hints at common properties of calculi that were more or less unrelated in
purpose, goal and syntax.
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A Full Encoding of λ(fut) in the General Framework

We recall the original syntax of λ(fut) from [NSSSS07]: programs are constructed
using a two-layer syntax.

p ::= p1|p2 | νx(p) | x⇐e | x susp⇐= e | x c v | y h x | y h •
e ::= x | c | λx.e | e1 e2 | exch(e1, e2) c ::= unit | cell | thread | handle | lazy

On the top layer there are processes p. Inside eager threads (x⇐e) as well as sus-
pended threads (x

susp⇐= e) enriched lambda terms are used which are constructed
by the non-terminal e, where c are higher-order constants. The content of a cell
(x c v) may only be a value v, i.e. a variable, a constant or a lambda abstraction.

The Signature We now give an encoding of the calculus into our general frame-
work, where most of the encoding is canonical with two exceptions: Used han-
dle components y h • are represented by the operator h and more importantly
cell components are encoded into seven different operators, depending on the
content of the cell: a cell with a variable as content x c y is encoded as bi-
nary operator cV ar(x, y), for any of the 5 different kind of cells there is an
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unary operator for the cell, e.g. x cunit is encoded as cu(x), cells containing
lambda abstractions are encoded using the operator cλ, e.g x c λy.e is encoded
as cλ(x, y.e). The reason is that the reduction rule cell.exch(ev) (see below)
may modify the cell content (which itself is not a reduction position), but with
the new constants this modification is either in a reduction position, or is an
injective renaming of variables at a variable position (e.g if cV ar(x) is replaced
by cV ar(y)), or if a cell containing an abstraction is replaced by another ab-
straction as content, then the appropriate multi-context M ′ according to M
in the reduction assumption can be found. I.e. if we consider the reduction
|(E[exch(x, λ(y.e1))], cλ(x, z.e2)) → |(E[exch(x, λ(z.e2))], cλ(x, y.e1)) and M
is the multi-context |(E[exch(x, λ(y.[·]))], cλ(x, z.[·])), then the context M ′ can
be defined as |(E[exch(x, λ(z.[·]))], cλ(x, y[·])).
According to the two-layer syntax we use two types to distinguish between pro-
cess (τp) and expressions (τe). Thus, T0 := {τe, τp}. The following table defines
the remaining parts of the signature.

f ∈ O α(f) β(f) βτ (f)

@ 2 (T, T) τe → τe → τe

λ 1 (1) (τe → τe) → τe

exch 2 (T, T) τe → τe → τe

unit 0 () τe

cell 0 () τe

thread 0 () τe

handle 0 () τe

lazy 0 () τe

| 2 (T, T) τp → τp → τp

ν 1 (1) (τe → τp) → τp

⇐ 2 (V, T) τe → τe → τp

f ∈ O α(f) β(f) βτ (f)

cu 1 (V) τe → τp

cc 1 (V) τe → τp

ct 1 (V) τe → τp

cl 1 (V) τe → τp

ch 1 (V) τe → τp

cV ar 2 (V, V) τe → τe → τp

cλ 2 (V, 1) τe → (τe → τe) → τp
susp⇐= 2 (V, T) τe → τe → τp

h 2 (V, V) τe → τe → τp

h 1 (V) τe → τp

Unwinding and Small-Step Reduction The small-step reduction of λ(fut) used
structural congruence of processes as well as three different kinds of contexts
(process evaluation contexts D, call-by-value evaluation contexts E and future
evaluation contexts F :

p1|p2 ≡ p2|p1

(p1|p2)|p3 ≡ p1|(p2|p3)
νxνyp ≡ νyνxp

νx(p1)|p2 ≡ νx(p1|p2) if x 6∈ fv(p2)

E ::= x⇐ eEeE ::= [ ] | eE e | v eE | exch( eE, e) | exch(v, eE)

F ::= x⇐ eFeF ::= eE[[ ] v] | eE[exch([ ], v)]
D ::= [ ] | p|D | D|p | νxD

Small-step reduction ev is then defined using nine rules:
(1) D[E[(λy.e) v]]

ev−→ D[νy(E[e]|y⇐v)]

(2) D[E[thread v]]
ev−→ D[νz(E[z]|z⇐v z)]

(3) D[F [x]|x⇐v]
ev−→ D[F [v]|x⇐v]

(4) D[E[lazy v]]
ev−→ D[νz(E[z]|z

susp⇐= v z)]

(5) D[F [x]|x
susp⇐= e]

ev−→ D[F [x]|x⇐e]

(6) D[E[handle v]]
ev−→ D[νzνz′(E[v z z′]|z′ h z)]

(7) D[E[x v]|x h y]
ev−→ D[E[unit]|y⇐v|x h •]

(8) D[E[cell v]]
ev−→ D[νz(E[z]|z c v)]

(9) D[E[exch(z, v1)]|z c v2]
ev−→ D[E[v2]|z c v1]
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For the translation in the general framework we first define unwind-algorithm
which operates on terms over the signature. It uses a label l that marks a D[E]-
contexts.

|(p1, p2)
L → |(pL

1 , p2) |(p1, p2)
L → |(p1, p

L
2 ) ν(x.p)L → ν(x.pL)

⇐ (x, p)L → ⇐ (x, pL) @(e1, e2)
L → @(eL

1 , e2) @(vL, e2) → @(v, eL
2 )

exch(vL, e2) → exch(v, e2)
L exch(e1, e2)

L → exch(eL
1 , e2)

Obviously the unwind-Assumption is fulfilled. Structural congruence is encoded
in the small-step relation

|(p1, p2) → |(p2, p1)
|(p1, |(p2, p3)) → |(|(p1, p2), p3)

ν(x.ν(y.p)) → ν(y.ν(x.p))
|(ν(x.p1), p2) → ν(x.|(p1, p2)) if x 6∈ FV(p2)

The encoding from the small step reduction ev−→ into the small step reduction →
of the general framework is canonical, except for the rule (8) and (9):

(1) D[E[@(λ(y.e), v))]] → D[ν(y.(|(E[e],⇐ (y, v))))] if x 6= y
(2) D[E[@(thread, v))]] → D[ν(z.(|(E[z],⇐ (z, @(v, z)))))]
(3) D[|(F [x],⇐ (x, v))] → D[|(F [v],⇐ (x, v))]

(4) D[E[@(lazy, v)]] → D[ν(z.(
susp⇐= (z, @(v, z))))]

(5) D[|(F [x],
susp⇐= (x, e))] → D[|(F [x],⇐ (x, e))]

(6) D[E[@(handle, v)]] → D[ν(z.ν(z′.|(E[@(@(v, z), z′)], h(z′, z))))]

(7) D[|(E[@(x, v)], h(x, y))] → D[|(E[unit], |(⇐ (y, v), h(x)))]

The rule (8) for cell creation is splitted into 7 rules for → depending of the kind
of content of newly created cell.

D[E[@(cell, λx.e)]] → D[ν(z.(|(E[z], cλ(z, x.e))))]
D[E[@(cell,unit)]] → D[ν(z.(|(E[z], cu(z))))]

D[E[@(cell,handle)]] → D[ν(z.(|(E[z], ch(z))))]
D[E[@(cell, lazy)]] → D[ν(z.(|(E[z], cl(z))))]

D[E[@(cell, thread)]] → D[ν(z.(|(E[z], ct(z))))]
D[E[@(cell, cell)]] → D[ν(z.(|(E[z], cc(z))))]

D[E[@(cell, x)]] → D[ν(z.(|(E[z], cV ar(z, x))))]

The rule (9) for atomic cell exchange is replaced by 49 rules, since the kind of
the cell may change because of the exchange operation. We only show some of
them:

D[|(E[exch(z, λ(x.e1))], cλ(z, y.e2))] → D[|(E[λ(y.e2)], cλ(z, x.e1))]
D[|(E[exch(z, λ(x.e1))], ct(z))] → D[|(E[thread], cλ(z, x.e1))]

D[|(E[exch(z, λ(x.e1))], cV ar(z, y))] → D[|(E[y], cλ(z, x.e1))]
D[|(E[exch(z,unit)], cλ(z, y.e2))] → D[|(E[λ(y.e2)], cu(z))]

. . .
It is easy to verify that the reduction assumption holds.

Answers Answers are processes where for all eager threads y⇐e the future y is
bound (possibly via a chain of variable-to-variable threads y⇐x1|x1⇐x2| . . .)
to an abstraction, a constant, a cell component, a suspended thread, a handle
or a used handle. Using this definition for answers, it not hard to verify that the
answer assumption holds.
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