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Abstract

We explore the use of geometrical methods to tackle the non-negative independent
component analysis (non-negative ICA) problem, without assuming the reader has
an existing background in differential geometry. We concentrate on methods that
achieve this by minimizing a cost function over the space of orthogonal matrices.
We introduce the idea of the manifold and Lie group SO(n) of special orthogonal
matrices that we wish to search over, and explain how this is related to the Lie
algebra so(n) of skew-symmetric matrices. We describe how familiar optimization
methods such as steepest-descent and conjugate gradients can be transformed into
this Lie group setting, and how the Newton update step has an alternative Fourier
version in SO(n). Finally we introduce the concept of a toral subgroup generated
by a particular element of the Lie group or Lie algebra, and explore how this com-
mutative subgroup might be used to simplify searches on our constraint surface. No
proofs are presented in this article.

Key words: Independent component analysis, Non-negative ICA, Lie group,
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1 Introduction

The last few years have seen a great increase in interest in the use of ge-
ometrical methods for independent component analysis (ICA), as evidenced
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for example by the current special issue. Some of this research involves some
rather difficult-sounding concepts such as Stiefel manifolds, Lie groups, tan-
gent planes and so on that can make this work rather hard going for a reader
with a more traditional ICA or neural networks background. However, I be-
lieve that the concepts underlying these methods are so important that they
cannot be left to a few ICA researchers with a mathematics or mathemat-
ical physics background to investigate, while others are content to work on
applications using “ordinary” methods. The aim of the current paper is there-
fore to explore some of these geometrical methods, using the example of the
non-negative ICA task, while keeping the more inaccessible concepts to a min-
imum. As we explore these geometrical approaches, we may have to revise our
intuition about some things that we often take for granted, such as the concept
of gradient, or the ubiquitous method of steepest descent.

We already work with geometrical methods of one sort or another, and if
we are already working with ICA we probably have pictures in our minds
of what is happening when we perform a steepest descent search, or a line
search with a Newton step, or maybe even a conjugate gradients method. But
we are usually used to working in large, flat, even spaces with a simple and
well-defined Euclidean distance measure. Moving around our space is easy and
commutative: ∆x + ∆y = ∆y + ∆x, so we can make our movements in any
order we like, and end up at the same place (i.e. our movements commute)
But in the current article we will be exploring some geometry over curved
spaces, or manifolds, where some or all of our cherished assumptions, even
assumptions we may not realize we were making, will no longer work. This
doesn’t mean they are difficult per se, only that we have to be a little bit more
careful until we get used to them.

There are no “proofs” in this article. I apologize in advance to the more
mathematical reader for the liberties I have taken with notation and rigour.
If you are already familiar with the type of Lie group methods discussed here,
I hope that you will make allowances for the unusual approach taken here in
the name of accessibility.

The article is organized as follows: First we introduce the non-negative ICA
task, consider approaches based on steepest descent, and discuss imposition
of orthonormality constraints using projection and tangent methods. We then
describe the concept of a Lie group, with its corresponding Lie algebra, and
explore the group of orthogonal matrices, in particular the group of special
orthogonal matrices SO(n). We consider optimizing over SO(n), using rotation
for n = 2, geodesic flow and geodesic search for more general n, and conjugate
gradient methods. We introduce the concept of a toral subgroup and link this
to the issue of matrix exponentiation. Finally we briefly discuss other related
methods before concluding.
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2 The non-negative ICA task

We consider the task of independent component analysis (ICA), in its simplest
form, to be that of estimating a sequence of source vectors s = (s1, . . . , sn)
and an n × n mixing matrix A given only the observations of a sequence of
mixtures x = (x1, . . . , xn). These are assumed to be linearly generated by

x = As (1)

where we assume that any noise in the observations x can be neglected. There
is a scaling ambiguity between the sources s and the mixing matrix A, meaning
that we can scale up any source si and scale down any column vector ai and
have the same observation x, so we conventionally assume that the sources
have unit variance. For the non-negative ICA task, which we concentrate on
here, we also assume that the sources s must always be non-negative, i.e. there
is a zero probability that any source is negative: Pr(si < 0) = 0. (For technical
reasons, we also assume that the sources are well grounded, Pr(si < δ) > 0
for any δ > 0, i.e. that the probability distribution of all of the sources “goes
all the way down to zero” [1]). In common with many other ICA methods,
non-negative ICA can be tackled in two stages: whitening followed by rotation.

Whitening In the first stage, the input data x is whitened to give a new
sequence of vectors z = Vx, where V is chosen such that each element of the
vector sequence z = (z1, . . . , zn) has unit variance and all are uncorrelated
from each other, i.e. Σz ≡ E((z − z̄)(z − z̄)T ) = In where z̄ = E(z) is the
expected value of z, and In is the n × n identity matrix. In many standard
ICA methods, the mean is also subtracted so that z̄ = 0, but we must not
subtract the mean for non-negative ICA, since this would lose any information
about the positivity of negativity of sources [1]. If we decompose the covariance
matrix of the observations Σx ≡ E((x−x̄)(x−x̄)T ) into an eigenvector matrix
E and a diagonal eigenvalue matrix D = diag(d1, . . . , dn) to give Σx = EDET ,
for example using the Matlab function eig, then a typical choice for V is
D−1/2ET [2]. For the remainder of this article we shall assume that our data
has been pre-whitened like this, so that we have unit-variance pre-whitened
vectors z = VAs.

Rotation The second stage is where the interesting geometry begins to ap-
pear. To visualize what we have achieved so far, see Fig. 1. We can clearly see
from this diagram that the whitened data z has solved part of our ICA task,
by making the original source directions, shown as the edges of the scatter
plot connected to the origin, orthogonal (at right angles) to each other. What
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Fig. 1. Scatter plot for n = 2 inputs showing (a) original input data x and (b)
pre-whitened data z.

remains is for us to rotate the whole system about the origin until all the data
points are “locked” into the positive quadrant.

We would like to perform this rotation by finding a linear matrix W which will
give an output vector sequence y = Wz which extracts the original sources
s. If we allowed all possible n × n matrices W, each determined by n2 real
numbers, we would be searching over the space Rn2

, the n2-dimensional real
space. But since we assume that the sources have unit covariance Σs ≡ E((s−
s̄)(s − s̄)T ) = In we know that at a solution, the output y must have unit
covariance. Therefore we have

In = Σy ≡ E((y − ȳ)(y − ȳ)T ) = E(W(z− z̄)(z− z̄)TWT ) = WWT (2)

and so the square matrix W must be orthogonal at the solution, i.e. WT =
W−1 so that WTW = WWT = I. If W is chosen such that Σy = I and the
elements yi of y are all non-negative, then our non-negative ICA problem is
solved [1].

As is common with other ICA methods, we will not know the original variance
of the sources, and we will not know which “order” they were in originally,
so there will be a scaling and permutation ambiguity. However, in contrast to
standard ICA, we will know the sign of the sources if we use a non-negative
ICA approach, since the estimated sources must be non-negative. This means,
for example, that solutions to image separation tasks will never produce “neg-
ative” images, as is possible for standard ICA models.
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3 Cost function minimization using steepest descent search

To find the matrix W that we need for our solution, it is often convenient to
construct a cost function J so that we can express the task as an optimization
problem. By constructing the derivative of J with respect to W given by

∇WJ ≡ ∂J

∂W
(3)

where [∂J/∂W]ij = ∂J/∂wij, we can search for a direction in which a small
change to W will cause a decrease in J , and hence eventually reduce J to
zero.

Probably the simplest adjustment to W is to use the so-called steepest-descent
search or steepest gradient descent method. Here we simple update W at the
kth step according to the scheme

Wk+1 = Wk − η∇WJ (4)

for some small update factor η > 0. This is sometimes written as Wk+1 =
Wk + ∆W where ∆W = −η∇WJ . For small η it approximates the ordinary
differential equation (ode) dW/dt = −η∇WJ which is known to reduce J since
dJ/dt = 〈(∇WJ), (dW/dt)〉 = −η‖∇WJ‖2

F where the matrix inner product is

given by 〈A,B〉 =
∑
ij aijbij and ‖M‖F =

√∑
ijm

2
ij is the (positive) Frobenius

norm of M.

For the non-negative ICA task we require the outputs yi to be nonneg-
ative at the solution. This therefore suggests a possible cost function [1]

J = 1
2
E(|y−|2) = 1

2
E

(∑
i

[y−]2i

)
where [y−]i =

yi if yi < 0,

0 otherwise.
(5)

For easier comparison with other ICA algorithms, we sometimes write y− =
g(y) where g(y) = [g(y1), . . . , g(yn)] and g(yi) = yi if yi < 0 or 0 other-
wise. Differentiating J in (5) while noting that [y−]2i = yi[y−]i yields ∂J =
E((y−)T∂y) = E((y−)T (∂W)z) = trace(E(z(y−)T )∂W) where trace(A) is
the the sum of the diagonal entries of A, and where we used the identity
trace(AB) = trace(BA) and the fact that x = trace(x) for scalar x. From
this we obtain

∇WJ ≡ ∂J

∂W
= E(y−zT ) ≡ E(g(y)zT ) (6)

for the derivative of J that we require.

165



3.1 Imposing the orthogonality constraint via penalty term

Although applying the steepest descent scheme (4) will tend to reduce the
cost function J , we have so far ignored our orthogonality constraint on W. A
simple way to impose this would be to construct an additional cost or penalty
function JW which is zero whenever WWT = In, or positive otherwise. For
example, we could use

JW = 1
2
‖WWT − In‖2

F = 1
2
trace((WTW − In)(WTW − In)) (7)

which gives JW ≥ 0 with JW = 0 if and only if WWT = In. Since we have
J ≥ 0 and JW ≥ 0, the combined cost function

J1 = J + µJW (8)

for some µ > 0 will also be positive, with J1 = 0 when we have found the
solution we require.

Differentiating JW in (7) we get

∂JW = trace((WTW − In)∂(WTW)) (9)

= 2trace((WTW − In)WT (∂W)) (10)

= 2〈W(WTW − In), ∂W〉 (11)

giving ∇WJW ≡ ∂JW/∂W = 2W(WTW − In). Therefore the modified up-
date rule ∆W = −η(∇WJ + µ∇WJW) = −η(∇WJ + 2µW(WTW − In))
should be able to find a minimum of J such that W is orthogonal.

For the non-negative ICA task we therefore have from (6)

∆W = −η(E(y−zT ) + 2µW(WTW − In)) (12)

for our steepest descent update with penalty term.

3.2 What is “steepest”?

But wait. What have we really done here? What does “steepest” mean in
“steepest descent”?

Roughly speaking, steepest means decreases the fastest per unit length. In phys-
ical problems we know what length means, but are we sure that we have used

166



0 1 2 3 4
0

1

2

3

4

x

J

(a)

0 1 2 3 4
0

1

2

3

4

t

J

(b)

Fig. 2. Graph of (a) J = (x− 2)2 and (b) J = (t2− 2)2 showing change of apparent
“steepness”.

the correct measure of length in eqn (4)? Do we even know what we have used
as a measure of length?

To see why this might be a problem, instead of our n2-dimensional problem,
let us consider the simpler curve

J = (x− 2)2 (13)

and suppose we wanted to decide which of the points x = 1 and x = 3 were
steeper. Calculating the derivative with respect to x we get dJ/dx = 2(x− 2)
which gives dJ/dx = −2 at x = 1, and dJ/dx = 2 at x = 3. Therefore J has
equal “steepness” |dJ/dx| = 2 at both points, only in opposite directions.

But suppose now that x is actually a function of some other parameter t, so
that x = t2. So now J = (t2 − 2)2, and we can check that that the value
of J remains the same at corresponding values of x = t2. However, for the
derivative with respect to t we get dJ/dt = 2(t2 − 2)2t = 4t(t2 − 2) so at
t = 1 (corresponding to x = 1) we get dJ/dt = −4.1.1 = −4, while for t =

√
3

(corresponding to x = 3) we get dJ/dt = 4
√

3.1 = 4
√

3. So J now seems
steeper at t =

√
3 (x = 3) than at t = 1 (x = 1). What has happened?

The answer is that the way we measure length has changed. To see this, let us
define an infinitesimal length dl ≡ |dx| that measures how long dx is. We’ve
chosen the most obvious definition of length here: simply the modulus of dx,
so that it is always positive and dl = 0 if and only if dx = 0. So now we can
calculate a measure of steepness properly:

Steepness =
|Change of J |
|Length moved|

=
|dJ/dx|
|dl/dx|

= |dJ/dx| = 2|x− 2| (14)

since dl/dx = +1 if dx > 0 or −1 if dx < 0.

Now consider t = x2, but keep the same measure of length dl ≡ |dx| = |2tdt|.
We immediately notice that our length dl is now not just dependent on dt but
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increases as t increases. Recalculating our steepness using t we now get

Steepness =
|dJ/dt|
|dl/dt|

=
|4t(t2 − 2)|
|2t|

= |2(t2 − 2)|. (15)

We can see that this is now the same, whether we calculated it using x or t. The
lesson here is that we must be careful what we mean by length when we talk
about “steepest descent”. Furthermore, it is not always obvious whether there
is a natural measure for length or not, and it may depend on the application
you have in mind.

So, returning to our matrices, we now know that we are assuming a hidden
length measure in∇WJ when we use that in steepest descent. It turns out that

this is effectively dl = ‖dW‖F =
√∑

ij dw
2
ij. As the usual Euclidean length

of anything with n2 components, this is probably the most obvious length to
use, but can be sure it is the “best” one? What alternatives are there?

The key issue to spot here is what W is doing. If it were being added to
something, using a length dl = ‖dW‖F might be a reasonable thing to do.
But in ICA, W is being used to multiply something (y = Wz) so a particular
change dW when W is near zero (or near singular) will have larger relative
effect than for large W. Using geometric considerations related to this concept,
Amari developed his natural gradient approach [3,4]. For the system considered
here this gives the natural gradient

∇natJ = (∇WJ)WTW (16)

to be used in place of ∇WJ in the update equation (4). (This is similar to the
relative gradient approach of Cardoso and Laheld [5]).

For the non-negative ICA task substituting (6) in (16) we get ∇natJ =
E(y−zT )WTW = E(y−yT )W giving a natural gradient algorithm with penalty
term of

∆W = −η(E(y−yT ) + 2µ(WWT − In))W (17)

for the natural gradient version of our steepest descent update with penalty
term. Notice that this is of the form ∆W = HW for some square matrix H:
we will see a similar pattern also emerge later.

4 Constrained Optimization on Manifolds

In the previous section we considered the idea of performing steepest descent
to minimize our cost function, and we have discovered that it is important to
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be clear by what we mean by length. So far we have assumed that we would
allow W free reign to roam over its entire n2-dimensional space Rn2

.

However, we know that W must be orthogonal at the solution, i.e. WTW =
In, and it is also easy to start from an initial orthogonal matrix: W0 = In is
orthogonal, for example. So can we arrange to constrain W so that we only
search over orthogonal matrices?

This leads to the idea of a subset of matrices that we want to search over,
and is closely related to what Fiori calls Orthonormal Strongly Constrained
(SOC) algorithms [6]. Instead of allowing any W ∈ Rn2

, we will only allow
our matrix to move in this space of orthogonal matrices. The constraints mean
that we can imagine this as some type of surface embedded inside our original
space. Any matrix on the surface corresponds to an orthogonal matrix, while
any matrix which is not on the surface is not orthogonal.

We can see that this surface containing the orthogonal matrices is a “smaller”
space to search over, in that it has a lower dimensionality than the original
one. If we write down the set of equations corresponding to the elements of
WTW = In, we get

∑
j wjiwjk = δij where the Kroneker delta is defined

by δij = 1 if i = 1, or 0 otherwise. We have
∑
i,k≤i 1 = n(n + 1)/2 different

constraints, so the remaining space has dimension n2−n(n+1)/2 = n(n−1)/2.

But we have gained this smaller space at a cost: it is now seems much more
difficult to work out how to “move about” in this space. In our original space
Rn2

of n×nmatrices W we could simply add any other n×nmatrix ∆W ∈ Rn2

and we would still be in our space of matrices. But in our new, constrained
space there are only certain movements we can make without breaking our
constraint and moving away from the surface.

4.1 Imposing constraints with a projection method

One possible method to tackle this constraint problem would be to make the
movements in two steps: First, update W by any change ∆W ∈ Rn2

; then
modify W to re-impose the constraint by projecting back onto our constraint
surface. The projection could be performed using an orthogonalization method
such as Gram-Schmidt orthogonalization [7,2]. This is a similar idea to the two-
step version of Oja’s famous PCA neuron [8]. But this can lead to conditions
where most of the update points away from the surface, and we spend almost
all of our effort re-imposing our constraint, while not actually moving very
far along the surface. We would therefore prefer if we could make sure that
our updates before each projection step do not take us very far away from the
constraint surface.
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4.2 Tangent updates

Instead of allowing a general update direction to our matrix W, we could
restrict ourselves to update directions that attempt to maintain the orthogo-
nality condition. For a continuous-time system with update dW/dt, we would
require 0 = d/dt(WTW−In) = d/dt(WTW) = (dW/dt)TW+WT (dW/dt).
Now, since WWT = WTW = In, we can write dW/dt = (dW/dt)WTW =
HW where H = (dW/dt)WT . Then we have

0 = (dW/dt)TW + WT (dW/dt) = WTHTW + WHW = WT (HT + H)W.

Pre- and post-multiplying by W and WT respectively gives us HT + H = 0,
i.e. HT = −H, meaning that H must be skew-symmetric. This means we
can also write H = skew((dW/dt)WT ) = 1

2
((dW/dt)WT −W(dW/dt)T )

where skew(M) ≡ 1
2
(M−MT ) is the skew-symmetric (sometimes called “anti-

symmetric”) part of M. Any skew-symmetric matrix H must have zeros on the
diagonals, since the diagonal elements must satisfy hii = −hii = 0. Therefore
H has only n(n−1)/2 independent elements, confirming that HW has enough
degrees of freedom to “point” in the n(n − 1)/2 different dimensions of our
constrained surface.

If we had some unnormalized direction dW/dt, we could find a version that
is constrained to the surface as [9,10] dW/dt|Orth = HW where we choose
H = 1

2
((dW/dt)WT −W(dW/dt)T ). We can also write

dW/dt|Orth = 1
2
((dW/dt)WTW −W(dW/dt)TW) (18)

= 1
2
(dW/dt−W(dW/dt)TW) (19)

where the second line uses the fact that WTW = In. So for steepest descent
search, where we normally set an update ∆W = −η(∇WJ) we could instead
use

∆W =−1
2
η((∇WJ)WTW −W(∇WJ)TW) (20)

or ∆W =−1
2
η((∇WJ)−W(∇WJ)TW). (21)

For the non-negative ICA task substituting (6) into (20), for example,
we get

∆W = −η(E(y−yT )− E(yyT−))W (22)

which is the algorithm presented in [11].
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4.3 Self-correcting tangent methods

So far so good. However, we now face another difficulty. It turns out that the
surface containing the orthogonal matrices is curved, a bit like the surface of a
globe. This means that even if we did start moving along a straight line which
pointed “along” the surface at the point where we started (a line which is
tangent to it), we would soon drift away from the surface as soon as we begin
to move along the line [12].

This drift has been found to cause problems for many algorithms. Either we
can occasionally re-impose the constraint via an orthogonalization method, or
we can correct for this by adding an extra penalty term to correct the drift,
similar to (12) and (17) we used earlier. Possible algorithms that result are
then

∆W =−1
2
η((∇WJ)WTW −W(∇WJ)TW + µW(WTW − In)) (23)

or

∆W =−1
2
η((∇WJ)−W(∇WJ)TW + µW(WTW − In)). (24)

Some earlier principal component analysis (PCA) algorithms were self-correcting
like this “by accident”, and it took a while for researchers to realize why some
of these were unstable when modified to extract minor components instead.
See e.g. [13] for a discussion of deliberately self-correcting algorithms, includ-
ing going beyond just the tangent method.

For the non-negative ICA task substituting (6) into (23), for example,
we get

∆W = −1
2
η(E(y−yT )− E(yyT−) + µ(WWT − In))W. (25)

5 Imposing constraints using Lie groups

We have attempted to optimize our cost function J with our orthonormality
constraint, but so far our weight matrix has stubbornly refused to “stay”
on the constraint surface, drifting away eventually even if we use a tangent
method. We have either had to “coax” it back with a penalty function, or
“project” it back with an orthogonalization method. We would really like to
be able to “lock” our matrices on to the constraint surface so that we never
drift away from it. To do this we will need to understand a bit more clearly
what it means by “move about” on this surface. To help us, we will digress a
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Fig. 3. Complex value (a) z in r-θ notation, and (b) product of z and w

little to investigate what happens with constrained complex numbers, leading
to the idea of a Lie group.

5.1 A simple Lie group: constrained complex numbers

Consider a pair of complex numbers, z = x+ iy and w = u+ iv. If we wanted
to add these, we would simply write z+w = (x+u) + i(y+ v), or to multiply
we would get zw = (ux− yv) + i(yu+ xv). But multiplication is much easier
if we represent our complex numbers in r− θ notation (Fig. 3). Specifically, if
z = reiθ and w = seiφ for r, s ≥ 0, then zw = rsei(θ+φ). This gives us a nice
geometric visualization for what multiplication means: the modulus (length)
is multiplied, |zw| = rs, and angles add, ∠(zw) = θ + φ.

Now, suppose we were only interested in the complex numbers with length 1,
and we want to “move about” in this space of unit-length complex numbers.
This is just the unit circle r = 1 in the Argand diagram (z-plane), a curved
subset of the complex numbers. Any complex number z in this constrained
set can be written z = eiθ for some real θ. We know that z repeats every 2π,
so we only need the range 0 ≤ θ < 2π (or any shifted version of this such as
−π ≤ θ < π) to cover all the unit-length complex numbers of interest.

Now if we multiply z = eiθ by w = eiφ we get zw = ei(θ+φ), which is also a
unit-length complex number. We can also see that if we wanted to get to any
unit length complex number y = eiψ by starting from z = eiθ we can simply
multiply z by w = eiφ where we choose φ = ψ − θ.

We can recognize that the set of unit-length complex numbers, together with
the operation “multiply”, forms a group. Let us remind ourselves of the re-
quirements for a group G:
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(1) Closed under the operation: if z, w ∈ G, then zw = y ∈ G;
(2) Associativity: z(wy) = (zw)y for z, w, y ∈ G;
(3) Identity element: I ∈ G, such that Iz = zI = z;
(4) Each element has an inverse: z−1 such that z−1z = zz−1 = I;

We can easily check these apply to unit-length complex numbers, and in par-
ticular we get the identity I = 1 = ei0 and the inverse of z = eiθ is given by
z−1 = e−iθ. We can call this a commutative, or Abelian, group, since multipli-
cation of complex numbers commutes: zw = wz. (Recall that multiplication
is not commutative for matrices, i.e. AB 6= BA for two matrices A and B in
general).

At this point we realize that the addition operator between unit-length com-
plex numbers is of no use to us anymore, since it will almost always take us
away from our constraint surface, the unit circle. However, we do notice that
multiplication of complex numbers z has an interesting correspondence with
addition of angles θ: we will see this correspondence crop up again when we
return to consider our constrained matrices.

Our set of unit-length complex numbers, with the multiplication operator, also
has the property that it is “smooth”. If we look at a very local region of our
group it “looks like” a region of the real line R, albeit slightly curved. This
means that we can use real-valued coordinates (for example, the angle θ), to
describe a path over a local region of our group. Without going into the tech-
nical details (see e.g. [14] or a suitable text book for these) this “smoothness”
means that it is a Lie group, named after Sophus Lie (pronounced “Lee”),
a famous 19th century Norwegian mathematician. Lie groups are particularly
important in mathematics and physics, such as the theory of general relativity,
or more recently in robotics and computer vision.

The ability to put a local system of coordinates in Rn for some n, onto any
local region of our group, also means that these unit-length complex numbers
form what is called a manifold. We talk about a “local” coordinate system,
because it is quite unusual to be able to wrap a single coordinate system on to
our points without something going funny somewhere. Imagine you have a very
long piece of string, representing the real line R, and you want to wrap it on to
the unit-length complex numbers on the z-plane. You will find that you have to
overlap the string in some region, otherwise the coordinate system would have
a break in it. Where the string overlaps we have a choice of coordinates, but
that isn’t a problem: we just end up with equivalent coordinates. For example,
if the angle θ is our coordinate, the coordinates θ = π/6 and θ = π/6 + 2π
give the same point z = eiπ/6 = ei(π/6+2π). The fact that we can use a one-
dimensional piece of string means that we have a one-dimensional manifold.

More complex manifolds may need more than one coordinate system. For two-
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dimensional manifolds, like a sphere or a torus (doughnut), we can visualize
the process of fitting these coordinate systems to be like cutting out pieces
of rubber sheeting, with the horizontal and vertical lines of our coordinate
system marked on, and sticking these on to the manifold. If we make sure
we never leave any gaps which are not covered by any rubber sheets, and we
always smooth out any folds, we will have a smooth (differentiable) manifold.
Mariners and cartographers have known this about the terrestrial globe for
centuries, in the way that they have pictured the curved globe on flat paper.
For navigating in detail, they use a series of flat charts, each of which is a map
placing a 2-dimensional coordinate system (the position on the paper) onto a
part of the surface of the globe. If the collection of charts is complete, every
small region on the globe will be mapped onto a small region on at least one
of these charts, with some overlap between the charts, and no parts of the
globe missing. A complete collection of charts could be bound together into
an atlas. The mathematical names for these concepts are no coincidence.

5.2 Differentiating on a manifold

The smoothness of our group of unit-length complex numbers means that
we can think about making very small changes. We are used to this when
we differentiate functions of real numbers: for example, the derivative of a
function f(x) at x is defined to be the limit

df

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

(x+ ∆x)− x
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(26)

where we can see that the difference between x + ∆x and x is due to the
addition of ∆x, the movement from x from x + ∆x. On our manifold, we
don’t have addition of elements anymore, but we can change the coordinates
by adding something small to them.

For example, to make a small change to a unit-length complex number z = eiθ

we can add a small angle ∆θ to get z′ = ei(θ+∆θ) = ei∆θeiθ. We can also
see that this is equivalent to multiplying by a unit-length complex number
w = ei∆θ which is very close to 1 (the identity). By the definition of ex =
1 + x + x2/2! + · · · we get w = 1 + i∆θ + (∆θ)2/2 + · · · ≈ 1 + i∆θ giving
z′ ≈ (1 + i∆θ)z = z+ i(∆θ)z This allows us to find the derivative of z(θ) with
respect to θ:

d

dθ
z = lim

∆θ→0

z(θ + ∆θ)− z(θ)

∆θ
=
z + i(∆θ)z − z

∆θ
= iz. (27)

Thus the derivative of any z in our group is the same as multiplication by i,
or rotation by π/2 in the z-plane.
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While in this case the derivative happened to have unit length, this is not
true in general. For example, suppose the angle evolves with some angular
velocity ω, giving θ = ωt. Then we have z = eiωt, giving a rate of change
for dz/dt = iωz = ωei(ωt+π/2) which is not in the group: derivatives are not
constrained to the unit length group. However, the derivatives are constrained
to point “along” the surface at the point where we are differentiating, so at
the point z the derivatives are always tangent to the manifold at z. We can say
that any vector dz/dt = iωz for a particular ω is a tangent vector at z, and
we call the space of all possible tangent vectors at z the tangent space Tz at
z. We can see that the direction that our tangent vectors point along depends
on where we are on our manifold, so we always have to say it is a tangent “at
z”.

If we were working on the usual Euclidean straight line of points x ∈ R, our
tangents always point along the straight line wherever we are. This means the
tangent spaces are the same everywhere, so in Euclidean space we don’t have
to bother to say “at x” all the time. This is another reason (as well as the
“length” issue) that we have to be more careful about derivatives in curved
manifolds than we are used to in Euclidean space.

Well this is all very interesting, but what has this got to do with matrices?
We will see that the set of orthogonal 2× 2 matrices also forms a group and
manifold which is very similar to the unit-length complex numbers, so a lot
of these ideas will carry over to these. And more generally, we will see later
that orthogonal n×n matrices can be transformed into a block diagonal form,
composed of blocks of orthogonal 2 × 2 matrices. Knowing how these 2 × 2
work is key to our problem of optimization with an orthogonality constraint.
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6 The Lie group of orthogonal matrices

Let us return to our orthogonal matrices with real entries. These also turn
out be be a group, with matrix multiplication as the operator: we give these
groups the label O(n), for Orthogonal, n× n matrices.

We can check that O(n) really is a group for any n ≥ 1. For example, if W and
Z are orthogonal, so that WTW = In and similarly for Z, then for V = WZ
we get VTV = ZTWTWZ = ZTZ = In so V is also orthogonal. We have
an identity element In making InW = WIn = W, each element W has an
inverse W−1 = WT , and matrix multiplication is associative, as required for
the group operation.

Let us quickly consider O(1), the 1 × 1 “matrices” (really scalars) w which
are orthogonal, i.e. 1 = wTw = w2, so either w = 1 or w = −1. This is the
2-element group {1,−1} with the multiplication operator. From the preceding
argument we know this is a group. We can also check this directly, since e.g.
1 × −1 = −1 × 1 = 1, the identity element is 1, we have inverses such as
(−1)−1 = −1, and so on. However, we can’t smoothly get from one element
to the other, so this is a discrete group.

So let us try n = 2, the group O(2) of 2×2 orthogonal matrices. In independent
component analysis, this will correspond to the simplest useful case of n = 2
observations (e.g. 2 microphones) from which we want to estimate 2 sources.
Imposing the n(n+ 1)/2 = 3 conditions implied by the equation WTW = In,
we eventually find we can express W as one of the following two types:

type (a) W =

 cos θ sin θ

− sin θ cos θ

 or type (b) W =

 cos θ − sin θ

− sin θ − cos θ


(28)

for some real θ. From any W of type (a) we can smoothly get to any other W
of type (a) simply by varying θ, and similarly from a W of type (b) we can
get to any other of type (b) by varying θ. So it looks like a Lie group and a
manifold, in that it is smooth and we can move around by varying θ. But the
existence of the two types of W is still a bit puzzling.

To see what is happening, take a look at the determinant. For orthogonal
matrices we must have (det W)2 = det(WTW) = det In = 1, so det W = ±1.
For type (a) matrices, we have det W = cos2 θ+ sin2 θ = 1, while for type (b)
we have det W = − cos2 θ − sin2 θ = −1. We can always get from type (a) to
type (b) and vice versa by multiplying by a type (b) matrix (with determinant
−1), but we can never smoothly vary the determinant between 1 and −1.

Therefore the group O(2) actually consists of two disconnected pieces, or com-
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ponents: we therefore say it is disconnected. We can smoothly move about
in either of these, but to move from one to the other requires a “jump”
from one component to the other. To visualize what is going on here, imag-
ine a matrix of type (a) is specified by two unit-length orthogonal vectors,
w1 = (cos θ,− sin θ)T , w2 = (sin θ, cos θ) lying in a two-dimensional space
(x1, x2). We could say these form a “right-handed set”, since we require a
positive turn of +π/2 to go from w1 to w2. However, a matrix of type (b),
represented by w1 = (cos θ,− sin θ)T , w2 = (sin θ, cos θ) forms a “left-handed
set”, implying a turn of −π/2 from w1 to w2. To get from one to the other,
we would have to “flip over” the pair of vectors and place them down again
“the other way round”.

We really do not want this extra complication. We would much rather have
our matrices forming a connected Lie group, one with just a single component
where we can get smoothly between any two points. We will therefore consider
just the subgroup SO(n) of orthogonal matrices with determinant 1, which is
a connected subgroup: we just omit all the matrices of type (b), which had
determinant −1.

6.1 The special orthogonal group SO(n)

So now we are left with just the matrices of type (a):

W =

 cos θ sin θ

− sin θ cos θ

 . (29)

We know that these form a group, since multiplication preserves orthogonal-
ity and determinant 1. But what happens to the angles θ? By some tedious
trigonometry (or otherwise), we can confirm that cos θ sin θ

− sin θ cos θ


 cosφ sinφ

− sinφ cosφ

 =

 cos(θ + φ) sin(θ + φ)

− sin(θ + φ) cos(θ + φ)

 (30)

so that multiplication of matrices corresponds to addition of the angles θ. This
also tells us that multiplication of matrices in SO(2) is commutative, so SO(2)
is an Abelian (commutative) group. We will see later that this is a bit of a
special case: the groups SO(n) with n > 2 are not Abelian.

By now we have probably noticed a correspondence between the group SO(2)
of special (determinant 1) orthogonal 2 × 2 matrices and the group of unit-
length complex numbers we considered earlier. They both operate in exactly
the same way, with matrix multiplication over SO(2) corresponding to complex
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multiplication in the unit-length complex numbers, and can both be specified
completely by an angle 0 ≤ θ < 2π. Two groups that “act the same” like this
are said to be isomorphic.

Both of these are also isomorphic to the group of angles θ ∈ [0, 2π) = {θ|0 ≤
θ < 2π}, with the operator of addition modulo 2π. So we now have an easy way
to move about in the group SO(2) of 2× 2 special (determinant 1) orthogonal
matrices. For each movement, we can proceed as follows:

(1) Given some W = ( c s
−s c ) ∈ SO(2), calculate θ = arctan(s, c)

(2) Move from angle θ to a new angle θ′ = θ + ∆θ

(3) Transform to the new matrix W′ =
(

cos θ′ sin θ′

− sin θ′ cos θ′

)
∈ SO(2).

In step 1, arctan(·, ·) is a four-quadrant arc tangent function defined such that
arctan(sin θ, cos θ) = θ.

As an alternative, we can avoid having to calculate the arc tangent by realizing
that addition in the θ domain is equivalent to multiplication in SO(2). We can
therefore make each step as follows:

(1) From the desired movement ∆θ, calculate the (multiplicative) update

matrix R =
(

cos(∆θ) sin(∆θ)
− sin(∆θ) cos(∆θ)

)
.

(2) Update W to the new matrix W′ = RW ∈ SO(2)

We will find that this second method turns out to be quite convenient for
n ≥ 3, particularly since the equivalent of “addition of angles” no longer
works quite as easily for SO(n) with n ≥ 3.

6.2 Derivatives of W and the matrix exponential

Let us now consider what happens when we make very small changes to W.
We were able to find a derivative on our manifold of unit-length complex
numbers, so let us try this with these orthonormal matrices. If we let θ = tφ
and differentiate W =

(
cos θ sin θ
− sin θ cos θ

)
with respect to t, we get

d

dt
W =

− sin θ cos θ

− cos θ − sin θ

 · φ =

 0 φ

−φ 0

W. (31)

We can also check that the constraint is not violated as t changes, i.e. that
d
dt

(WTW − In) = 0. Expanding this we get WT (dW/dt) + (dW/dt)TW =

WT
(

0 φ
−φ 0

)
WT + WT

(
0 −φ
φ 0

)
WT = 0 as required.
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Now we know that for scalars, if dz/dt = bz then z = etb. We can confirm that
this also works for matrices. The matrix exponent of tB is, by definition

exp(tB) = I + tB +
t2B2

2!
+ · · ·+ tkBk

k!
+ · · · (32)

from which is is straightforward to verify that

d

dt
exp(tB) = 0 + B + B

tB

1!
+ · · ·+ B

tk−1Bk−1

(k − 1)!
+ · · · = B exp(tB). (33)

We must be rather careful with this matrix exponential. For example, since
matrix multiplication is not commutative, exp(A + B) 6= exp(A) exp(B) in

general. Therefore W in (31) is of the form W = exp(tΦ) where Φ =
(

0 φ
−φ 0

)
,

or alternatively (since θ = tφ) we get

W =

 cos θ sin θ

− sin θ cos θ

 = exp Θ where Θ =

 0 θ

−θ 0

 (34)

Therefore the tangent space TW to the manifold SO(2) at W is formed by
matrices of the form ΨW where ΨT = −Ψ is skew-symmetric.

One of the nice properties of SO(2) is that, given any skew-symmetric Φ 6= 0,
all of the elements in the group can be specified by a single real parameter t,
specifically as W(t) = exp(tΦ). We can therefore call SO(2) a “one-parameter
group”.

6.3 Optimization over SO(2)

Let us return now to our original problem of nonnegative ICA: we have some
cost function J(W) that we want to minimize over the manifold of orthogonal
matrices. Since we want to change W slowly, we will only consider the group
SO(n) of special (determinant 1) orthogonal matrices. We should make sure
we will not miss out any important solutions in this way: does it matter that
we only allow “left-handed” solutions rather than “right-handed” solutions?

For the nonnegative ICA task, we know that any solutions we find will be
some permutation of the sources. If we restrict ourselves to searching over
SO(n) rather than both components of the disconnected group O(n), this
simply means that we will only be able to find half of the permutations of
the sources: either all the even permutations, or all of the odd permutations
(depending on whether the processing that took place before we apply our
matrix had positive or negative determinant). However this is not a problem
for us, since any permutation is as good as any other. (For the standard ICA
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problem, a solution with a negative sign flip will also change the determinant,
so only half of the combinations of sign flips and permutations will be allowed.
Again this is not a problem, since any permutation and combination of sign
flips is an acceptable solution for standard ICA).

So we can now design an algorithm to find a minimum of J(W). Since all ma-
trices W ∈ SO(2) can be parameterized by a single parameter u in W =
exp(uΦ) for some constant skew-symmetric matrix Φ, we simply need to
calculate dJ/du and change u to reduce J . If we were working in contin-
uous time t, we might use and ordinary differential equation (ode), setting
du/dt = −ηdJ/du which would then guarantee that dJ/dt = dJ/du · du/dt =
−η(dJ/du)2 was negative, or zero when dJ/du = 0.

The discrete time version of this is the “steepest descent” algorithm u(t+1) =
u(t) + ∆u where ∆u = −ηdJ/du. This update for ∆u is equivalent to a
multiplicative change to W of W(t+ 1) = RW(t) where R = exp(∆u · Φ).

6.4 Optimization by Fourier expansion

Using an ode is not the only way to find a minimum of a function J(u) along
the line {u}: we would use any one of many line search methods [15]. But we
also know that J(u) repeats every time uΦ = ( 0 2π

−2π 0 ), or if we set Φ = ( 0 1
−1 0 ),

J(u) repeats every time u = 2kπ for integer k.

Suppose J(u) were not cyclical. We could approximate it using a Taylor ex-
pansion around its minimum u∗, giving

J(u) =
∞∑
k=0

ak(u− u∗)k ≈ a0 + a1(u− u∗) + a2(u− u∗)2. (35)

Calculating derivatives of our approximation we have J ′(u) ≈ a1 +2a2(u−u∗)
and J ′′(u) ≈ 2a2. Now, we know that J ′(u∗) = 0 since it is the minimum, so
a1 = 0, and therefore we can conclude that J ′(u) ≈ 2a2(u − u∗) and hence
J ′(u)/J ′′(u) ≈ (u− u∗) leading to u∗ ≈ u− J ′(u)/J ′′(u) which is the familiar
Newton update step.

Since J(u) is cyclical, we can instead use a Fourier expansion around u = u∗,
giving:

J(u) = a0 +
∞∑
k=1

ak cos(k(u− u∗)) +
∞∑
k=1

bk sin(k(u− u∗)) (36)

≈ a0 + a1 cos(u− u∗) + b1 sin(u− u∗). (37)
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Taking derivatives as above gives us J ′(u) ≈ −a1 sin(u− u∗) + b1 cos(u− u∗)
but again we realize that J ′(u) = 0 at the minimum u = u∗ so b1 ≈ 0,
and we can simplify this to J ′(u) ≈ −a1 sin(u − u∗). Differentiating again
we get J ′′(u) ≈ −a1 cos(u − u∗) so J ′(u)/J ′′(u) ≈ tan(u − u∗) and hence
u−u∗ ≈ arctan(J ′(u), J ′′(u)) where arctan(s, c) is the 4-quandrant arc tangent
function such that arctan(sin θ, cos θ) = θ for 0 ≤ θ < 2π. This therefore
suggests that we should step to u∗ ≈ u − arctan(dJ/du, d2J/du2). For small
updates, this approximates the usual Newton step [16].

7 Optimization over SO(n) for n > 2: The commutation problem

We know that in general multiplication of real and complex scalars commutes
(wz = zw) but for matrices this is not true in general, i.e. AB 6= BA. We
have seen that matrices in SO(2) do commute: for W,Z ∈ SO(2) we have
W = exp(t1Ψ) and Z = exp(t2Ψ) for some fixed skew-symmetric Ψ, then
WZ = exp((t1 + t2)Ψ) = ZW.

In fact, we know the following: multiplication of two matrices A,B is com-
mutative if and only if they share all eigenvectors [7]. This “if” direction
is easy to see if the eigenvector decomposition exists: since AE = EΛA

we can decompose A = EΛAE−1 and B = EΛBE−1 where Λα are diago-
nal eigenvalue matrices and E is the (shared) matrix of eigenvectors, giving
AB = EΛAΛBE−1 = EΛBΛAE−1 = BA. Note that if either A or B both
have repeated eigenvalues, we are free to choose E from the set of possible
eigenvectors if necessary. Thus if we deliberately constructed A and B to
share their eigenvectors, we would have made sure that they commuted.

7.1 Non-commutation of SO(3)

The first time we hit the commutation problem is for SO(3), the group of
3× 3 special (determinant 1) orthogonal matrices. Much as matrices in SO(2)
correspond to rotations about the origin in the 2-dimensional real space R2, el-
ements of SO(3) correspond to rotations about the origin in the 3-dimensional
real-space R3. To illustrate, see Figure 5. We can see that rotations about
different axes do not commute. For an illustration in matrix notation, using
elements from SO(3), we have
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Fig. 5. Multiplication by matrices in SO(3), corresponding to rotations about an axis
in 3-space, are not commutative. Starting from a wedge at the top of the diagram
pointing to the right, (a) illustrates rotation first about a horizontal axis followed by
rotation about a vertical axis, while (b) illustrates rotation first about the vertical
axis followed by the horizontal axis.

1 0 0

0 0 1

0 −1 0




0 0 1

0 1 0

−1 0 0

=


0 0 1

−1 0 0

0 −1 0

 but (38)


0 0 1

0 1 0

−1 0 0




1 0 0

0 0 1

0 −1 0

=


0 −1 0

0 0 1

−1 0 0

 . (39)

7.2 Lie brackets and Lie algebras

This non-commutivity is also true for small rotations. For skew-symmetric
square matrices A and B, let us see what happens if we multiply the near-
identity matrices exp(εA) and exp(εB) for small scalar ε. Specifically, we want
to find the difference between exp(εA) exp(εB) and exp(εB) exp(εA). For this
difference, we get

exp(εA) exp(εB)− exp(εB) exp(εA)

=
(
I + εA + 1

2
ε2A2

) (
I + εB + 1

2
ε2B2

)
−
(
I + εB + 1

2
ε2B2

) (
I + εA + 1

2
ε2A2

)
+O(ε3) (40)

= ε2[A,B] +O(ε3) (41)

where the matrix commutator [·, ·] is defined by [A,B] = AB − BA. Now,
we see that [A,B]T = (AB − BA)T = BTAT − ATBT = BA − AB =
−[A,B] since A and B are skew-symmetric. Therefore the result of applying
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this matrix commutator to skew-symmetric matrices is itself skew-symmetric,
so the set of skew-symmetric matrices is closed under the matrix commutator.

This set of skew-symmetric matrices with the matrix commutator is an exam-
ple of what is called a Lie algebra. Firstly it is a vector space, meaning that
we can add skew symmetric matrices A and B to get another skew-symmetric
matrix C = A + B, and we can multiply by scalars, so aB is also skew-
symmetric. (The fact that each of the objects A and B is actually a “matrix”
does not stop this from being a “vector” space for this purpose. If you prefer,
simply imagine forming a vector by concatenating the n(n−1)/2 independent
entries in the upper half of the matrix to form a column vector with n(n−1)/2
entries). Secondly, it has a binary operation [·, ·] called the Lie bracket, which
has the following properties:

[A,A] = 0 (42)

[A + B,C] = [A,C] + [B,C] (43)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (44)

The first two of these properties imply that [A,B] = −[B,A]. The third
property is called the Jacobi identity and embodies the notion that the Lie
bracket is concerned with a derivative-type action: notice the similarity with
the scalar expression d

dx
(yz) = y( d

dx
z) + z( d

dx
y).

Actually, we can make any vector space into a (somewhat trivial) Lie algebra,
just by defining [z, w] = 0 for any pair of elements z, w in the vector space.
This would be an Abelian (commutative) Lie algebra, since the zero bracket
implies zw = wz. Actually we have already met one of these Abelian Lie
algebras: the 2× 2 skew-symmetric matrices with this matrix commutator as
the Lie bracket form a Lie algebra called so(2) (gothic letters are often used
to denote Lie algebras). We have seen that all matrix pairs A,B ∈ so(2)
commute, so [A,B] = 0 and hence this is an Abelian (commutative) Lie
algebra. Unsurprisingly, the skew-symmetric matrices in the Lie algebra so(2)
are related to those in the Lie group SO(2): the exponential of a matrix B ∈
so(2) is a matrix in SO(2), i.e. B ∈ so(2) 7→ exp(B) ∈ SO(2).

Being able to work in the space of Lie algebras gives the key to so-called
Lie group methods to solve differential equations that evolve on a Lie group
manifold [17]. The basic method works like this (Fig. 6):

(1) Use the logarithm (inverse of exp(·)) to map from an element in the Lie
group W ∈ SO(n) to one in the Lie algebra B ∈ so(n).

(2) Move about in so(n) to a new B′ ∈ so(n)
(3) Use exp(·) to map back into SO(n), giving W = exp(B′).

Since so(n) is a vector space, and therefore is closed under addition of elements
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Fig. 6. Motion from W on the Lie group SO(n) by mapping B to the Lie algebra
so(n), moving to B′ ∈ so(n), and mapping back to W′ ∈ SO(n).

and multiplication by scalars, it is easy to stay in so(n). In this way we can
make sure that we always stay on SO(n).

We can also give a slightly simpler form of this method, once we realize that
W′ = RW for some R ∈ SO(n). Moving from W to W′ is equivalent to
moving from In to R, and we already know that log In = 0n. Our alternative
method is therefore

(1) Start at 0n ∈ so(n), equivalent to In ∈ SO(n) = exp(0n)
(2) Move about in so(n) from 0n to B ∈ so(n)
(3) Use exp(·) to map back into SO(n), giving R = exp(B)
(4) Calculate W′ = RW = exp(B)W ∈ SO(n).

This latter method avoids having to calculate the logarithm.

7.3 Choosing the search direction: Steepest gradient descent

The intuitively natural search direction to choose is the “steepest descent”
direction that we have discussed before. However, we have seen that this de-
pends entirely by what we mean by “distance”. So far we have not included
any concept of distance on our manifold, and many results about manifolds
can follow without one [18], but we will now introduce one to help us choose
our search direction.

The Lie algebra so(n) is the set of skew-symmetric matrices, so it is a vector
space with n(n − 1)/2 dimensions, corresponding to the entries in the upper
triangle of any matrix B ∈ so(n). There seems no a-priori reason to favour
any component over any other, and there seem to be no “special” directions
to choose, so a simple “length” measure could be that given by l2B ≡ |B|2 =
1
2
‖B‖2

F =
∑
ij b

2
ij/2. The factor of two is included to reflect the fact that each

component is repeated (in the negative) in the other half of the matrix. This
also suggests an inner product (or “dot product”) 〈B,H〉 =

∑
ij bijhij/2 so

that l2B = 〈B,B〉. (A vector space with an inner product like this, that gives a
norm that behaves like a distance metric, is called a Hilbert space.) With this
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length measure, equal-length elements of so(n) are those with equal Frobenius
norm ‖B‖F .

Now we consider the gradient in this B-space, our Lie algebra so(n). In the
original unconstrained W-space we used the gradient ∇WJ and the matrix of
partial derivatives ∂J/∂W = [∂J/∂wij] as if they were synonymous. However,
for B we have to be a little more careful, since the components of B are not
all independent, and the length and inner product is not quite the same as
the implicit length and inner product we would use for normal matrices.

For our purposes, we will define the gradient ∇BJ in words as follows: The
gradient ∇BJ of J in B-space is a vector whose inner product 〈∇BJ,H〉 with
a unit vector H in B-space is equal to the component of the derivative of J(B)
in the direction H. This definition is intimately tied to the inner product 〈·, ·〉
which we are using for our B-space, and hence to the distance metric generated
by the inner product. Since our B-space, so(n), is a space of skew-symmetric
matrices, the gradient (and the unit vector H in this definition) will also be
skew-symmetric.

Suppose we have the derivatives in W-space ∂J/∂W, and let W = exp(B)W0

and let B vary in direction H as B = tH, where H is a unit vector, so that
W = exp(tH)W0. Then we have dW/dt = H exp(tH)W0 = HW, and the
derivative of J(B) along the line B = tH is

dJ/dt= trace((∂J/∂W)T (dW/dt)) = trace((∂J/∂W)THW)

= trace(W(∂J/∂W)TH) = trace(skew(W(∂J/∂W)T )H)

where the last equality follows since H is skew-symmetric. By our defini-
tion of the inner product for B we have 〈∇BJ,H〉 = 1

2
trace((∇BJ)TH) =

trace((1
2
∇BJ)TH) which by definition of the gradient must equal dJ/dt, so we

have

∇BJ = 2 skew((∂J/∂W)WT ) = (∂J/∂W)WT −W(∂J/∂W)T (45)

(ensuring that ∇BJ is skew-symmetric) or alternatively ∇BJ = (∇WJ)WT −
W(∇WJ)T .

For the non-negative ICA task substituting (6) into (45) with ∇WJ =
∂J/∂W we get

∇BJ = 2 skew(E(y−zT )WT ) = E(y−yT )− E(yyT−) (46)

which is of a particularly simple form and is equivariant, since it a function of
the output y only [5].
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7.4 Steepest descent in so(n): geodesic flow

A simple update method is to update W using the method outline in section
7.2, by making a small step in so(n) from B = 0 to B = −η∇BJ |B=0, in turn
moving in SO(n) from Wk to

Wk+1 = exp(−ηG)Wk (47)

where

G = ∇BJ |B=0 = (∇WJ)WT −W(∇WJ)T . (48)

which is the geodesic flow method introduced to ICA by Nishimori [19]. Since
G is skew-symmetric, we have exp(−ηG) ∈ SO(n), so W remains in SO(n)
provided it was initially, for example by setting W0 = In.

Geodesic flow is the equivalent on a constrained manifold to the steepest
descent procedure Wk+1 = Wk − η∇WJ in the usual Euclidean space with
the usual Euclidean distance measure. The idea of a geodesic, the shortest
path between two points on a manifold, is the generalization of the concept
of a straight line in normal Euclidean space. However, note that the “geodesic
flow” method only locally follows the geodesic: as the gradient ∇WJ (and
∇BJ) changes, the path traced out will most likely be a more general curve,
much as a normal steepest descent in Euclidean space only locally follows a
straight line.

This geodesic flow (47) for small η approximately follows the flow of the or-
dinary differential equation dW/dt = ∇WJ where ∇W is restricted to be in
the tangent space TW at W. In section 4.3 we examined this constraint in
W space, but saw that a finite update to W would eventually “drift” away
from the surface of the manifold. For geodesic flow it turns out that the cal-
culated gradient is identical, but the use of the Lie algebra with the mapping
exp(−ηG) to Lie group ensures that W is always constrained to lie on the
manifold corresponding to the desired constraint. In real numerical simula-
tions, the accuracy of this approach this will depend on the calculation of the
matrix exponential exp(·), and some care needs to be taken here [20].

For the non-negative ICA task we use the geodesic flow equation (47)
with G = ∇BJ = E(y−yT )−E(yyT−) from (46), where y and y− are measured
at B = 0 [21].
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8 Geodesic search over one-parameter subgroups

Suppose now that we want to make larger movements, or several movements
in so(n). The Lie bracket over so(n) does make life a little awkward here: it
makes it tricky to work out how we should move about in the Lie algebra if
we want to take more than one small step at a time. To be specific, we have
the following fact [22]

exp(A) exp(B) = exp(B) exp(A) = exp(A + B) if and only if [A,B] = 0.
(49)

In other words, we can only use addition in the Lie algebra in the way that we
are used to, where addition in the Lie algebra so(n) corresponds to multipli-
cation in the Lie group SO(n), when we have a pair of matrices that commute
(for example, if we have an Abelian Lie algebra).

8.1 Searching along one-parameter subalgebras

A simple way to allow us to make a single step in the Lie algebra is always
to start from the zero point in our Lie algebra, since the matrix 0n and its
exponential In = exp 0n commute with any matrix. Therefore we can move in
any direction B = tH in our Lie algebra, for real scalar t and skew-symmetric
matrix H and be sure that all steps in this direction will commute. The set
of matrices gH = {tH|t ∈ R} is a Lie algebra itself, called a one-parameter
subalgebra of so(n): every element of this subalgebra is tH for a particular
value of the one parameter t. All pairs of matrices of the form t1H and t2H
commute, which from (49) implies that their exponentials R1 = exp(t1H) and
R2 = exp(t2H) commute, so gH is an Abelian (commutative) algebra with a
corresponding one-parameter subgroup of matrices R(t) = exp(tH).

Therefore by choosing the “direction” H, we can choose to take steps along
this “line” (in this subalgebra) until we have sufficiently reduced our cost
function J . This is a generalization of the idea of a “straight line” that we
would use as a search direction in a more usual Euclidean search space. In
Euclidean space Rn, starting from a point w(0), we would choose a search
direction h and search for a point w(t) = w(0) + th which minimises our cost
function J(w). In our new formulation, our approach is as follows:

(1) Our starting point for is Wk(0) ∈ SO(n), which we write as R(0)W(0)
where R(0) = In ∈ SO(n)

(2) We choose a search direction H in our Lie algebra so(n)
(3) We search along the points in the one parameter subalgebra tH, corre-

sponding to points in the one-parameter subgroup Wk(t) = R(t)Wk(0)
where R(t) = exp(tH), in order to reduce J(R(t)Wk(0))
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(4) One we have reduced J far enough, we update Wk+1(t) = R(t)Wk(0)
and start again with a new “line” search.

We are now left with two choices to make: (1) how do we choose the search
direction, and (2) the method to use to search along the “line” (the one-
parameter subgroup/subalgebra).

8.2 Line search and geodesic search

The correspondence between geodesic flow and steepest descent search leads
to the idea of generalizing a Euclidean “steepest descent line search” method
into a geodesic search method. We use the steepest descent direction in our
Lie algebra (B-space) to determine a one-parameter geodesic in our W-space,
then make large steps along that geodesic until we find the minimum [21].
This leads to the following method:

(1) Calculate G = ∇BJ and θ = |G|. If θ is small or zero exit, otherwise
calculate H = −G/θ.

(2) Search along R(t) = exp(tH) using y = RWz to find a minimum (or
near-minimum) of J at t = t∗.

(3) Update Wk+1 = R(t∗)Wk

(4) Repeat from step 1 until θ is small enough to exit.

This framework can have several variations, as does the usual line search
method. For example, if we simply use the update t = ηθ instead of a complete
search at step 2, we have the geodesic flow algorithm with R = exp(−ηθH) =
exp(−ηG). If we “think” in our single-parameter space t ∈ R, there are many
possible line search methods which can be used [15], since this is conceptually
identical to a standard line search.

8.3 Newton update step

If J is twice differentiable with respect to t, we can also consider a Newton
method along this search line. For this we need to calculate dJ/dt and d2J/dt2

for t in the geodesic search step 2 above, once we have chosen H. Since H
was chosen to be in the direction of the negative gradient, we immediately
have dJ/dt =

∑
ij[H]ij[∇BJ ]ij = −∑ij[∇BJ ]2ij/θ = −2θ where θ = |∇BJ |

as defined above. The evaluation of d2J/dt2 could be carried out from the
n2×n2 Hessian matrix of d2J/dwijdwkl, but it can often be evaluated directly,
avoiding calculating the n2 × n2 Hessian matrix.

The Newton line step is then simply to set t = −(dJ/dt)/(d2J/dt2). Note that
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the unmodified Newton method will not always find a minimum. For example,
if the curvature d2J/dt2 is negative, the Newton method will step “upwards”
towards a maximum, rather than downwards towards a minimum, so we may
wish to modify the Newton method to be more like steepest descent in this
case [15].

For the non-negative ICA task evaluation of dJ/dt is straightforward
given ∇BJ , and further differentiation of d2J/dt2 yields [16]

d2J/dt2 = E(|k− ◦ (Hy)|22 + yT−H2y) (50)

where k− is an indicator vector such that (k−)i = 1 if yi < 0 and zero other-
wise, and ◦ represents element-wise multiplication. Equation (50) appears in
a batch version in [16].

8.4 Fourier update step

For the special case of SO(3), i.e. n = 3 inputs, our one-parameter subgroup
takes on a special form. Each choice of H ∈ so(3) defines a rotation about a
particular axis through the origin, so the subspace of rotation can be defined by
its “dual” subspace consisting of the axis about which the rotation occurs. We
are very used to this idea of rotations about an axis in our usual 3-dimensional
world. The exponential of a skew-symmetric matrix also has a special form
for n = 3, the Rodrigues formula [23,24]:

exp(B) = In + (sinφ)B1 + (1− cosφ)B2
1 (51)

where φ = |B| = ‖B‖F/
√

2 and B1 = B/φ, provided that φ 6= 0.

Now it is clear from equation (51) that exp(B) repeats every φ = 2π, as for
the n = 2 case. Therefore for n = 3, once we have chosen a search direction,
we also know that we are performing a rotation search. This means that we
can if we wish also use a Fourier expansion of J to perform this line search
as in section 6.4 above [16]. We might therefore argue that this search is
“easier” than the usual line search to minimize J , since we immediately know
that the minimum (or at least a copy of the minimum) must lie in the range
0 ≤ t < 2π. The first-order Fourier expansion requires dJ/dt and d2J/dt2,
as for the Newton method, and approximates the Newton method for small
updates.
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9 Conjugate Gradients methods

Now that we have seen that we can perform a steepest descent line search
to minimize J , it is natural to ask if we can also use the well-know “Conju-
gate Gradients” method. Edelman, Arias and Smith [25] constructed conju-
gate gradient algorithms on similar manifolds, and this approach was used by
Martin-Clemente et al [26] for ICA.

In the most familiar forms, the standard conjugate gradient algorithm, in a
Euclidean search space, calculates a new search direction based on two pre-
vious search directions [15] (for a particularly clear introduction to conjugate
gradient methods with plenty of visualization, see [27]). For example, we have
the steps

(1) Set k = 0 and choose an initial search direction h0 = −g0 where g0 = ∇J
(2) Choose tk = t∗k to minimize J(x) along the line x = xk + tkhk
(3) At the minimum, find the new gradient gk+1 = ∇xJ at t∗k
(4) Choose a new search direction hk+1 = −gk+1 + γkhk where

γk =
gTk+1gk+1

gTk gk
or γk =

gTk+1(gk+1 − gk)

gTk gk
(52)

(5) Repeat from step 2 with k = k + 1 until the gradient gk is sufficiently
small

The first equation for γk here is the Fletcher-Reeves formula, the second is
the Polak-Ribière formula. They are both equal for quadratic functions and
perfect minimization, but the Polak-Ribière formula is generally considered to
perform better for nonlinear problems.

9.1 Parallel transport

The difficulty with implementing this on a manifold is that, while the deriva-
tives and gradients at all points in a Euclidean space “live” in the same tangent
space, the derivatives at each point W on a general manifold live in a tangent
space TW at W, which is specific to the particular point W. To manipulate
gradients g and search directions h, each of which are derivative-like objects
which “live” in the tangent space, we must first move them to the same point
on the manifold. In a space with an inner product and norm defined, as we
have done for our so(n) (and hence SO(n)) system, we can use the idea of
parallel transport along a geodesic to do this [25]. (The inner product and the
geodesic curve help to define a connection between the different tangent spaces
TW(t), to allow us to map a derivative in one tangent space TW(t1) at W(t1)
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Fig. 7. Parallel transport of gk to τgk, in (a) the Lie group and (b) the Lie algebra

to another tangent space TW(t2) at W(t2)).

Suppose we have a gradient vector gk at the point Wk on our manifold: this
gradient vector must live in the tangent space TWk

at Wk. The idea of parallel
transport is that we move (transport) this along the curve W(t) = R(t)Wk as
t changes from 0 to t∗. In doing so we move it to the corresponding vector in
each tangent space TW(t), keeping it pointing in the corresponding direction
in each tangent space.

Imagine doing this on a globe, where our tangent spaces are flat planes. As
we move along W(t), we carry the plane with us, keeping it aligned with
the geodesic we are traveling along (Fig. 7). When we reach our destination
W(t∗), the direction on the plane corresponding to gk at Wk is now the
parallel-transported version τgk of gk, along the curve W(t) = R(t)Wk, at
Wk+1 = R(t∗)Wk. Notice that this idea of parallel transport depends critically
on the geodesic we follow: if we followed a different one to get from Wk to
Wk+1, we could easily end up with a different parallel-transported version
τ ′gk of g [18].

It can be easier to think of this in the Lie algebra so(n) (Fig. 7(b)). If we work
in the algebra so(n) and move along geodesics (“straight lines”), i.e. move
within one-parameter subalgebras of the form B = tH for skew-symmetric
H, then the parallel transported version of a gradient vector G ∈ so(n) at
from B = tH to B′ = t′H is simply G itself. Consequently if we work in the
subalgebra B we can effectively ignore the problem of parallel transport, and
use the conjugate gradient method with the update equation (52) directly.
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9.2 Conjugate gradients with second order information

The Fletcher-Reeves or Polak-Ribière formulae are finite difference approx-
imations to an underlying principle: the principle that the search direction
hk+1 should be chosen to be conjugate to the search direction hk. Therefore
if ∇2J is the Hessian matrix of the system, [∇2J ]ij = d2J/dxidxj then the
direction hk+1 should satisfy the following requirement:

hTk+1(∇2J)hk = 0. (53)

We would like to avoid calculating the Hessian ∇2J if we can. We can do this
if we notice that d/dtk(∇J) = (∇2J)hk is a vector only, reflecting the change
in gradient ∇J as we move along the line x = xk + thk. Therefore we only
need to calculate the projection of the Hessian onto the line hk, rather than
the full Hessian.

In our Lie algebra setting, we need to calculate d/dt(∇BJ) for B = tH where
H is the search line we have “just come along”. Let us denote this as

Vk =
d

dt
∇BJ = 2 skew

(
(
d

dt
∇WJ)WT

)
(54)

where the second equality comes from (45). Note that, as Edelman et al [25]
point out, the conjugacy here does not not simply use the Hessian matrix
∇2

WJ in W-space, but instead uses the Hessian in B-space, our Lie algebra.

Give (54) we can choose the direction Hk+1 to be the component of Gk+1

which is orthogonal to Vk = d
dt
∇BJ at step k, by subtracting the component

in that direction. Writing

G̃k+1 = Vk
〈Gk+1,Vk〉
〈Vk,Vk〉

(55)

as the component of Gk+1 in the direction of Vk, we set the new search
direction to be Hk+1 = H̃k+1/|H̃k+1| where H̃k+1 = Gk+1 − G̃k+1. It is easy
to verify that this update ensures 〈Hk+1,Vk〉 = 0. Using the formula (54) for
d
dt
∇BJ we therefore have a conjugate gradient algorithm using second order

derivative information instead of finite difference information, but which still
avoids calculating the complete Hessian matrix.

For the non-negative ICA task a little manipulation gives us the pro-
jection of the Hessian along the line B = tH as

Vk =
d

dt
∇BJ = −E(skew(ẏ−yT + y−ẏT )) (56)
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where ẏ = d
dt

y = −Hy and [ẏ−]ij = [ẏ]ij if yij < 0 or zero otherwise.

10 Exponentiation and Toral Subalgebras

There are still some issues that remain to be considered. One is the calculation
of the exponent: every time we map from an element tH ∈ so(n) in the Lie
algebra, so that we can evaluate the cost function J or its derivatives, we need
to calculate the matrix exponential exp(tH). Many ways have been proposed
to do this, such as the Padé approximation used by Matlab, and there are
methods specifically for so(n) based on the Rodrigues formula that we have
encountered above, and its generalizations [20,23,24].

Matrix exponentiation is computationally expensive, and many methods are
still being proposed to approximate this efficiently for Lie group applications
[28–30]. An alternative approach is to use the bilinear Cayley transform, ap-
proximating exp(B) by cay(B) ≡ (In+B/2)(In−B/2)−1 = (In−B/2)−1(In+
B/2) [17,31–33] which has been used in place of matrix exponentiation as a
map to generate orthogonal matrices [34]. However, the Cayley transform does
give us a different effective coordinate system to the Lie algebra we have dis-
cussed so far, and we will not consider it further in this article.

We can also consider how we can reduce the number of exponentials we need
to calculate. In particular, our task is to optimize a particular function, not
to follow a particular ode: therefore we do not necessarily need to choose a
new “steepest descent” or “conjugate gradient” search direction H if a more
sensible choice would be appropriate. Let us introduce the Jordan canonical
form of a skew-symmetric matrix: this will allow us to see how to decompose
a movement on SO(n) into commutative parallel rotations.

10.1 Visualizing SO(n) for n ≥ 4: the Jordan canonical form

The case of SO(n) for n ≥ 4 is not quite as simple as for the cases n = 2 or
n = 3, which we saw are equivalent to circular rotations about an axis (for
n = 3) or about the origin of the plane (for n = 2). For n = 2, exponentiation
is a simple matrix involving sin and cos terms, while for n = 3 we can use the
Rodrigues formula (51).

However, our insight for n ≥ 4 is rescued by the Jordan canonical form for
skew-symmetric matrices. Any skew-symmetric matrix B can be written in
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the following form [18,19]

B = U



Θ1

. . .

Θm

0
. . .

0


UT (57)

where U ∈ SO(n) is orthogonal, Θi =
(

0 θi
−θi 0

)
is a 2 × 2 block matrix, and

2m ≤ n. Therefore, since exp(UTBU) = UT exp(B)U for any orthogonal
matrix U, we can decompose B as B = B1 + · · ·+Bm where each Bi contains
the ith Jordan block Θi only and zeros elsewhere. Thus we have [19]

R = exp B = U



M1

. . .

Mm

1
. . .

1


UT (58)

where Mi =
(

cos θi sin θi
− sin θi cos θi

)
. We also know from this that R can be decomposed

into the commutative multiplication of m mutually orthogonal rotations, R =
R1R2 · · ·Rm where each of the matrices Ri are of the form

Ri = exp Bi = U


I2(i−1)

Mi

In−2(i+1)

UT . (59)

To be specific, for n = 4 this means that a search direction H corresponds,
in general, to a pair of commutative rotations in orthogonal 2-dimensional
planes.

Interestingly, since B is skew-symmetric, we can use a symmetric eigenvalue
decomposition method to find its eigenvectors, as follows [24]. Since BT = −B,
and therefore BTB = −B2, this means −B2 is a symmetric positive semi-
definite matrix. Given also that BB2 = B2B this commutes with B so the
eigenvectors of BTB are identical to those of B. The eigenvalues of BTB occur
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Fig. 8. One-parameter subgroup on a torus (a). In this case we have tθ2 = 4tθ1 so
we rotate four times “around” while rotating one time “along”. It can often help to
visualize this flattened out (b).

in pairs, where each pair corresponds to one block Θi in the Jordan canonical
form of B [24].

If the canonical form contains just a single 2× 2 block, this would correspond
to a single rotation plane, and we would return to the starting point after
θ = 2π as for the n = 2 and n = 3 case. However, if H is chosen at random,
we never return to the starting point in SO(4). To do so at some parameter
t would require tθ1 = 2k1π and tθ2 = 2k2π for some integers k1 and k2 - i.e.
we must have complete a whole number of revolutions in both rotation planes.
This can only happen if θ1/θ2 is rational, which will never be the case (at
least, it has zero probability) for randomly chosen H. At the very least, on
a computer with finite precision arithmetic, the ratio θ1/θ2 may involve very
large numbers, so it may take a long time to return exactly to our starting
point.

This generalizes naturally for SO(n) with n > 4, either even n = 2p or odd
n = 2p+ 1. The Jordan canonical form tells us that, given a fixed n×n skew-
symmetric matrix H, moving in a one-parameter subgroup exp(tH) within in
SO(n) causes a rotation in p orthogonal planes, and the rotation in these planes
is commutative. We are actually moving on the surface of a p-dimensional
torus, where p = 1 gives us a circle, and p = 2 gives the familiar doughnut
shaped torus we are used to. The one-parameter subgroup forms a “spiral”
around the torus. If the parameters θi in our Jordan canonical form are ratio-
nally related, the spiral will meet itself again after “going round” an appro-
priate number of times (Fig. 8).

10.2 A commutative, toral subalgebra

We have seen that decomposing B into Jordan canonical form yields a set of
m commutative matrices Bi, where n = 2m or 2m + 1, such that B =

∑
i Bi

and R = exp(B) = R1 · · ·Rm. Since these are commutative, we can make
a number of “movements” within this decomposition, where each will have a
simple exponential, given that the decomposition already exists.
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Given our decomposition set {Bi}, suppose we fix a basis Hi = Bi/|Bi| and
set ti such that Bi = tiHi. Then each of the coordinates ti determines an angle
of rotation θi around a circle. In fact the set of coordinates {ti} trace out a
toral subalgebra t ⊂ so(n). If the number of components m is maximal, so that
for SO(n) we have n = 2m or 2m+1 (depending on whether n is even or odd),
this will correspond to a maximal torus of SO(n). We therefore have an m-
dimensional subgroup/subalgebra to “move about” on, which is half (or just
under half) the dimensionality of the original n-dimensional manifold. Unlike
the original n-dimensional manifold, however, this subalgebra is Abelian, so
movements on the corresponding torus are commutative. This means we can
make the movements in any order we wish, justifying the use of the “plus”
notation for B = t1H1 + · · ·+ tmHm.

We only have to perform the decomposition into canonical form once each time
we choose the toral subalgebra. Each movement to a point B in the subalge-
bra then requires m calculations of sin θ and cos θ (as well as the usual matrix
manipulations) to map to the corresponding point W ∈ SO(n) on the mani-
fold, since the orthogonal matrix U used in the decomposition (57) is fixed.
To search on the subalgebra we could use the conjugate gradient method, for
example, restricted to the toral subalgebra t ⊂ so(n). Only once we have fin-
ished searching in the subalgebra do we need to calculate a new decomposition,
perhaps based on a new unrestricted steepest-descent direction.

Perhaps the reason this concept seems a little strange at first is that the first
nontrivial example does not appear until n = 4. The group SO(2) is itself
isomorphic to (behaves the same as) the circle S1 (the 1-torus) so SO(2) is
essentially the same as its own maximal torus. The group SO(3) also has the
circle S1 as its maximal “torus”. This is the one-parameter geodesic that we
have used before, that rotates about a fixed axis. Only when we reach SO(4) do
we have the maximal torus (S1)2, giving us a two-dimensional maximal torus
(corresponding to the familiar doughnut shape) to search on between decom-
positions. This corresponds to simultaneous, and commutative, rotations in
two orthogonal planes in our four-dimensional space.

10.3 Component-aligned toral subalgebra

We have so far considered that we generate our torus using, for example, an
initial steepest-descent direction H, for which we perform decomposition into
Jordan canonical form. This ensures that the generated torus will contain H.
However, this is only one way to generate the torus from H: we could instead
construct a torus based on the components hij of H, where our “decomposi-
tion” requires only permutations of the rows and columns. Specifically, given
some generator matrix H ∈ so(n), we could build a torus from this, using the
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following algorithm:

(1) Initialize k = 1, U = 0
(2) Find (i∗, j∗) = arg max(i,j) hij
(3) Set (row, col) element (i∗, 2k− 1) of U to 1 and element (j∗, 2k) of U to

1
(4) Set all elements in row i∗ and column j∗ of H to zero
(5) If k < m repeat from step 2 with k ← k + 1.

This results in a matrix U for the decomposition (57) which is a permutation
matrix, forming our torus from m pairs of different axes to form the planes
of rotation, with no axis used more than once. While this is simpler than the
torus generated by an eigenvector-based decomposition of H, this component-
aligned torus may no longer contain H itself, so it may be that the minimum of
J on this torus is not as good as it would have been had we generated our torus
as in the previous method which included H. Some experimentation will be
required to evaluate whether the cost saving in evaluating the decomposition
for exp(H) is worth the extra minimization steps that may be required.

10.4 Conjecture: a possible torus-based replacement for Newton

So far we have assumed that we could use an inner product and a distance
metric to find a “steepest descent” direction to minimize J . To do so we defined
an inner product 〈B,H〉 = 1

2
trace(BTH) and a length |B| = 〈B,B〉1/2 in our

Lie algebra so(n), arguing that this was the “natural” distance metric since
all the components in B are similar to each other.

However, the concept of the toral subalgebra suggests that the use of a 2-norm
metric like this may not be the necessary, or perhaps even desirable. The fact
that if we “cut open” a 2-torus and lay it out flat, we get a rectangular sheet
where opposite edges are identified, suggesting that perhaps we “ought” to be
using a city-block metric or 1-norm aligned with the torus rotation directions,
rather than the 2-norm |B|. With the torus interpretation, some directions are
special, so the use of the 2-norm based on an inner product seems somewhat
questionable.

One way to overcome this might be to use a different method to find each
torus to search over. Consider for a moment the usual Newton algorithm in
normal Euclidean space. In the Newton approach we assume that the cost
function J(x) at a point x can be approximated by a Taylor expansion about
some minimum point x∗, as J(x) = (x−x∗)TΣ(x−x∗) where Σ is a symmetric
Hessian matrix. Writing the eigenvector-eigenvalue decomposition Σ = VΛVT

where Λ is diagonal, we can write J(x) =
∑
i λi|vTi (x − x∗)|2 =

∑
i λi|yi −

y∗i |2 where vi is the ith column of the eigenvector matrix V, and yi = vTi x.
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In one parallel update step yi ← yi − dJ/dyi
d2J/dy2i

for each yi we would reach

the bottom of J . Therefore, given the Hessian Σ, the eigenvector-eigenvalue
decomposition allows us to jump directly to the minimum of J , by searching
over each direction yi independently.

We conjecture that it should be possible to choose the torus t in an analogous
way. In our torus, we might expect J not to have a simple Taylor expansion,
but instead to have a multidimensional Fourier expansion, perhaps J(B) =
J(t1, . . . , tm) =

∑
i αi(1 − cos(ti − t∗i )) where B = t1H1 + · · · + tmHm. Note

that we might have to consider whether J repeats more often than ti = 2π.
As we mentioned earlier, the solutions to the standard ICA problem do repeat
every t = π since negative solutions are just as valid as positive solutions. For
a lack of any better method, we could use the “steepest-descent” direction H
to generate this torus, but it would be interesting to see if it were possible to
search for a torus which would directly contain the lowest value of J . As yet
it is not clear how this could be evaluated, but we believe that the search for
a method to identify this “best torus” is an interesting challenge.

11 Relation to other work

We have concentrated almost exclusively in this article on the problem of
nonnegative ICA using orthogonality constraints, and have tried to avoid re-
lying on much existing mathematical background. Other than the references
we have already mentioned, there is an increasing amount of work in related
areas and we will briefly touch on some of it here for the interested reader.

Many of the concepts discussed here can be generalized to the Stiefel and
Grassman manifolds [12,35,26]. The group SO(n) can be considered to be a
special case of the Stiefel manifold: the Stiefel manifold is the space of rect-
angular n× p orthogonal matrices, while the Grassman manifold is concerned
only with the subspace spanned by such matrices. See in particular the article
by Edelman et al [25], which explains their conjugate gradient and Newton
methods with examples in Matlab, and Fiori [6] for an introduction to these
approaches for ICA-type problems.

The Lie group method has been extensively studied recently by e.g. Iserles,
Munthe-Kaas and colleagues [17] for integration of differential equations over
Lie groups (see [36] for an introductory article). Attempting to accurately inte-
grate differential equations in this way can get into very heavy mathematics,
which we are able to avoid in the present article precisely because we only
wish to find a minimum of the function J constrained on a manifold, rather
than exactly follow a particular differential equation. Any differential equation
we might construct in order to minimize J is only “to point us in the right
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direction”, so to speak.

In this article we have worked in the Lie group SO(n) and the Lie algebra
so(n), using the matrix exponential to map from so(n) to SO(n). An alter-
native method is to use the Cayley transform: see e.g. [32,33] for details of
this approach. Even though we have not considered it in detail here, it has
been argued that avoiding the exponential itself makes the Cayley transform
particularly useful for tasks on SO(n) [17].

We should also mention that there are also applications in computer vision
[37] and robotics [32] due to the constrained nature of physical systems; and
earlier work by Fiori in the ICA direction draws an analogy between a neural
system with constraints and a rigid mechanical system [38,39].

12 Conclusions

In this article we have explored the task of pre-whitened non-negative indepen-
dent component analysis (nonnegative ICA) using orthogonality constraints.
We discussed the concept of the manifold of square orthogonal matrices W
where WTW = WWT = In, which form the special orthogonal Lie group
SO(n). This group has a corresponding Lie algebra so(n), embodying of the
derivatives of elements of SO(n), with the exponential map from so(n) to
SO(n).

We have seen that many of the assumptions that we make in our usual Eu-
clidean space have to be revised when we work on manifolds in this way.
Concepts such as length, gradient, straight line, parallel, and so on have to be
reviewed in the light of the task of minimization of a cost function, and modi-
fied to suit the constraint. Other things that we take for granted in Euclidean
space, such as the commutivity of movements in the space, also no longer hold
on the constraint manifold. Nevertheless it is still possible to adapt optimiza-
tion methods such as steepest-descent search, and the well-known conjugate
gradients algorithm, to work on this constraint surface. We can also develop
new methods, such as the Fourier expansion equivalent of the Newton step,
which work specifically in a compact space such as SO(n).

By finding a toral subalgebra for so(n), an Abelian (commutative) algebra
formed from a subset of the points in so(n), we can recover some of the prop-
erties such as commutativity that we are familiar with in Euclidean space.
This also suggests a more efficient calculation of successive matrix exponen-
tials, since the required matrix decomposition does not need to be performed
each time.
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In this article, I have deliberately avoided relying on too much prior math-
ematical background, concentrating instead on the intuitive concepts of the
constraints and geometry involved. In this way I hope that researchers in ICA
without an existing background in Lie groups or differential manifolds will
nevertheless be able to see that the concepts are not as difficult as the nota-
tion sometimes appears, and will be interested enough to delve more deeply
into these approaches.
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