28 research outputs found

    Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras

    Get PDF
    We explore the use of geometrical methods to tackle the non-negative independent component analysis (non-negative ICA) problem, without assuming the reader has an existing background in differential geometry. We concentrate on methods that achieve this by minimizing a cost function over the space of orthogonal matrices. We introduce the idea of the manifold and Lie group SO(n) of special orthogonal matrices that we wish to search over, and explain how this is related to the Lie algebra so(n) of skew-symmetric matrices. We describe how familiar optimization methods such as steepest-descent and conjugate gradients can be transformed into this Lie group setting, and how the Newton update step has an alternative Fourier version in SO(n). Finally we introduce the concept of a toral subgroup generated by a particular element of the Lie group or Lie algebra, and explore how this commutative subgroup might be used to simplify searches on our constraint surface. No proofs are presented in this article

    Structure fusion based on graph convolutional networks for semi-supervised classification

    Full text link
    Suffering from the multi-view data diversity and complexity for semi-supervised classification, most of existing graph convolutional networks focus on the networks architecture construction or the salient graph structure preservation, and ignore the the complete graph structure for semi-supervised classification contribution. To mine the more complete distribution structure from multi-view data with the consideration of the specificity and the commonality, we propose structure fusion based on graph convolutional networks (SF-GCN) for improving the performance of semi-supervised classification. SF-GCN can not only retain the special characteristic of each view data by spectral embedding, but also capture the common style of multi-view data by distance metric between multi-graph structures. Suppose the linear relationship between multi-graph structures, we can construct the optimization function of structure fusion model by balancing the specificity loss and the commonality loss. By solving this function, we can simultaneously obtain the fusion spectral embedding from the multi-view data and the fusion structure as adjacent matrix to input graph convolutional networks for semi-supervised classification. Experiments demonstrate that the performance of SF-GCN outperforms that of the state of the arts on three challenging datasets, which are Cora,Citeseer and Pubmed in citation networks

    Penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources

    Get PDF
    A new approach for convolutive blind source separation (BSS) by explicitly exploiting the second-order nonstationarity of signals and operating in the frequency domain is proposed. The algorithm accommodates a penalty function within the cross-power spectrum-based cost function and thereby converts the separation problem into a joint diagonalization problem with unconstrained optimization. This leads to a new member of the family of joint diagonalization criteria and a modification of the search direction of the gradient-based descent algorithm. Using this approach, not only can the degenerate solution induced by a unmixing matrix and the effect of large errors within the elements of covariance matrices at low-frequency bins be automatically removed, but in addition, a unifying view to joint diagonalization with unitary or nonunitary constraint is provided. Numerical experiments are presented to verify the performance of the new method, which show that a suitable penalty function may lead the algorithm to a faster convergence and a better performance for the separation of convolved speech signals, in particular, in terms of shape preservation and amplitude ambiguity reduction, as compared with the conventional second-order based algorithms for convolutive mixtures that exploit signal nonstationarity

    Multivariate Regression on the Grassmannian for Predicting Novel Domains

    Get PDF
    This work was supported by EPSRC (EP/L023385/1), and the European Union’s Horizon 2020 research and innovation program under grant agreement No 640891

    Spectral methods for multimodal data analysis

    Get PDF
    Spectral methods have proven themselves as an important and versatile tool in a wide range of problems in the fields of computer graphics, machine learning, pattern recognition, and computer vision, where many important problems boil down to constructing a Laplacian operator and finding a few of its eigenvalues and eigenfunctions. Classical examples include the computation of diffusion distances on manifolds in computer graphics, Laplacian eigenmaps, and spectral clustering in machine learning. In many cases, one has to deal with multiple data spaces simultaneously. For example, clustering multimedia data in machine learning applications involves various modalities or ``views'' (e.g., text and images), and finding correspondence between shapes in computer graphics problems is an operation performed between two or more modalities. In this thesis, we develop a generalization of spectral methods to deal with multiple data spaces and apply them to problems from the domains of computer graphics, machine learning, and image processing. Our main construction is based on simultaneous diagonalization of Laplacian operators. We present an efficient numerical technique for computing joint approximate eigenvectors of two or more Laplacians in challenging noisy scenarios, which also appears to be the first general non-smooth manifold optimization method. Finally, we use the relation between joint approximate diagonalizability and approximate commutativity of operators to define a structural similarity measure for images. We use this measure to perform structure-preserving color manipulations of a given image

    Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical Systems using Constrained Autoencoders

    Full text link
    Recently developed reduced-order modeling techniques aim to approximate nonlinear dynamical systems on low-dimensional manifolds learned from data. This is an effective approach for modeling dynamics in a post-transient regime where the effects of initial conditions and other disturbances have decayed. However, modeling transient dynamics near an underlying manifold, as needed for real-time control and forecasting applications, is complicated by the effects of fast dynamics and nonnormal sensitivity mechanisms. To begin to address these issues, we introduce a parametric class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data. Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder. We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality. To demonstrate these methods and the specific challenges they address, we provide a detailed case study of a three-state model of vortex shedding in the wake of a bluff body immersed in a fluid, which has a two-dimensional slow manifold that can be computed analytically. In anticipation of future applications to high-dimensional systems, we also propose several techniques for constructing computationally efficient reduced-order models using our proposed nonlinear projection framework. This includes a novel sparsity-promoting penalty for the encoder that avoids detrimental weight matrix shrinkage via computation on the Grassmann manifold

    Doctor of Philosophy in Computing

    Get PDF
    dissertationAn important area of medical imaging research is studying anatomical diffeomorphic shape changes and detecting their relationship to disease processes. For example, neurodegenerative disorders change the shape of the brain, thus identifying differences between the healthy control subjects and patients affected by these diseases can help with understanding the disease processes. Previous research proposed a variety of mathematical approaches for statistical analysis of geometrical brain structure in three-dimensional (3D) medical imaging, including atlas building, brain variability quantification, regression, etc. The critical component in these statistical models is that the geometrical structure is represented by transformations rather than the actual image data. Despite the fact that such statistical models effectively provide a way for analyzing shape variation, none of them have a truly probabilistic interpretation. This dissertation contributes a novel Bayesian framework of statistical shape analysis for generic manifold data and its application to shape variability and brain magnetic resonance imaging (MRI). After we carefully define the distributions on manifolds, we then build Bayesian models for analyzing the intrinsic variability of manifold data, involving the mean point, principal modes, and parameter estimation. Because there is no closed-form solution for Bayesian inference of these models on manifolds, we develop a Markov Chain Monte Carlo method to sample the hidden variables from the distribution. The main advantages of these Bayesian approaches are that they provide parameter estimation and automatic dimensionality reduction for analyzing generic manifold-valued data, such as diffeomorphisms. Modeling the mean point of a group of images in a Bayesian manner allows for learning the regularity parameter from data directly rather than having to set it manually, which eliminates the effort of cross validation for parameter selection. In population studies, our Bayesian model of principal modes analysis (1) automatically extracts a low-dimensional, second-order statistics of manifold data variability and (2) gives a better geometric data fit than nonprobabilistic models. To make this Bayesian framework computationally more efficient for high-dimensional diffeomorphisms, this dissertation presents an algorithm, FLASH (finite-dimensional Lie algebras for shooting), that hugely speeds up the diffeomorphic image registration. Instead of formulating diffeomorphisms in a continuous variational problem, Flash defines a completely new discrete reparameterization of diffeomorphisms in a low-dimensional bandlimited velocity space, which results in the Bayesian inference via sampling on the space of diffeomorphisms being more feasible in time. Our entire Bayesian framework in this dissertation is used for statistical analysis of shape data and brain MRIs. It has the potential to improve hypothesis testing, classification, and mixture models

    Advanced optimization algorithms for sensor arrays and multi-antenna communications

    Get PDF
    Optimization problems arise frequently in sensor array and multi-channel signal processing applications. Often, optimization needs to be performed subject to a matrix constraint. In particular, unitary matrices play a crucial role in communications and sensor array signal processing. They are involved in almost all modern multi-antenna transceiver techniques, as well as sensor array applications in biomedicine, machine learning and vision, astronomy and radars. In this thesis, algorithms for optimization under unitary matrix constraint stemming from Riemannian geometry are developed. Steepest descent (SD) and conjugate gradient (CG) algorithms operating on the Lie group of unitary matrices are derived. They have the ability to find the optimal solution in a numerically efficient manner and satisfy the constraint accurately. Novel line search methods specially tailored for this type of optimization are also introduced. The proposed approaches exploit the geometrical properties of the constraint space in order to reduce the computational complexity. Array and multi-channel signal processing techniques are key technologies in wireless communication systems. High capacity and link reliability may be achieved by using multiple transmit and receive antennas. Combining multi-antenna techniques with multicarrier transmission leads to high the spectral efficiency and helps to cope with severe multipath propagation. The problem of channel equalization in MIMO-OFDM systems is also addressed in this thesis. A blind algorithm that optimizes of a combined criterion in order to be cancel both inter-symbol and co-channel interference is proposed. The algorithm local converge properties are established as well
    corecore