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Sensori- ja antenniryhmien sekä monikanavaisten signaalien käsittelyssä esiintyy usein optimointiongelmia, joissa on
rajoitteita optimoitaville parametreille. Monikanavaisten signaalien tapauksessa rajoitteet kohdistuvat tyypillisesti
matriiseihin, ja erityisesti unitaariset matriisit ovat keskeisessä osassa moniantennitietoliikenteen sekä sensoriryhmien
biolääketieteellissä sovelluksissa, tutkajärjestelmissä, koneoppimisessa ja radioastronomiassa.

Tässä väitöskirjassa on kehitetty algoritmeja optimointiin unitaarisuusrajoituksen alla. Kehitetyt jyrkimmän laskeuman
ja liittogradientti menetelmät perustuvat Riemannin geometriaan ja käyttävät hyväkseen unitaaristen matriisien Lien
ryhmän ominaisuuksia. Kehitetyt menetelmät löytävät optimiratkaisun tehokkaasti ja toteuttavat
unitaarisuusrajoituksen tarkasti. Unitaariseen viivahakuun on myös kehitetty tehokkaita hakualgoritmeja, jotka
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Moniantenniteknologiat ovat keskeisessä osassa tulevaisuuden laajakaistaisissa langattomissa
tietoliikennejärjestelmissä. Niiden avulla voidaan radiolinkkien kapasiteettia ja laatua parantaa merkittävästi.
Käytettäessä lisäksi monikantoaaltotekniikoita saavutetaan erinomainen spektritehokkuus sekä luotettava toiminta
huolimatta radiokanavan monitie-etenemisestä.

Tässä työssä on johdettu sokea kanavakorjainalgoritmi moniantenni ja -kantoaaltotekniikkaan perustuviin
MIMO-OFDM vastaanottimiin. Kehitetty algoritmi kumoaa symbolien välisen keskinäisvaikutuksen sekä samalla
kanavalla esiintyvän interferenssin käyttäen rajoitettua optimointia. Työssä osoitetaan kehitetyn algoritmin suppenevan
paikalliseen optimiratkaisuun.
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Chapter 1

Introduction

1.1 Motivation of the thesis

The field of multi-channel and array signal processing develops and applies
powerful mathematical and statistical techniques that process multi-channel
signals. Typically, space and time are employed as explaining variables.
Spatial dimension is enabled by using multiple sensors, or multiple emit-
ters located at different positions. Sensor array signal processing algorithms
have the ability to fuse data collected at several sensors in order to perform a
given estimation task [125]. Conversely, by using multiple transmitters, spe-
cial space-time structure may be constructed into the transmitted signals de-
pending on the task at hand. This type of array signal processing techniques
are needed to solve real-world problems. The most common applications in-
clude communications and radar applications such as smart antennas and
adaptive beamforming, interference cancellation, high-resolution direction
of arrival estimation, channel sounding, MIMO radar and sonar and sensor
networks. Other important practical applications include source localiza-
tion and classification, tracking, surveillance and navigation. Array signal
processing is commonly used also in biomedical applications (e.g. EEG,
MEG, EKG, cancer diagnosis), machine vision, as well as geophysical and
astronomical applications (radio telescopes).

The most common application of space-time processing is spatial filtering
(beamforming). A beamformer is a processor used in conjunction with an
array of sensors in order to provide a versatile form of spatial filtering [201].
The main goal is to estimate signals arriving from the desired directions in
the presence of noise and interference signals, or to transmit signals in the
desired directions. Antenna arrays with smart signal processing algorithms
may also be used to identify spatial signal signatures such as the direction
of arrival or location. Spatial processing techniques are also used in acoustic
signal processing, track and scan radars, as well as in cellular systems. The
basic idea of sensor array signal processing is given in Figure 1.1.
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Figure 1.1: Sensor array signal processing.

The algorithms used in the space-time processor need to be smart and
adaptive [105] in order to deal with time and space varying signals. In
wireless receivers, optimization techniques are commonly needed. Minimiz-
ing certain error criterion, or maximizing certain gain function needs to be
done iteratively, in an online fashion. Numerical optimization may be the
only solution because a closed-form solution may not exist, or if it exists,
it is hard to find. In multi-channel signal processing the optimization is
often performed subject to matrix constraints. An elegant way to solve this
type of constraint optimization problems is to view the error criterion as
a multi-dimensional surface contained on the space of the free parameters.
The constraint is viewed as a second surface. The feasible solutions may
be found in the parameter space determined by the intersection of the two
surfaces. This parameter space is usually a non-Euclidean space, i.e., a dif-
ferential manifold. Consequently, powerful geometric optimization methods
are needed. Classical optimization techniques operating on the usual Eu-
clidean space suffer from low convergence speed, and/or deviation from the
constraint. In order to overcome these impairments, state-of-the-art Rie-
mannian optimization algorithms may be employed. They provide efficient
solutions and allow better understanding of the problem. By using the Rie-
mannian geometry approach, the initial constrained optimization problem is
converted into an unconstrained one, in a different parameter space [18]. The
constraints are fully satisfied, in a natural way. The geometric properties of
the constrained space may be exploited in order to reduce to computational
complexity.

Unitary/orthonormal matrices play a crucial role in array and multi-
channel signal processing applications. They are involved in almost
all modern transceiver techniques such as limited-feedback MIMO sys-
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tems [50, 51, 121, 143–145], space-time codes [103, 116, 118, 120, 141, 144],
smart antennas [85, 86, 183, 186], blind equalization and source separation
[45, 156, 187, 192, 209] and MIMO radars and sonars [34, 82, 167, 191]. Uni-
tary matrices also play an important role in biomedical applications that em-
ploy sensor arrays or pattern recognition systems (EKG, EEG, MEG, cancer
prevention and diagnosis, modelling of the human body) [20,164], machine
learning [46,73–79,151,160,161], computer vision [133,146] and optimal con-
trol [56,211,223]. For this reason, reliable algorithms for optimization under
unitary matrix constraint are needed. In wireless communication, a major
practical issue to be considered is that the terminals may possess different
signal processing capabilities and limited power resources. Thus, algorithms
with reasonable computational complexity should be employed in order to
cope with high data rates and time-space-frequency selective channels.

In anticipation of the growing demands for voice and multimedia appli-
cations, the future beyond third generation (B3G) and fourth generation
(4G) wireless services promise considerably higher effective data rates and
enhanced user mobility. In this respect, emerging wireless systems like B3G
Long Term Evolution (LTE) [10], IMT-2000 [8] and WiMAX [1] are being de-
ployed. Array signal processing plays again a crucial role. By using multiple
transmit/receive antennas, i.e. the so called Multiple-Input Multiple-Output
(MIMO) systems [36,194], high capacity, link reliability and enhanced net-
work coverage may be achieved. These benefits give a strong motivation to
develop reliable multi-antenna transceiver structures.

Radio spectrum is a scarce and expensive resource. It is desirable to
increase the data rates without expanding the bandwidth or using addi-
tional power. Multicarrier techniques such as Orthogonal Frequency Divi-
sion Multiplexing (OFDM) modulation [106, 200] use the limited spectrum
very efficiently. In addition, they are very robust to channel multipath
propagation and allow simple equalization. Future wireless systems such as
LTE [10], IMT-2000 [8] employ OFDM in physical layer. OFDM has al-
ready been adopted in many standards such as ADSL (Asymmetric Digital
Subscriber Line) [3], wireless local and metropolitan area networks (WLAN,
WMAN, HIPERLAN/2) [1, 4–6, 9], and European digital audio and video
broadcast (DAB, DVB) [2, 7]. The recently proposed IEEE 802.11n stan-
dard for WLAN [4] combines OFDM with MIMO in order to increase the
throughput and the operation range.

In order to fully achieve the benefits of MIMO-OFDM, accurate chan-
nel estimation is needed. In MIMO systems, this is more difficult than in
the single antenna case due to the the large number of channel parame-
ters. In mobile MIMO-OFDM systems, however, plenty of pilot symbols are
needed in order to deal with the space-time-frequency selective channels.
Blind methods [128] achieve higher effective data rates because they do not
require any training data or pilot signals. They rely only on statistical or
structural properties of the transmitted signal. Semi-blind methods use a
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reduced amount of training data and are more feasible for fast-fading sce-
narios. Moreover, they allow solving all the ambiguities that blind receivers
are subjected to.

1.2 Scope of the thesis

The objective of this thesis is to develop efficient optimization algorithms
for multi-channel and sensor array signal processing applications such as
the future multi-antenna transceivers. Special attention needs to be paid
to practicality, so that no unrealistic assumptions are made in deriving the
algorithms. Reasonable computational complexity of the algorithms is re-
quired in order to be able to operate at very high sampling rates needed in
real-time applications.

Optimization algorithms are used in most of the modern wireless re-
ceivers. Constrained optimization problems arise frequently in sensor array
and multi-channel signal processing applications. The core of and adap-
tive algorithm is usually an optimization algorithm, possibly with some
constraints. In particular, optimization under unitary matrix constraint
is needed in smart antennas, closed-loop MIMO systems, space-time codes,
blind signal separation, blind subspace methods and blind beamforming.
Novel optimization techniques that posses fast convergence to the desired
solution need to be developed. Riemannian geometry provides powerful tools
for solving this type of problems. They prove to be computationally feasi-
ble and outperform classical Euclidean approaches in terms of convergence
speed. For this reason, the main objective of this dissertation is to develop
optimization algorithms stemming from Riemannian geometry that have the
ability to find the optimal solution in a numerically efficient manner.

The problem of blind channel equalization in MIMO-OFDM system is
also addressed in this thesis. The goal is to develop computationally efficient
blind algorithms for MIMO-OFDM that are able to cancel both inter-symbol
and co-channel interference. They must achieve fast convergence and good
tracking capabilities when used in a semi-blind mode. The convergence
properties and the conditions for symbol recovery need to be established as
well.

1.3 Contributions

This work contributes to the fields of multi-channel and array signal pro-
cessing, optimization theory and multi-antenna communications.

There are two main contributions of this thesis, as explained below. The
first main contribution is to numerical optimization techniques for array
and multi-channel signal processing applications. Two novel Riemannian
techniques for optimization under unitary matrix constraint are proposed.
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This type of optimization arises frequently in multi-antenna transceivers
algorithms. Typical applications are blind equalization, source separation
and smart antennas.

Steepest descent (SD) and conjugate gradient (CG) algorithms operat-
ing on the Lie group of unitary matrices are derived. Novel line search
methods specially tailored for this type of optimization are also introduced.
The proposed algorithms exploit the geometrical features of the Lie group
in order to reduce the computational cost. They outperform the classical
Euclidean approaches for constrained optimization both in terms of conver-
gence speed and computational complexity. Moreover, they generalize the
existing Riemannian optimization algorithms for optimization under orthog-
onal constraint which are designed only for real-valued matrices and signals.
In communications and array signal processing we deal with complex-valued
signals and matrices. The complex-valued case has been addressed only
in [137], since most of the authors consider the extension from the real to
the complex case trivial. We show that this simplistic assumption is not al-
ways true. The complexity of the proposed algorithms is significantly lower
than the differential geometry approach in [137]. They are directly applica-
ble to joint diagonalization (JADE) [45], which is a widely used technique
for blind source separation (BSS). The proposed algorithms achieve faster
convergence in comparison to the approach based on Givens rotations, orig-
inally proposed in [45]. Other possible application include high-resolution
direction finding and blind subspace methods. The proposed SD and CG
algorithms together with the two proposed line search methods are the first
ready-to-implement algorithms for optimization under unitary matrix con-
straint.

The second main contribution of this dissertation is in the area of multi-
antenna OFDM communications systems. An optimization algorithm based
on a combined criterion is proposed in order to be cancel both inter-symbol
interference (ISI) and co-channel interference (CCI) in a blind manner, i.e.,
without known training or pilot symbols. It possesses reduced computa-
tional complexity since it does not involve any matrix inversions or decom-
positions. The local converge properties of the algorithm are established as
well. The proposed blind algorithm can be used for channel tracking us-
ing the data symbols only. It is suitable for MIMO-OFDM systems, under
slow to moderate fading conditions such as in wireless LANs and continuous
transmissions (television and radio).

1.4 Structure of the thesis

The thesis consists of an introductory part and seven original publications.
The publications are listed at page ix and appended at the end of the
manuscript, starting at page 97. The introductory part of this thesis is orga-
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nized as follows. The first two chapters deal with Riemannian optimization
algorithms. In particular, the problem of optimization under unitary matrix
constraint is addressed. The next two chapters address the problem of blind
equalization in MIMO-OFDM systems.

In Chapter 2, an overview of optimization techniques stemming from
differential geometry is provided. Constrained optimization is regarded as a
geometric problem. The main focus is on optimization under unitary matrix
constraint and the existing techniques. A comprehensive review of applica-
tions of differential geometry to array and multi-channel signal processing
is provided.

Chapter 3 proposes algorithms optimization under unitary matrix con-
straint. The Lie group of unitary matrices U(n) is described as a real man-
ifold. Motivation why the existing algorithms designed for real-valued ma-
trices cannot be straight-forwardly applied to complex-valued matrices is
given. Two computationally feasible optimization algorithms operating on
the Lie group U(n) are introduced. Steepest Descent (SD) and a Conjugate
Gradient (CG) algorithms exploiting the geometrical properties of U(n) are
provided. Two efficient line search methods specially tailored for the pro-
posed algorithms are also introduced.

In Chapter 4, blind channel identification and equalization algorithms
for multi-antenna OFDM systems are reviewed. A classification of these
algorithms is also provided.

Chapter 5 addresses the problem of blind equalization in spatial multi-
plexing MIMO-OFDM systems. An algorithm which optimizes a composite
criterion in order to mitigate both inter-channel and co-channel interference
is proposed.

Chapter 6 provides a summary of the contributions and the results of
the thesis. Future research directions are also discussed.

1.5 Summary of publications

In this subsection, brief overview over the author’s original publications is
given.

In [Publication I], a Riemannian Steepest Decent (SD) algorithm for
optimization under unitary matrix constraint is derived. The algorithm
benefits from the geometrical features of the Lie group of unitary matrices
U(n) in order to reduce the computational complexity. Recent advances in
numerical techniques for computing the matrix exponential needed in the
update are exploited. Armijo line search method is efficiently used in the
step size selection. The computational complexity and stability issues are
addressed in detail. Detailed implementation tables and numerical solutions
are provided, unlike other more general algorithms that require solving ma-
trix equations (sometimes differential equations) and do not provide any
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feasible numerical solutions. The proposed algorithm is tested in a blind
source separation application for MIMO systems, using joint diagonaliza-
tion.

In [Publication II], a Riemannian Conjugate Gradient (CG) algorithm
for optimization under unitary matrix constraint is derived. Two efficient
line search methods exploiting the almost periodic property of the cost func-
tion along geodesics on U(n) are also proposed. Detailed description of the
implementation is provided. The proposed CG algorithm and line search
methods are tested in a blind source separation application for MIMO sys-
tems using joint diagonalization. They are also used to compute the eigen-
decomposition of a Hermitian matrix iteratively by maximizing the Brockett
criterion [42,183,184].

In [Publication III], a Riemannian steepest descent based on Taylor ap-
proximation of the geodesics is proposed. The Riemannian SD algorithm
is applied to high resolution direction finding. A comparison to Euclidean
approaches is provided. The algorithm is also applied to an existing blind
receiver for MIMO-OFDM systems [228] in order to reduce complexity.

In [Publication IV], introduces two novel line search methods on U(n).
The first method uses a polynomial approximation of the derivative of the
cost function. The second method is based on a DFT approximation. They
are used together with the Riemannian SD algorithm in [Publication I].

[Publication V] compares Riemannian SD and CG algorithms on U(n)
using Armijo line search method. The algorithms are applied to two dif-
ferent cost functions. The first one is the Brockett criterion and is used
to perform the diagonalization of a Hermitian matrix. The second one is
the JADE criterion and is used to perform the blind signal separation of
communications signals in a MIMO system.

In [Publication VI], a blind equalization algorithm for spatial multiplex-
ing MIMO-OFDM systems is proposed. The algorithm is based on a com-
posite criterion designed to cancel both the inter-symbol and co-channel
interference. The composite criterion is comprised of a Vector Constant
Modulus (VCM) criterion and a decorrelation criterion. Identifiability con-
ditions for the MIMO channel are also provided.

In [Publication VII] a blind equalization algorithm for spatial multiplex-
ing MIMO-OFDM systems is proposed. The algorithm is the final version of
the algorithm in [Publication VI], subsequently developed in [13] and [12].
The VCMA criterion is modified in order to be able to cope with the correla-
tion introduced by the cyclic prefix (CP). The resulting composite criterion
consists of a modified VCM criterion and a decorrelation criterion. Local
convergence properties of the algorithm have been established. Conditions
for the blind equalization and co-channel signal cancellation are also pro-
vided.

All the simulation software for all the original publications included in
this dissertation was written solely by the author.
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In [Publications I–VIII], the original ideas and the derivations of the al-
gorithms were developed by the first author. Simulations were made by the
first author as well. The co-authors provided guidance during the develop-
ment of the algorithms, establishing their properties and the design of the
experiments. They have also provided valuable comments that substantially
improved the rigorousness and the technical quality of the papers.
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Chapter 2

Overview of geometric
optimization techniques

In this chapter, different approaches for solving optimization problems
[27, 83, 153, 163] subject to differentiable equality constrains are reviewed.
We are mainly interested in minimizing cost functions, but all the algo-
rithms considered can be easily adapted to maximization problems. Classi-
cal constrained optimization algorithms operating on Euclidean spaces, as
well as non-Euclidean approaches are presented in Section 2.1. Different
algorithms for optimization under unitary matrix constraint are revisited
in Section 2.2. A detailed literature review of Riemannian optimization al-
gorithms and their applications in signal processing is provided in Section
2.3.

2.1 Constrained optimization from a differential
geometry perspective

Constrained optimization problems arise frequently in many sensor array
and multi-channel signal processing applications. Most of the adaptive al-
gorithms [105] require minimizing an error criterion in an iterative manner,
subject to some matrix equality constraint. Solving this type of problems
is typically done numerically. In fact, numerical optimization may be the
only way to solve certain problems. One of the reasons for the numerical
optimization may be that a closed-form solution does not exist, or if it exists
it is very hard to find. Iterative optimization algorithms are also suitable
in the case where only small corrections to a previous solution need to be
applied sequentially.

Classical approaches solve this problem on the Euclidean space and they
are mainly of two types. The first approach supposes optimizing the un-
constrained cost function by using classical gradient algorithms. In order
to satisfy the constraint, a restoration procedure needs to be applied after
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every iteration. In general, the resulting algorithms convergence slowly due
to fact that most of the effort is spent on enforcing the constraint and not
on the actual optimization.

The second classical approach for constraint optimization is based on the
method of Lagrange multipliers [97]. The method introduces an additional
set of unknown scalar parameters called Lagrange multipliers. The number
of multipliers is equal to the number of scalar constraints. A new cost func-
tion called Lagrangian is constructed. It is comprised of the original cost
function and the set of constraints weighted by the Lagrange multipliers.
This function is jointly optimized w.r.t. to both the original variables and
the new variables, i.e., the Lagrange multipliers. Closed-from solutions may
be found in simple cases by solving a system of equations. Often, increasing
the number of unknowns is undesirable, especially when the dimension of the
optimization problem is already large. Many practical applications involve
complicated expressions of the cost function (e.g. the JADE criterion [45])
and non-linear matrix constraints (e.g. the unitary matrix constraint). In
such cases, the Lagrangian approach requires solving a large system of non-
linear equations which may be mathematically intractable. For this reason,
simplified extra-penalty methods [153] stemming from the Lagrangian ap-
proach have been proposed. Instead of using several Lagrange multipliers,
they use a single scalar parameter to weight the extra-term which penalizes
the deviation from the constraint. The corresponding composite cost func-
tion is minimized iteratively by using a classical steepest descent method.
This approach may lead to inaccurate solutions due to the fact that the
deviation from constraint accumulates after each iteration. Additional sta-
bilization procedures are usually needed.

More reliable and modern solutions to some specific classes of constrained
optimization problems [18,87,131,184,196] may be obtained by using tools of
differential geometry [59,101]. The initial constrained optimization problem
on Euclidean space is converted into an unconstrained one, on a different
parameter space. This new parameter space can be viewed as a system of
coordinates where only the values of coordinates satisfying the constraint are
allowed. Geometrically, the set determined by the constraints can be under-
stood as a lower-dimensional space embedded on the initial Euclidean space
(see Figure 2.1). Usually smooth (differentiable) constraints may determine
differentiable manifolds [59]. In general, these manifolds are non-Euclidean
spaces and may be elegantly explored by using state-of-the-art tools from
differential geometry. Efficient numerical optimization algorithms may be
derived by taking into account the geometrical structure of the manifold.
In addition to that, matrix manifolds [18] possess rich algebraic structure
arising from the special properties of matrices.

The classical gradient-based algorithms such as steepest descent, con-
jugate gradient and Newton methods can be naturally extended from Eu-
clidean space to differentiable manifolds. Pioneering work by Luenberger
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Figure 2.1: Optimization on manifolds.

[131] and Gabay [87] treats the constrained optimization problem in a dif-
ferential geometry context and establishes interesting connections with the
Lagrange multipliers method considering the first and the second-order op-
timality conditions. Optimizing a differentiable cost function J (W) on a
differentiable manifold supposes choosing a point W on the manifold and
a search direction H tangent to the manifold, at W (see Figure 2.1). The
next iteration consists of moving along a curve C(t) which emanates from
W in the direction of H. This curve is called local parametrization and can
be used to describe a neighborhood around a given point on the manifold.
Therefore, C(t) must be contained on the manifold and fulfill the condition
C(0) = W. Additionally, its derivative at W must coincide with the search
direction H, i.e., C′(0) = H. Optimizing the cost function in one dimen-
sion along the curve C(t) is required at every iteration. It means that a
line search is performed. By moving along such curves, the constraint is
automatically satisfied at each iteration.

Choosing the appropriate local parametrization and the appropriate
search direction must be computationally feasible. The most natural lo-
cal parametrizations are the geodesics, which on Riemannian manifolds are
locally the length minimizing curves. They correspond to the straight
lines on the Euclidean space. On certain manifolds such as Lie groups
[89,107,123,208], the geodesics are computationally attractive. Using other
local parametrizations is also possible. A well-known non-geodesic approach
is to use a retraction, which is a map that locally projects the tangent plane
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onto the manifold [16,18,131,137]. Choosing the search direction is a com-
promise between high complexity and fast convergence. This direction can
be, for example, the steepest descent (or ascent) direction, or other direc-
tion, for example the one corresponding to a conjugate gradient or Newton
algorithm.

The steepest descent (SD) or steepest ascent (SA) algorithm on differ-
entiable manifolds [41, 57, 69, 77, 87, 131, 150, 151, 161, 183, 196, 219, 220] is
relatively simple, but its convergence is only linear [87, 183, 196, 219, 220].
Its asymptotic rate of convergence is related to the eigenvalues of the Hes-
sian associated with the Lagrangian function of the constrained optimization
problem evaluated at the solution [131]. Developing a SD algorithm on a
differentiable manifold requires defining intrinsically the gradient field of the
cost function on the manifold. The gradient can be defined only after en-
dowing the differentiable manifold with a Riemannian metric, which turns it
into a Riemannian manifold. The Riemannian gradient is a vector tangent
to the manifold, along which the cost function increases the fastest.

The conjugate gradient (CG) algorithm on differentiable manifolds
[57,69,122,183,184,229] is still a relatively simple algorithm and it achieves
superlinear convergence [183]. In general CG is considerably simpler than
a Newton algorithm which would require computing second-order deriva-
tives. CG captures the second-order information from two successive first-
order derivatives which are properly combined. The additional complexity
compared to the SD is due to the fact that CG requires transporting gra-
dient vectors from one point to another, i.e., performing parallel transport.
This operation is not as simple as in a vector space. The parallelism is
not relative to straight lines as on the Euclidean space, but to an affine
connection (often the Levi-Civita connection) [59, 107, 154]. The connec-
tion makes clear the two basic ideas of covariant differentiation and parallel
transport [59, 107, 154]. In certain manifolds the parallel transport can be
done in a very simple manner, and the resulting CG algorithm is comparable
to the SD in terms of computational complexity.

Riemannian Newton algorithm [17, 87, 135, 155, 183, 196] achieves
quadratic convergence [17, 87, 183]. Newton algorithm is a prohibitively
expensive algorithm even on Euclidean space, when the dimension of the
optimization problem is large. On Riemannian manifolds, the complexity is
even higher, since it would require computing the second covariant deriva-
tive and inverting it. For this reason, CG [69,122,183,184,229], or modified
versions of the Newton algorithm [137] are often preferred. Moreover, the
Newton algorithm may converge to any type of stationary points, not only
the extrema of interest. Trust-region methods on Riemannian manifolds
have been recently proposed in the literature [15,18].

In conclusion, in order to extend the optimization algorithms from the
Euclidean space to Riemannian manifolds, the straight lines are replaced
by geodesics, the classical differentiation by covariant differentiation and
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the idea of vector addition by exponential map and parallel transport [184].
The most common differentiable manifolds which arise in signal processing
applications are homogeneous spaces [107,208] such as the Stiefel manifold,
the Grassmann manifold [69,74,75,137,183]. The Stiefel manifold St(n, p) is
the set of n×p (real or complex) matrices with mutually orthogonal columns.
The Grassmann manifold Gr(n, p) is the set of all p-dimensional subspaces
of the n-dimensional Euclidean space (Rn or C

n). They are also represented
by n × p orthonormal matrices which can be in this case any arbitrarily
rotated basis of a subspace. The Stiefel manifold of n×n orthogonal/unitary
matrices is a special case due to the fact that these matrices are algebraically
closed under the standard matrix multiplication operation, i.e., they form a
matrix Lie group [89, 107, 123, 208]. A matrix Lie group is a differentiable
manifold and a matrix group at the same time. Orthogonal matrices form
the orthogonal group O(n). Similarly, unitary matrices form the unitary
group U(n). Another relevant Lie group is the general linear group GL(n),
which is the group of n × n invertible matrices. In general, the additional
group structure brings computational benefits which may be exploited in
practical algorithms, as it will be shown later in Chapter 3. For this reason,
in the literature special attention has been paid to optimization algorithms
operating on Lie groups [17,40,41,57,69,76,77,79,135,150,151,155,161,183,
214,229,230].

In particular, in this thesis, the problem of optimization under unitary
matrix constraint is addressed. Computationally efficient optimization algo-
rithms which exploit the geometry of the Lie group n× n unitary matrices
U(n) are proposed.

2.2 Optimization under unitary matrix constraint

- different approaches

Consider a differentiable real-valued cost function J : C
n×n → R. The

problem of optimization under unitary matrix constraint may be formulated
as:

minimize J (W) subject to (2.1)

WHW = In. (2.2)

Two main approaches for solving the above optimization problem have been
proposed in the literature. The first one requires solving the constrained op-
timization problem on the Euclidean space by using classical gradient-based
algorithms. The second one requires solving an unconstrained optimization
problem on the differentiable manifold determined by the constrained set,
which is the Lie group of n × n unitary matrices by U(n). The two main
approaches are presented below together with the methods which they in-
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clude. Similar classification is provided in [Publication I],[Publication III],
and [162].

2.2.1 Classical Euclidean approach for optimization under
unitary matrix constraint

The classical Euclidean approach for solving constraint optimization prob-
lems include the unconstrained gradient-based method with constraint en-
forcement and the method of Lagrange multipliers (or methods stemming
from it).

Euclidean gradient algorithms with constraint enforcement

An unconstrained classical gradient-based method is used to minimize the
cost function J (W). The constraint is satisfied by using an additional
restoration procedure, which needs to be applied after every iteration. This
is a well-known technique for optimization under unitary/orthonormal ma-
trix constraint [64,113,156,157,171,172,216]. Each iteration k of the algo-
rithm consists of the two following steps:

W̃k+1 = Wk − µkH
E
k (2.3)

Wk+1 = P{W̃k+1}, (2.4)

where HE
k is an ascent direction and the step size µk > 0 sets the conver-

gence speed. The search direction HE
k may be the gradient direction on the

Euclidean space at Wk, i.e., ∇EJ (Wk). Other search directions could be
used, for example the one corresponding to a conjugate gradient, or Newton
method. Due to the additive type of update, the result of (2.3) is gener-
ally not a unitary matrix. The new iterate W̃k+1 deviates from the unitary
property at every iteration. The constraint needs to be restored by pro-
jecting W̃k+1 onto the space of unitary matrices. A projection operator
P : C

n×n → U(n) is used in (2.4) in order to obtain a unitary matrix. Few
algorithms in the literature [11,113,216] find the unitary matrix which is the
closest to the original one under the Euclidean norm. The corresponding pro-
jection is known as “the symmetric orthogonalization” procedure [113, Ch.
6, Sect. 6.6], and it may be written as

P{W̃k+1} = W̃k+1(W̃
H
k+1W̃k+1)

−1/2, (2.5)

or in terms of left and right singular vectors of W̃k+1 [108]. Other non-
optimal projections (under Euclidean norm) may be used, for example the
one based on Gram-Schmidt orthogonalization [64,156,157,171,172,216].

The approach does not take into account the group property of unitary
matrices, i.e., the fact that unitary matrices are closed under the multipli-
cation operation. This is not the case under addition. The departure from
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the unitary property may be significant and most of the effort will be spent
on enforcing the constraint, instead of moving towards the optimum. Con-
sequently, this algorithm achieves lower convergence speed, as demonstrated
in [Publication I] and [Publication III]. The Euclidean gradient algorithms
combined with projection methods do not take into account the curvature of
the constrained surface, and therefore achieve only linear convergence [183].
Moreover, this approach makes the idea of line search optimization mean-
ingless.

Lagrange multipliers and related methods

The method of Lagrange multipliers [97] is the basic tool for optimizing a
function of multiple variables subject to one or more scalar constraints. The
method introduces a set of new real scalar unknowns λi called Lagrange mul-
tipliers. A composite cost function L(W) called Lagrangian is constructed
by using the original cost function J (W) and an extra-term containing the
constraints weighted by the Lagrange multipliers. This function is jointly
optimized w.r.t. both the elements of W and the Lagrange multipliers λi. In
this way, finding stationary points of the constrained cost function of J (W)
is equivalent to finding the stationary points of the unconstrained cost func-
tion L(W). The unitary matrix constraint (2.2) is equivalent to n2 real
scalar constraints. Consequently, a number of n2 real Lagrange multipliers
are required to construct the Lagrangian. The original cost function J (W)
has already 2n2 free real variables. Therefore, the Lagrangian has 3n2 free
variables. Increasing the number of variables is undesired, especially when
n is large. A large system of non-linear matrix equations needs to be solved
in order to find the stationary points. Often, for practical cost functions,
solving such a system of equations is non-trivial already for n ≥ 2. An ex-
ample of such cost function is the JADE criterion [45], whose optimization
has been considered in [Publication I] and [Publication II].

For this reason, a simplified technique stemming from the method of La-
grange multipliers has been proposed in the literature [205]. This technique
uses a gradient-based iterative method to minimize a composite cost func-
tion on the Euclidean space. The composite cost function is comprised of the
original cost function J (W) and an extra-term U(W) = ‖WHW − In‖F ,
which penalizes the deviation from the unitary constraint. In this work we
will refer to this method as “the extra-penalty method”. The kth iteration
of the extra-penalty method is of the form

Wk+1 = Wk − µk[H
E
k + λkU

E
k ] (2.6)

The direction HE
k represents the Euclidean gradient of the original cost func-

tion J (W) at Wk, whereas the direction UE
k is the Euclidean gradient of

the penalty function U(W) at Wk. The later term is used to penalize the
deviation from the unitary property, and in a way it resembles the Tikhonov
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regularization method [147]. A single scalar weighting parameter λk is used
to weight the direction UE

k in a manner similar to the method of Lagrange
multipliers. For this reason, the method has also been called bigradient
method in the literature [205]. Most of the extra-penalty type of algorithms
in the literature dealing with optimization under orthonormal constraints
are specialized to certain tasks such as subspace tracking or Independent
Component Analysis (ICA) [61, 64, 66, 205]. They are computationally effi-
cient for the task they are designed for. In general, they cannot be applied
to other optimization problems with unitary/orthonormal constraint. Some
of the optimization algorithms are restricted only to the case of optimiz-
ing J (w), where w is a unit-norm vector. In the unit-norm vector case,
a scalar parameter λk always exists such that the unit-norm constraint is
satisfied. Finding the optimum λk which keeps the constraint satisfied limits
the choice of the step size µk > 0, and consequently the convergence speed.
This limitation is due to the additive update which alters the constraint.
Algorithms based on additive update which are able to keep the constraint
satisfied up to machine precision exist in the literature [60]. They are based
on Householder transforms [99]. These algorithms are specialized to minor
component analysis (MCA). The extra-penalty method is in general numer-
ically unstable, the deviation from the unitary constraint accumulates over
time. Self-stabilized algorithms have been proposed [61–66], in order to
avoid this unstable behavior. They usually discretize the differential equa-
tion which describes the motion on the Riemannian manifold determined by
the constraint. The discretization leads to numerical errors which are com-
pensated by inserting additional stabilizing factors at various points within
update (see [Publication III]). The numerical stability is improved and this
fact has been proved in [61] by using an asymptotic analysis which shows
that the error does not accumulate over time.

In conclusion, solutions based on the method of Lagrange multipliers
may be non-trivial to compute for large dimensions n. Moreover, the math-
ematical tractability is highly dependent on the expression of the cost func-
tion, since a system of 3n2 nonlinear equations with 3n2 unknowns needs to
be solved. The solution obtained by using the extra-penalty method satis-
fies the constraint just approximately, when only one scalar parameter λk

is used. This fact has been demonstrated in [Publication I] and [Publica-
tion III]. Finally, these methods are not directly applicable to a general
problems of optimization under unitary matrix constraint.

2.2.2 Differential geometry based optimization algorithms

The unitary matrix constraint (2.2) is a smooth constraint which deter-
mines a differentiable manifold. This manifold can be seen as a “constrained
surface” embedded on an higher-dimensional Euclidean space. Differential
geometry-based optimization algorithms move along directions which are
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tangent to the manifold. Depending on the choice of the local parametriza-
tion there are two types of algorithms projection-based algorithms and
geodesic algorithms.

An important aspect to be considered is that the unitary matrices are
closed under the standard matrix multiplication operation, i.e., they form
the Lie group of n × n unitary matrices U(n). This fact brings additional
properties which may be exploited in optimization. The most important
property is that geodesics are described by simple formulas, therefore they
can be efficiently computed.

Unlike the Lagrange multipliers method which introduces new unknown
variables, differential geometry-based algorithms exploit the reduced dimen-
sion of the manifold. The original problem involves a cost function of 2n2

variables and n2 constraints. The differential geometry-based approach in-
volves only n2 variables (which is the dimension of U(n)), and no constraints.
Moreover, the mathematical tractability does not depend on the expression
of cost function.

Non-geodesic differential geometry based gradient algorithms

This type of algorithms use as a local parametrization a projection operator
(2.5). They move along straight lines tangent to the manifold and deviate
from the unitary constraint at every iteration. This is due to the fact that
the the manifold is a “curved space”. Therefore, this algorithm has the
same drawback as its Euclidean counterpart, i.e., the constraint restoration
procedure needs to be applied after every iteration. The algorithm consists
of the two following steps at each iteration:

W̃k+1 = Wk − µkH
R
k (2.7)

Wk+1 = P{W̃k+1}. (2.8)

The search direction −HR
k is a descent direction tangent to the manifold at

Wk. The step size µk > 0 determines the convergence speed. Compared to
its Euclidean counterpart, they depart less from the constrained surface since
they move along the search directions which are tangent to the manifold.
The deviation is only due to the curvature of the manifold, and not because
of the inaccurate search direction. Consequently, these type of algorithms
achieve better convergence speed, as demonstrated in [Publication I] and
[Publication III].

From a differential geometry point of view, the projection operator is as
local parametrization on the manifold, i.e., a mathematical description of the
neighborhood of an arbitrary point Wk ∈ U(n). The corresponding curve
starting from Wk ∈ U(n) with the initial tangent vector −HR

k is given by

P̂(µ) = P{Wk −µHR
k }. Unfortunately, due to the nature of the projection

operator, the line search optimization needed in the step size selection is
computationally expensive.
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Riemannian gradient algorithms along geodesics

A natural way to optimize a cost function on a Riemannian manifold is to
move along geodesics. Geodesics are locally the length minimizing paths on
a Riemannian manifold [59]. Intuitively, they correspond to straight lines
on Euclidean space. Riemannian algorithms for optimization under unitary
matrix constraint use the exponential map as a local parametrization. The
resulting algorithms employ a multiplicative update rule, i.e., a rotation is
applied to the previous value to obtain the new one. Each iteration k of the
algorithm consists of the following step:

Wk+1 = exp(−µkH
R
k )Wk = RkWk (2.9)

where −HR
k is the directional vector of the geodesic and is represented

by a skew-Hermitian matrix. Consequently, its matrix exponential Rk =
exp(−µkH

R
k ) is a unitary matrix. Since Wk is a unitary matrix, Wk+1 will

remain unitary at every iteration. In this way, the constraint is maintained
automatically and no enforcing procedure is necessary.

Optimization algorithms with unitary constraints such as the ones in
[137] are more general in the sense that they are designed for the Stiefel
and the Grassmann manifolds. Therefore, when dealing with the case on
n × n unitary matrices they do not take into account its Lie group struc-
ture which brings numerous computational benefits. We fully exploit these
benefits in the gradient algorithms proposed in [Publication I], [Publica-
tion II], [Publication III], [Publication IV] and [Publication V]. The most
important advantage is the convenient expression for the geodesics and par-
allel transport. Geodesics are expressed in terms of matrix exponential of
skew-Hermitian matrices. Hence, they are easier to compute compared to
the projection-based method [137] which requires the computing SVD of
arbitrary matrices. Recent progress in numerical methods for calculating
the matrix exponential may be exploited [47,117,142]. For more details see
[Publication I], Section V. Another important property of the Lie group is
that transporting vectors from a tangent space to another may be done in
a very simple manner. The parallel transport which is needed for the con-
jugate gradient algorithm may be done simply by using left/right matrix
multiplications [Publication I]. Moreover, the geodesic search when adapt-
ing the size µk at every iteration may be efficiently done by using for example
the Armijo rule [163]. Efficient line search methods for step size adaptation
have been proposed in [Publication IV]. They exploit the almost periodic
property of the cost function along geodesics on U(n).

In conclusion, geodesic algorithms for optimization under unitary matrix
constraint fully exploit the geometric and algebraic structure of the Lie group
of unitary unitary matrices to reduce complexity.
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2.2.3 Optimization under unitary matrix constraint – an il-
lustrative example

The goal of this example is to illustrate how different optimization al-
gorithms operate under unitary matrix constraint. We use a simple toy
problem for illustration purposes. We minimize the cost function J (w) =
|w + 0.2|2 under unitary constraint, which in this case is the unit circle
w∗w = 1, w ∈ C. The unit-length complex numbers form the Lie group of
1× 1 unitary matrices U(1).

We consider a 3-dimensional representation of the cost function J (w)
with respect to the real and the imaginary parts of w, i.e., x = ℜ{w} and
y = ℑ{w}. The cost function J : R

2 → R is quadratic in x and y and
is represented by the paraboloid P in Figure 2.2. The unitary constraint
is represented by the cylinder obtained by translating the unit circle U(1)
along the vertical axis. The resulting cylinder is the space U(1) represented
in three dimensions (embedded on R

3). The parameter space where the cost
function satisfies the constraint x2+y2 = 1 is represented by the intersection
of the cost function surface with the cylinder, i.e., the ellipse E represented
by thick curve. This ellipse represents the constrained parameter space of
the cost function J : U(1)→ R.

There are a significant differences between minimizing the cost function
J (w) on R

2 or on U(1). On the Euclidean space, i.e., R
2 the minimum is

attained at the point mE of coordinates (x, y) = (−0.2 , 0) (the minimum of
the paraboloid P in Figure 2.2). This point does not satisfy the constraint,
therefore is an undesired minimum. On the Riemannian space the minimum
is attained at the point mR of coordinates (x, y) = (−1, 0) (the minimum
on the ellipse E in Figure 2.2). This point satisfies the constraint and is the
desired minimum. The steepest descent direction on the Euclidean space
−∇EJ (x0, y0) at a given point p satisfying the constraint is tangent to the
meridian of the paraboloid, and points in the direction of the undesired min-
imum. The Riemannian steepest descent direction −∇RJ (x0, y0) is tangent
to the ellipse E , and points in the direction of the desired minimum.

The two-dimensional representation of the cost function in Figure 2.3
shows how different algorithms operate under unitary constraint. Five dif-
ferent algorithms are considered. The first two algorithms are the uncon-
strained and the constrained SD on R

2, respectively. The constrained version
enforces the unit norm after every iteration, as described in Subsection 2.2.1.
The third algorithm is the extra-penalty method, as described in Subsection
2.2.1. The fourth and the fifth algorithms operate on U(1), and they are
the non-geodesic SD described in Subsection 2.2.2 and the geodesic SD algo-
rithm in Subsection 2.2.2, respectively. We may notice in Fig. 2.3 that the
unconstrained SD (marked by ♦) takes the steepest descent direction in R

2,
and goes straight to the undesired minimum. By enforcing the unit norm
constraint, we project radially the current point on the unit circle (�). In
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−∇RJ (x0, y0)
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Figure 2.2: Three-dimensional visualization of the cost function given by
J (x, y) = (x + 0.2)2 + y2, represented by the paraboloid P. The unitary
constraint x2 + y2 = 1 in R

3 is the cylinder obtained by translating the
unit circle along the vertical axis (not shown in the figure). The constrained
parameter space of the cost function J (x, y) is obtained by intersecting the
paraboloid with the cylinder, i.e., the ellipse E represented by thick curve.
The minimum of the unconstrained cost function mE is the minimum in the
Euclidean space. The minimum of the constrained cost function mR is the
minimum in the Riemannian space U(1). The Euclidean steepest descent
direction −∇EJ (x0, y0) at the point (x0, y0) is tangent to the meridian of
the paraboloid crossing (x0, y0). The Riemannian steepest descent direction
−∇RJ (x0, y0) at the point (x0, y0) is tangent to ellipse.

each step the constraint has to be enforced in order to avoid undesired min-
imum. The extra-penalty SD algorithm (▽) converges somewhere between
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initialization point

w0 = exp(π/4)

♦−−− SD on the Euclidean space (unconstrained)

�−−− SD on the Euclidean space (with constraint enforcement)

▽· − ·− SD on the Euclidean space (extra-penalty approach)

+×· · · · · · SD on the Riemannian space (non-geodesic)

©�������� SD on the Riemannian space (geodesic)

Figure 2.3: Minimizing the cost function J (x, y) = (x + 0.2)2 + y2 on the
unit circle U(1): Euclidean vs. Riemannian steepest descent (SD) methods.

the desired and the undesired minimum, depending on the factor which is
used to weight the extra-penalty. The non-geodesic SD algorithm on U(1)
(+×) [137] takes the steepest descent direction on U(1), and moves along a
straight line tangent to the unit circle. Due to the non-zero curvature of
U(1) the constraint needs to be enforced after every iteration by projection.
The geodesic SD algorithm (©) uses a multiplicative update which is a phase
rotation in this case. Consequently, the constraint is satisfied at every step
in a natural way. Although this low-dimensional example is rather trivial, it
has been included for illustrative purposes. In the case of multi-dimensional
unitary matrices, a similar behavior of the algorithms considered here is
encountered.

2.3 Applications of differential geometry to array
and multi-channel signal processing

Differential geometry has become a highly important topic in the signal
processing community. It does not only provide powerful tools for solving
certain problems, but it allows a better understanding of the problems [89].
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A comprehensive overview of the geometric methods and their applications
in engineering is provided in [88]. A recent review of applications of differen-
tial geometry to signal processing may be found in [138]. The applications
may be classified by the nature of the task to be solved as follows: opti-
mization on manifolds, tracking on manifolds, statistics on manifolds and
quantization on manifolds. In this section, a detailed presentation of this
classification, as well as application-oriented literature review are provided.

2.3.1 Optimization and tracking on manifolds

When the optimization needs to be performed subject to differentiable equal-
ity constraints, the optimization on differentiable manifolds arises natu-
rally [18]. In this way, the initial constrained optimization problem becomes
an unconstrained one, on an appropriate differentiable manifold. Among
the most relevant contributions to this area throughout the past thirty-five
years are brought by Luenberger in 1972 [131], Gabay in 1982 [87], Smith
in 1993 [183] and Udrişte in 1994 [196]. They consider the optimization on
general differentiable manifolds. However, the corresponding algorithms do
not exploit special properties that may appear on certain manifolds, such
as Lie groups and homogeneous spaces [107, 123, 208]. For this reason, the
resulting algorithms may exhibit high computational complexity. Most of
the work done after 1994 is dedicated to optimization on particular Rie-
mannian manifolds. The most popular manifolds arising in practice are
determined by orthonormal matrix constraints, such as the Stiefel manifold
St(n, p) and the Grassmann manifold Gr(n, p) [17, 69, 74, 75, 137, 151]. The
points on these manifolds may be represented by orthonormal n × p ma-
trices. The n × n orthogonal/unitary matrices are a special case of Stiefel
manifold, i.e., they form Lie groups. Special attention has been paid in
the literature to optimization algorithms operating on the orthogonal group
O(n) [17, 40, 41, 69, 76, 77, 79, 150, 151, 161, 183, 214] and on the general lin-
ear group GL(n) [229, 230]. The above algorithms are designed only for
real-valued matrices. Complex-valued case has been addressed only in [137],
since most of the authors consider the extension from the real to the complex
case trivial. Most of the communication and sensor array signal processing
applications deal with complex-valued matrices and signals.

In this thesis we focus on Riemannian algorithms operating on the uni-
tary group U(n). Therefore, these algorithms are designed for complex-
valued matrices. They fully exploit the properties arising from the Lie group
structure of the manifold. In [Publication I] and [Publication III] we propose
Riemannian steepest descent algorithms on U(n) and in [Publication II] we
propose a Riemannian conjugate gradient algorithm on U(n). In the fol-
lowing part of this subsection few relevant applications of optimization on
manifolds are presented. They include subspace techniques, MIMO commu-
nications, blind source separation, and array signal processing in general.
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Subspace estimation and tracking

Subspace techniques are fundamental tools in signal processing. Among
the most common applications are high-resolution frequency estimation,
direction finding used for smart antennas [170, 178], beamforming, delay
estimation and channel equalization. A thorough literature survey of the
algorithms for tracking the extreme eigenvalues and/or eigenvectors in sig-
nal processing up to year 1990 may be found in [53]. Since then, many
new algorithms for subspace estimation and tracking with different com-
plexity and performance have been developed. One of the most com-
mon algorithms is Projection Approximation Subspace tracking (PAST and
PASTd) [11, 215, 216] which is mostly used for direction of arrival estima-
tion. Other algorithms in the literature are designed for principal or minor
subspace tracking in blind source separation [60,63,64,66,205].

Many authors approach the subspace estimation and tracking as an op-
timization problem on the Grassmann manifold Gr(n, p) [17–19,85,86,122,
186]. The subspaces represent points on Gr(n, p) and their time variation
correspond to a trajectory on the manifold. In addition to the observations,
a stochastic model for the dynamics of the subspaces may be employed.
Most of the algorithms in the literature use simple models to predict the
motion or the rotation of the subspaces. In these models, the best estimate
of the subspace at one time instance is simply the current value of the sub-
space. These algorithms do not take into account any information on the
dynamic behavior, i.e., “the observed motion of the subspaces”. This lack of
predictability comes from the fact that the subspaces cannot be associated
with vector quantities moving in a finite-dimensional vector space, described
by a conventional state-space model, such as the Kalman filter. Algorithms
which may take into account the subspace dynamics have been proposed,
and they operate on the Grassmann manifold [85, 86, 186]. In general, the
complexity is relatively high, but they posses very good tracking capabilities.
As suggested in [138], a potential research area is to extend the state-space
model to nonlinear settings by replacing the addition operation by a Lie
group action, such as multiplication. An example of the group action is the
rotation applied to an orthonormal matrix.

Some applications require estimating the exact set of eigenvectors, not
only the subspace they span. In this case, the optimization should be per-
formed on the Stiefel manifold. Classical algorithms for computing eigenvec-
tors [53] are formulated on the Riemannian manifolds, such as Jacobi-type
methods [112] (see [Publication III] and [62]) and Rayleigh Quotient Iter-
ation (RQI) [18, 19, 136, 148, 183]. In this work, we propose Riemannian
algorithms for computing the complete basis of eigenvectors (see [Publica-
tion I], [Publication II] and [Publication III]). They operate on the Lie group
of unitary matrices U(n).
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MIMO communication systems

Communication systems with multiple transmit and/or receive antennas
achieve high capacity and link reliability [194]. Sending data on the eigen-
modes of the MIMO channel is an important practical transmission scheme.
The unitary matrices play an crucial role in the beamformer design. The
Stiefel manifold is relevant for this type of applications, since the exact
eigenvectors are required. Orthonormal coding matrices are also used in
space-time coding [111].

A blind identification approach is applied to beamforming in [45] based
on a Joint Approximate Diagonalization of Eigen-matrices (JADE). The
JADE approach relies on the independence of the sources, by exploiting
the statistical information of the fourth order cumulants. Without know-
ing the array manifold, the beamforming is made robust to antenna array
imperfections, so no physical modeling or calibration is needed. The di-
agonalization of the fourth order cumulant matrices is formulated as an
optimization problem under unitary matrix constraint. This problem is ad-
dressed by proposing a steepest descent algorithm on the unitary group in
[Publication I] and a conjugate gradient algorithm on the unitary group in
[Publication II]. The proposed technique outperforms the classical JADE
optimization approach [45] based on Givens rotations, especially when the
number of signals is relatively large. This type of application has also been
formulated as an optimization problem on the Stiefel manifold [149], and
recently on the oblique manifold [16]. A Riemannian optimization tech-
nique on the oblique manifold has been applied for optimizing the transmit
beamforming covariance matrix of MIMO radars [34,82,167] in [21]. In [192]
a constrained beamformer design is considered. The problem may also be
formulated as an optimization under unitary matrix constraint. In [185] the
beamforming is used to maximize the signal-to-interference-plus-noise ratio
(SINR). The optimal weight is determined by using linear and nonlinear
conjugate algorithms. They operate on the Euclidean space and the Stiefel
manifold, respectively. A LS approach to blind beamforming was adopted
in [209]. The problem is decomposed into two stages. First, a whitening pro-
cedure is applied to the received array vector, which transforms the array
response matrix into a unitary matrix. The second step is a unitary rota-
tion. The rotation matrix is determined from the fourth order cumulants,
similarly the the JADE algorithm [45].

Riemannian gradient algorithms for array signal processing have also
been proposed in [187]. The optimum weight coefficients are vectors with
constant magnitude, but variable phase. Therefore only a phase-nulling
approach is used to maximize the SINR. This is done by using Riemannian
conjugate gradient and Newton algorithms. In [197] a tracking solution
for the downlink eigenbeamforming in Wideband CDMA is proposed. The
unitary constrained optimization is performed by using Givens rotations.
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The complexity may be decreased by formulating the problem on the Stiefel
manifold. A blind source separation approach on single/multi-user MIMO
communication systems has been adopted in [156]. The algorithm requires
maximizing a multi-user kurtosis criterion under unitary matrix constraint.
This is done by using classical Euclidean steepest descent combined with
Gram-Schmidt orthogonalization procedure after every iteration (see Section
2.2.1). In [171] a blind source separation approach for the Bell Labs lAyered
Space-Time coding (BLAST) architecture [210] is proposed. The algorithm
is based on a multi-modulus algorithm, which leads to the same unitary
optimization problem as in [156]. Similar constant-modulus criteria to be
minimized under unitary matrix constraint are employed in [130,157,172].

Blind source separation

Separating signals blindly may be done by exploiting the statistical prop-
erties of the transmitted signals. Amari [25] proposed the natural gradient
algorithm for blind separation. The learning algorithm operates on the Lie
group of invertible matrices and it has been proved to be Fisher efficient
by means of information geometry [24]. Cardoso and Laheld [44] developed
Equivariant source Separation (EASI) via Independence. The concept of ma-
trix multiplicative group is considered and the resulting algorithm is called
relative gradient. The algorithm provides “isotropic convergence” similarly
to the Newton algorithm. The connection between the natural gradient and
the relative gradient has been established in [75,161].

Douglas and Kung consider the blind source separation with orthogonal-
ity constrains and propose the ordered rotational KuickNet algorithm [65].
The algorithm discretizes the geodesic motion on the Stiefel manifold. Even
though [25,44,65,230] consider the matrix group concept, the update of the
corresponding algorithms is not based on the group operation. Additive up-
date is used instead. For this reason the constraint need to be restored by
separate procedures in each iteration. A conjugate gradient algorithm for
blind separation of temporally correlated signals which exploits the group
properties of the group of invertible matrices GL(n) is proposed in [229]. In
this way, the undesired trivial solution which the Euclidean gradient algo-
rithms would converge to (the zero matrix), is avoided.

Differential geometry-based learning algorithms on the orthogonal group
for blind separation have been proposed first by Fiori et. al [73,76,78,79] and
Nishimori [150]. Algorithms operating on the Stiefel and on the Grassmann
manifolds have also been proposed [74, 75]. More recent relevant work in
this area is [46, 77, 151]. Plumbley [161, 162] proposed Lie group methods
for non-negative ICA, i.e., a steepest descent on the orthogonal group. All
the above mentioned steepest descent algorithms are designed only for real-
valued matrices and sources. These algorithms are not directly suitable for
unitary matrices, as it will be shown later in Chapter 3.
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A reliable alternative for solving the blind separation problem is the
JADE algorithm proposed by Cardoso and Souloumiac [45]. The JADE al-
gorithm consists of two stages. First, a pre-whitening of the received signal
is performed. The second stage is a unitary rotation. This second stage
is formulated as an optimization problem under unitary matrix constraint
since no closed-form solution can be provided except for simple cases such
as 2-by-2 unitary matrices. It should be noted that the first stage can also
be formulated as a unitary optimization problem as in [Publication II] and
[Publication III]. In order to solve for the unitary rotation we propose a
steepest descent (SD) which fully exploits the benefits of the Lie group of
unitary matrices U(n) [Publication I] . For this reason the complexity per
iteration is lower compared to the steepest descent in [137,149]. In general,
conjugate gradient (CG) converges faster than SD [183]. This happens also
in the case of the JADE cost function [Publication II], when the input signals
are not identically distributed. Moreover, the computational complexity is
comparable to the one of the steepest descent in [Publication I] and [Pub-
lication III]. The reduction in complexity is achieved by exploiting the ad-
ditional group properties of U(n), when computing the search directions, as
well as special matrix structures associated with the search directions. The
almost periodic property of a smooth cost function along geodesics on U(n)
enables efficient search along geodesics when adapting the step size param-
eter [Publication IV], [Publication II]. General algorithms for optimization
under unitary matrix constraint operating on the complex Stiefel manifold
of n×n unitary matrices have also been proposed [137,149]. The algorithms
in [137, 149] are very general, in the sense that the local parametrization is
chosen for the Stiefel and the Grassmann manifolds. For this reason, when
applied to n × n unitary matrices they do not exploit the additional Lie
group properties of U(n), in order to reduce the computational complexity.

The FastICA algorithm [113] has been recently extended to Independent
Subspace Analysis (ISA) in [179]. The corresponding algorithms are based
on optimization on the Grassmann manifold. Other ICA and ISA algorithms
operating on the flag manifold have been recently proposed in [152]. Robust
Accurate Direct ICA aLgorithm (RADICAL) on the orthogonal group has
been proposed in [26].

Linear algebra applications

Various linear algebra problems may be solved iteratively by using tools
of Riemannian geometry. The most popular matrix decompositions such
as the (generalized) eigendecomposition (ED) and the singular value de-
composition (SVD) may be formulated in terms of descent equations on
differentiable manifolds [14,18,40,43,52,57,112,182–184]. The SVD has di-
rect applications in Least Squares (LS) estimation, low-rank approximation,
matrix inversion, and subspace techniques. For the low-rank approximation
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SVD is optimal under the Frobenius norm, but this is no longer true un-
der weighted norms. Moreover, no closed-form solution exists, in general.
The weighted low-rank approximation may be formulated as a minimization
problem on the Grassmann manifold in [140]. The convolutive reduced-
rank Wiener filtering has also been formulated as an optimization problem
on the Grassmann manifold in [139]. Several Least Squares (LS) matching
problems may be solved by minimizing an error criterion on a suitable man-
ifold [40, 43, 52, 69]. A typical example is encountered in image processing
applications where matching points in one image with point on the second
image are required. Matching is often very difficult because of the large
number of possibilities. Hence, approximate solutions may be of interest. In
this case, the matching problem reduces to finding an optimum orthogonal
matrix and a permutation matrix [43]. Other image processing application
are motion estimation in computer vision [133, 146], or biomedical applica-
tions [20,164].

2.3.2 Quantization on manifolds

Quantization on manifolds requires approximating arbitrary points on the
manifold by elements of a finite set of points on the manifold. The fi-
nite set of manifold-valued points is called code book. The goodness of
the approximation is defined in terms of Riemannian distance. The code
book design is crucial for the performance of the quantizer. It supposes
maximizing the minimum distance between the code words. Quantiza-
tion on Grassmann manifold has straight-forward application to limited-
feedback MIMO communication systems [50,51,121,143–145] and space-time
codes [103,116,118,120,141, 144].

Closed-loop MIMO systems

Often, in MIMO communication systems in order to increase capacity, a low-
rate feedback channel is used to provide channel state information back to
the receiver. This information needs to be quantized in order to reduce the
transmission rate of the feedback link. Unitary/orthonormal matrices play
again an important role. The quantization aims at describing orthonormal
matrices by as few parameters as possible, with sufficient accuracy.

In [144] a Grassmann code book design strategy for MIMO systems is
provided. The goal is to achieve full diversity and significant array gain in
an uncorrelated fading channel by using the channel knowledge at the trans-
mitter. The design is based on minimizing a “chordal distance”, which is a
length defined on the manifold in order to describe the distortion introduced
by quantization. The results are applied to performance analysis of a MIMO
wireless communication system with quantized transmit beamforming and
quantized receive combining. A similar Riemannian approach has also been
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considered in [145].
In [143] algorithms for quantized MIMO-OFDM systems are developed.

The scheme uses a quantized feedback link in order to provide the chan-
nel state information (CSI) at the transmitter and achieve capacity and
diversity gains. The motivation is that the existing schemes designed for
flat-fading channel do not extend naturally to frequency selective channels
due to an enormous feedback overhead. Two classes of algorithms for quan-
tizing the channel information are considered. They are named “clustering
algorithms” and “transform algorithms”, respectively. The clustering algo-
rithms group the subcarriers in clusters and choose a common frequency
domain representation for each group. Thus the feedback rate depends on
the number of groups and not on the number of subcarriers. The trans-
form algorithms quantize the channel information in time domain where the
transform essentially decorrelates the channel information. Both algorithms
provide significant compression of the channel information maintaining the
bit error rate close to the case of perfect channel knowledge.

A spatial multiplexing scheme with multi-mode precoding for MIMO-
OFDM system is considered in [121]. Multi-mode precoding used linear
transmit precoding, but adapts the number of transmit data streams or
modes according to the channel conditions, therefore, it achieves high ca-
pacity and reliability. Typically, for OFDM scheme the multi-mode pre-
coding requires complete knowledge of the transmit precoding matrices for
each subcarrier at the transmitter. The authors propose an alternative way
to reduce the feedback rate by quantizing the precoding matrices of a frac-
tion of the number of the subcarriers and obtaining the other precoders
using interpolation. The subcarrier mode selection, the precoder-quantizer
design and the interpolation are addressed in the paper. It is found that
unitary matrices cannot be interpolated by using linear interpolation tech-
niques due to the fact that they do not form a vector space, but a group,
i.e., the unitary group. Two algorithms for interpolation of unitary matrices
are proposed, namely “geodesic interpolation” and “conditional interpola-
tion”, respectively. The geodesic interpolation has a result a point which
lies halfway on the geodesic connecting two points. The method exploits
the fact that the right singular vectors of the channel matrix are ambiguous
up to a diagonal unitary matrix. These additional degrees of freedom are
used to identify the smoothest interpolation path between adjacent quan-
tized points. The conditional interpolation considers the interpolation of
MIMO channel matrices acquired on the pilot subcarriers.

Recent work on channel adaptive quantization for limited feedback
MIMO Beamforming systems may be found in [50]. Compared to [121,
143,144] the quantization algorithm is designed for correlated Rayleigh fad-
ing MIMO channels. A Grassmannian switched code book is used to exploit
the inherent spatial and temporal correlation of the channel.

In [51] an interpolation-based unitary precoding for spatial multiplexing
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MIMO-OFDM with limited feedback is considered. The algorithm exploits
the fact that OFDM transmission converts the frequency-selective channel
into multiple narrow-band flat-fading sub-channels. Operating on each sub-
carrier may be costly, especially if their number is large. Therefore, the
precoding algorithm operates on groups of subcarriers and interpolation
techniques on the Grassmann manifold are proposed.

Space-time codes

Space-time codes improve the reliability of the radio links by providing a
good trade-off between data rate and diversity gain [111]. The Grassmann
space-time codes become more and more popular due to their ability to use
all the degrees of freedom of the MIMO system, i.e., M×(1−(M/T )) symbols
per channel use, where M is the number of transmit antennas and T is the
temporal length of the space-time code. In [120] a family of Grassmann
space-time codes for non-coherent MIMO systems is proposed. The codes
exploit all degrees of freedom of the Grassmann manifold Gr(T,M). The
code design and also the decoding are based on minimum chordal distance,
similarly to [144].

Unitary matrices play an important role in space-time coding. A capac-
ity efficient scheme using isotropically random unitary space-time signals is
proposed in [141]. The signals transmitted across antennas, viewed as a ma-
trix with spatial and temporal dimensions form a unitary matrix. A unitary
space-time modulation scheme via Cayley transform is proposed in [118].
No channel knowledge is required at the receiver. The scheme is suitable
for wireless systems where channel tracking is unfeasible, either because of
rapid changes in the channel characteristics or because of the limited sys-
tem resources. Similar transmission schemes have been considered in [103].
The codes may be decoded by using a sphere decoder [203] algorithm (often
with cubic complexity) near to ML performance. In [165], Cayley differen-
tial unitary space time codes for MIMO-OFDM are proposed. These codes
possess excellent features. They allow effective high-rate data transmission
in multi-antenna communication systems, with reasonable encoder and de-
coder complexity.

Differential geometry methods may be combined with information theory
to help understanding and interpreting different problems. The resulting
methods are called information geometry methods. The LDPC codes which
are powerful and practical error correction codes may be analyzed by using
information geometry [116].

2.3.3 Statistics on manifolds

When dealing with estimation of parameters which are constrained to a spe-
cific subset of the Euclidean space by some smooth constraints, the classical
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estimation techniques must be revisited [24,188,189,191,192,212]. Estima-
tors of manifold-valued parameters as well as their statistical bounds need
to be derived on the space where the parameters are constrained. This
space is usually a curved space, i.e., a Riemannian manifold with non-zero
sectional curvature. They occur frequently in practice, for example when
the parameters are defined on a sphere, or when estimating eigenvectors or
subspaces. Another class of such problems occurs when the parameters can
be estimated only up to certain ambiguities, like in blind channel estimation
and blind source separation. Concepts such as bias and variance need to be
defined in the proper parameter space, i.e., the constrained set. Estimators
which are unbiased on the Euclidean space may be biased on the Rieman-
nian space. The bias should be measured by using the distance defined on
the corresponding Riemannian manifold, instead of the Euclidean distance.
Also statistical performance bounds such as the Cramér-Rao Lower Bound
(CRLB) are in general derived for parameters taking values in Euclidean
spaces. They are no longer valid for constrained parameters defined on dif-
ferential manifolds. Ignoring the constraint when deriving such bounds may
lead to singular Fisher information matrix (FIM) due to too many degrees of
freedom. Often the pseudo-inverse of the FIM is considered. The geometric
interpretation of this was given in [212].

CRLB for estimating parameters with differentiable deterministic con-
straints have been derived by Stoica et al. [192]. The unconstrained Fisher
information matrix, which is not necessarily of full rank is replaced by a
constrained FIM determined from the smooth constraint. This bound is
still expressed in terms of Euclidean distance. Its accuracy is expected to
degrade since the curvature of the corresponding Riemannian space is ne-
glected. An Intrinsic Variance Lower Bound (IVLB) on Riemannian mani-
folds has been derived in [213]. The IVLB is a lower limit on the estimation
accuracy, measured in terms of the mean-square Riemannian distance. For
parameters defined in Euclidean spaces (zero sectional curvature), the IVLB
coincides with the classical CRLB.

Estimation Bounds on arbitrary manifolds in which no set of extrinsic
coordinates exist have been established recently by Smith, in [188,189]. The
frequently encountered examples of estimating either an unknown subspace
or a covariance matrix are examined in detail in [188]. Intrinsic versions of
the Cramér-Rao bound on manifolds are derived for both biased and un-
biased estimators. Remarkably, it is shown in [188] that from an intrinsic
perspective, the sample covariance matrix is a biased and inefficient esti-
mator. The bias term reveals the dependency of estimator on the limited
sample support observed in practice. For this reason, the natural invariant
metric is recommended over the flat metric (Euclidean norm) for analysis of
covariance matrix estimation.

The capacity of non-coherent MIMO fading channels is derived in [231]
by using a Riemannian geometry approach. The scenario of fast fading
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is considered, thus an accurate estimation of the fading coefficients is not
available to either the transmitter or the receiver. A geometric interpretation
of the capacity expression on the Grassmann manifold is given.

Monte-Carlo extrinsic estimators of manifold-valued parameters have
been considered in [191]. The estimation of means and variances of manifold-
valued parameters is considered, using two popular sampling methods (in-
dependent and importance sampling). The results are applied to target
pose estimation on the orthogonal group and subspace estimation on the
Grassmann manifold.
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Chapter 3

Practical Riemannian
algorithms for optimization
under unitary matrix
constraint

3.1 The unitary group U(n) as a real manifold

Most of the Riemannian optimization algorithms in the literature [40, 41,
46,69,73,76–79,150,151,161, 183, 214] are designed for optimization on the
orthogonal group O(n), i.e., they consider only real-valued matrices. Very
often, in communications and sensor array signal processing applications
we are dealing with complex-valued matrices and signals. Consequently,
the optimization needs to be performed under unitary matrix constraint,
i.e., on the unitary group U(n). Often, and unfairly, extending algorithms
designed for real-valued matrices to complex-valued matrices is considered
to be trivial. Commonly, this is done in a simplistic manner by changing a
real-valued result into a complex-valued one, just by replacing the transpose
operation with the Hermitian transpose, and skipping all the intermediate
derivation steps. In many cases, the result holds, but there are cases when
this simplistic approach fails, leading to wrong results. We will show at the
end of this section an illustrative example where the simplistic approach
fails. Thus, a proper derivation of the algorithms dealing with complex-
valued matrices is required.

In order to be able to derive optimization algorithms on the unitary
group U(n), it is important to know that the Lie group U(n) of n × n
unitary matrices is a real differentiable manifold. We show how all complex
algebraic operations can be mapped into real operations and vice versa,
and describe a convenient way of real differentiation using complex-valued
matrices and operations.
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3.1.1 Revealing the real Lie group structure of U(n)

A Lie group is a differentiable manifold [59] and a group as the same time,
with the property that the group operations are differentiable [107,123,208].
The n × n unitary matrices are closed under the standard matrix multipli-
cation and they form the unitary group U(n). Even though the elements of
U(n) are represented by complex-valued matrices, the unitary group is a real
Lie group, i.e., it possesses real differentiable structure. Complex Lie groups
are the ones whose multiplication operation is compatible with complex an-
alytic manifold structure [123]. Some groups possess both real and complex
differentiable structure (e.g. complex general linear group GL(n), complex
special linear group SL(n), and so on) [107, Ch. 8]. Although the Lie group
of unitary matrices U(n) cannot be viewed as a complex Lie group, it is
important to understand that the complex manifold structure is generally
useless in the optimization context. This is because we are always dealing
with real-valued cost functions of complex-valued argument. Such functions
are not complex differentiable, unless they are constant functions. Instead,
they may be differentiable w.r.t. to the real and the imaginary parts of the
complex argument.

Any complex-valued matrix A ∈ C
n×n can be mapped into real-valued

matrix AR ∈ R
2n×2n, by using its real and imaginary parts AR , ℜ{A}

and AI , ℑ{A}, respectively, as follows:

A = AR + AI ←→ AR ,

[

AR −AI

AI AR

]

. (3.1)

It is straight-forward to verify that the mapping (3.1) is differentiable, and
the following equalities hold for any A,B ∈ C

n×n:

(tA)
R

= tAR, ∀t ∈ R, (3.2)

(A + B)
R

= AR + BR, (3.3)

(AB)
R

= ARBR, (3.4)

(A−1)R = (AR)−1, det{A} 6= 0, (3.5)

(AH)
R

= AT
R, (3.6)

trace{AR} = 2ℜ
{

trace{A}
}

. (3.7)

Based on (3.2), (3.3) and (3.4), it also follows that:
(

exp(tA)
)

R
= exp(tAR), t ∈ R. (3.8)

where exp(·) denotes the exponential map from the Lie algebra to the Lie
group [107, Ch. II, §1]. For matrix Lie groups, this coincides with the
standard matrix exponential given by the convergent power series

exp(A) ,

∞
∑

m=0

Am

m!
. (3.9)
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In conclusion, the mapping (3.1) reveals the real Lie group structure of
U(n). The main benefit is that it enables using complex-valued matrices
instead of large real-valued matrices containing the real and the imaginary
parts in separate blocks. Other properties of U(n) are presented in detail in
[Publication I].

3.1.2 Differentiation of real-valued function of complex-
valued argument

The real differentiation of functions of complex-valued matrix arguments
can be conveniently described in complex terms by the following partial
derivatives [39,124]:

∂J

∂A
,

1

2

( ∂J

∂AR
− 

∂J

∂AI

)

(3.10)

and

∂J

∂A∗
,

1

2

( ∂J

∂AR
+ 

∂J

∂AI

)

. (3.11)

In practice, it would be inconvenient to split all complex-valued matrices
in their real and imaginary parts because this would complicate the math-
ematical expressions. The operators (3.10)-(3.11) and the mapping (3.1)
enable direct manipulation of the complex-valued matrices, but we have to
keep in mind that in fact all the operations are applied to the real and
imaginary parts. The computation of derivatives (3.10) and (3.11) has been
recently addressed in [109].

3.1.3 Justification of using complex-valued matrices

In this subsection we provide an example showing that the results involv-
ing real-valued matrices do not always extend in a straight-forward manner
to complex-valued matrices. The “trick” of replacing the transpose opera-
tion with the Hermitian-transpose may lead to a wrong result. Moreover,
the correct result is not a trivial extension. We consider the chain-rule for
differentiating a real-valued function involving real and complex matrices,
respectively. A comparison between the real and the complex case is pro-
vided in Table 3.1.

As it can be seen in Table 3.1, extending the result obtained in the
real-valued case to a the complex-valued case is not straight-forward. Just
by replacing the transpose operation with the Hermitian-transpose leads
to a wrong result. The complex-conjugation operation of one of the two
factors inside the trace operator would be missed, as well as taking the real
part. This chain-rule example has been selected in purpose, since it is used
to differentiate the cost function along geodesics when performing the line
search optimization. For details, see [Publication II] and [Publication IV].
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Real-valued case Complex-valued case

Consider a real-valued scalar function Consider a real-valued scalar function
of real-valued matrix argument of complex-valued matrix argument
J1 : Rn×n → R, J2 : Cn×n → R,
and a real-valued matrix function and a complex-valued matrix function
of real-valued scalar argument of real-valued scalar argument
W1 : R → Rn×n. W2 : R → Cn×n.
The composition of J1 and W1 is The composition of J2 and W2 is

Ĵ1(t) , (J1 ◦W1)(t) = J1(W1(t)) Ĵ2(t) , (J2 ◦W2)(t) = J2(W2(t))

Real-case result: dĴ1

dt
(t1) = Complex-case result: dĴ2

dt
(t2) =

trace{
[

dJ1

dW1

(W1(t1))
]T [

dW1

dt
(t1)

]

}. 2ℜ{trace{
[

∂J2

∂W2

(W2(t2))
]T [

dW2

dt
(t2)

]

}}.

Table 3.1: Differentiation by using the chain rule: real-valued case vs.
complex-valued case. The result on the left column is the correct result ob-
tained in the real-valued case. Replacing the the transpose operation with
the Hermitian-transpose in the real-valued result would lead to the wrong

complex-valued result for dĴ2

dt (t2), i.e., trace{
[

∂J2

∂W2
(W2(t2))

]H[

dW2

dt (t2)
]

}.
The correct result obtained in the complex-valued case is the result on the
right column. It may be noticed that extending the real-valued case result
to a complex-valued one in not trivial.

In conclusion, the algorithms dealing with complex-valued matrices need
to be derived from scratch, by using the approach presented in Subsections
3.1.1 and 3.1.2. In [Publication I] and [Publication II] we derive Riemannian
steepest descent and conjugate gradient algorithms on U(n).

3.2 Practical optimization algorithms along

geodesics on U(n)

When deriving optimization algorithms on Riemannian manifolds, the ge-
ometrical properties of the parameter space play a crucial role in reducing
the computational complexity. The fact that U(n) is a matrix Lie group en-
ables very simple formulas for geodesics and parallel transport. Additional
computational benefits arise from exploiting the special matrix structures.
The tangent space at the group identity element is the Lie algebra of skew-
Hermitian matrices u(n). Geodesics through an arbitrary point W ∈ U(n)
can be given in terms of an exponential of skew-Hermitian matrices. Recent
developments in numerical methods dealing with this type of computation
can be exploited [117, 224]. For details, see [Publication I]. Another useful
aspect to be considered is the fact that the exponential map induces an
almost periodic behavior of the cost function along geodesics. The almost
periodic property may be exploited when performing the line search needed
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in the step size selection [Publication IV], [Publication II].
In this section we provide Riemannian algorithms which may be used

in practical applications involving optimization under unitary matrix con-
straint. Steepest Descent (SD) and Conjugate Gradient (CG) algorithms
operating on the Lie group of unitary matrices U(n) are given in Section
3.2.1 and Section 3.2.2, respectively. Efficient line search methods which
can be used together with the proposed algorithms are provided in Section
3.2.3.

3.2.1 Steepest Descent Algorithm along geodesics on U(n)

Similarly to the Euclidean space, the main advantage of the Riemannian
steepest descent (SD) algorithm is that it is very simple to implement. Each
iteration of the Riemannian SD algorithm consists of two subsequent stages.
The first one is the computation of the Riemannian gradient which gives the
steepest ascent direction on the manifold. The second one is taking a step
along the geodesic emanating in the direction of the negative gradient. The
Riemannian gradient of the smooth cost function J at an arbitrary point
Wk ∈ U(n) is given by:

∇RJ(Wk) =
∂J

∂W∗
(Wk)−Wk

[ ∂J

∂W∗
(Wk)

]H
Wk. (3.12)

where ∂J
∂W∗

(Wk) is defined in (3.11) and represents the gradient of the cost
function J on the Euclidean space at a given W [39, 198]. The derivation
of expression (3.12) is provided in [Publication I]. The geodesic emanating
from Wk along the steepest descent direction −∇RJ(Wk) on U(n) is given
by:

W(µ) = exp(−µGk)Wk, where (3.13)

Gk , ∇RJ(Wk)W
H
k ∈ u(n). (3.14)

Gk is the gradient of J at Wk after translation into the tangent space at the
identity element. Consequently, the matrix Gk is skew-Hermitian, i.e., Gk =
−GH

k . The skew-Hermitian structure of Gk brings important computational
benefits when computing the matrix exponential [Publication I], as well as
when performing the line search [Publication IV]. The Riemannian SD
algorithm on U(n) has been derived in [Publication I] and it is summarized
in Table 3.2.

3.2.2 Conjugate Gradient Algorithm along geodesics on U(n)

Conjugate gradient (CG) algorithm achieves in general faster convergence
compared to the SD, not only on the Euclidean space, but also on Rieman-
nian manifolds. This is due to the fact that Riemannian SD algorithm has
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1 Initialization: k = 0 , Wk = I
2 Compute the Riemannian gradient direction Gk:

Γk = ∂J
∂W∗

(Wk), Gk = ΓkW
H
k −WkΓ

H
k

3 Evaluate 〈Gk,Gk〉I =(1/2)trace{GH
k Gk}. If it is sufficiently small, then

stop
4 Determine µk = arg minµ J (exp(−µGk)Wk)
5 Update: Wk+1=exp(−µkGk)Wk

6 k :=k + 1 and go to step 2

Table 3.2: Steepest descent (SD) algorithm along geodesics on U(n)

the same drawback as its Euclidean counterpart, i.e., it takes ninety degree
turns at each iteration [183]. This is illustrated in Figure 3.1, where the con-
tours of a cost function are plotted on the Riemannian surface determined
by the constraint. CG algorithm may significantly reduce this drawback. It
exploits the information provided by the current search direction −H̃k at
Wk and the SD direction −G̃k+1 at the next point Wk+1. The new search
direction is chosen to be a combination of these two, as shown in Figure
3.2. The difference compared to the Euclidean space is that the current
search direction −H̃k and the gradient G̃k+1 at the next point lie in dif-
ferent tangent spaces, TWk

and TWk+1
, respectively. For this reason they

are not directly compatible. In order to combine them properly, the parallel
transport of the current search direction −H̃k from Wk to Wk+1 along the
corresponding geodesic is needed. The new search direction at Wk+1 is

−H̃k+1 = −G̃k+1 − γkτH̃k, (3.15)

where τH̃k denotes the parallel transport of the vector H̃k into TWk+1

along the corresponding geodesic (see Figure 3.2). The weighting factor
γk is determined such that the directions τH̃k and H̃k+1 are Hessian-
conjugate [69, 183]. The exact conjugacy would require expensive compu-
tation of the Hessian matrices. In practice an approximation of γk is used
instead, for example the Polak-Ribièrre formula [69]. For more details, see
[Publication II]. The fact that U(n) is a Lie group enables describing all
tangent directions (steepest descent and search directions) by tangent vec-
tors which correspond to elements of the Lie algebra u(n) via right (or left)
translation. Then, all tangent vectors are represented by skew-Hermitian
matrices. Thus, the new search direction on the Lie algebra u(n) is

Hk+1 = Gk+1 + γkHk, Hk,Hk+1,Gk+1 ∈ u(n) (3.16)

where Hk is the old search direction on u(n). The conjugate gradient step
is taken along the geodesic emanating from Wk in the direction −H̃k =
−HkWk, i.e.,

W(µ) = exp(−µHk)Wk. (3.17)
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Wk

Wk+1

Wk+2

−G̃k

−τG̃k
−G̃k+1

J (W)

Figure 3.1: The SD algorithm takes ninety-degree turns at every iteration,
i.e., 〈−G̃k+1, −τG̃k〉Wk+1

= 0, where τ denotes the parallelism w.r.t. the
geodesic connecting Wk and Wk+1.

manifold

contours
of

MINIMUM

Wk

−H̃k

Wk+1

−G̃k+1

−H̃k+1

−τH̃k

J (W)

Figure 3.2: The CG takes a search direction −H̃k+1 at Wk+1 which is
a combination of the new SD direction −G̃k+1 at Wk+1 and the current
search direction −H̃k transported to Wk+1 along the geodesic connecting
Wk and Wk+1. The new Riemannian steepest descent direction −G̃k+1

at Wk+1 will be orthogonal to the current search direction −Hk at Wk

transported to Wk+1, i.e., 〈−G̃k+1, −τH̃k〉Wk+1
= 0.
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A geodesic search needs to be performed in order to choose a suitable value
of µ [Publication IV], [Publication II]. The step size selection is crucial for
the performance of the CG algorithm. The Riemannian CG algorithm on
U(n) has been derived in [Publication II] and it is summarized in Table 3.3.

1 Initialization: k = 0 , Wk = I
2 Compute the Riemannian gradient direction Gk and the search direction Hk:

if (k modulo n2) == 0
Γk = ∂J

∂W∗
(Wk)

Gk = ΓkW
H
k −WkΓ

H
k

Hk := Gk

3 Evaluate 〈Gk,Gk〉I =(1/2)trace{GH
k Gk}. If it is sufficiently small, then stop

4 Determine µk = argminµ J (exp(−µHk)Wk)
5 Update: Wk+1 = exp(−µkHk)Wk

6 Compute the Riemannian gradient direction Gk+1 and the search direction
Hk+1:

Γk+1 = ∂J
∂W∗

(Wk+1)
Gk+1 = Γk+1W

H
k+1
−Wk+1Γ

H
k+1

Hk+1 = Gk+1 + γkHk

7 k := k + 1 and go to step 2

Table 3.3: Conjugate gradient (CG) algorithm along geodesics on U(n).

Riemannian CG algorithm achieves superlinear convergence, whereas the
Riemannian SD converges only linearly [87, 183, 196]. On U(n), the com-
putational complexity of the CG is comparable the one of the SD, due to
the fact that the parallel transport is easy to perform. This is not always
true on general Riemannian manifolds. Both SD on U(n) introduced in
[Publication I] and CG on U(n) introduced in [Publication II], exhibit cu-
bic complexity in n per iteration, i.e., O(n3). This property seems to be
unavoidable, since a trivial multiplication of two n × n matrices already
requires about 2n3 flops [99].

CG is considerably simpler than a Newton algorithm which would re-
quire computing costly second-order derivatives. CG algorithm captures
the second-order information by computing successive first-order derivatives
and combining them properly. Newton algorithms on general Riemannian
manifolds [87, 155, 183, 196] are computationally expensive also due to the
fact that they do not take into account the particular properties that may
appear on certain manifolds, such as special matrix structures. Newton
algorithms on Stiefel and Grassmann manifolds are proposed by Edelman
et. al [69]. Other Newton algorithms on Stiefel and Grassmann manifolds
have been proposed in the literature [17, 130, 137]. When applied on U(n),
they have complexity is of order O(n6). Due to computational reasons, in
this thesis we treat only SD and CG on U(n) and provide computationally
feasible solutions. Moreover, Newton algorithm is not guaranteed to con-
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verge, not even locally [69,137,183,184]. It may converge to any stationary
points unless some strict requirements (such as convexity of the cost func-
tion) are satisfied. Trust-region methods on Riemannian manifolds have
been recently proposed [15, 18], to overcome this drawback. In conclusion,
Riemannian CG algorithm provides a reliable alternative for optimization
under unitary matrix constraint.

3.2.3 Efficient Line search methods on U(n)

Once the search direction corresponding to the SD, or to the CG algorithm
has been chosen, a line search needs to be performed in order to select an
appropriate step size. The line search supposes minimizing (or maximizing)
the cost function J (W) in one dimension, along the curve W(µ) describing
the local parametrization, i.e., find

µk = arg min
µ
Ĵ (µ), where (3.18)

Ĵ (µ) , J (W(µ)) (3.19)

Line search usually requires expensive operations, even in the case of Eu-
clidean optimization algorithms [163], due to multiple cost function evalua-
tions. On Riemannian manifolds, the problem becomes even harder because
every evaluation of the cost function requires expensive computations of the
local parametrization. For this reason, the choice of the local parametriza-
tion plays a crucial role in reducing the computational complexity. In case of
U(n), exponential map possesses desirable properties that may be exploited.

In [Publication I], Armijo method [163] is efficiently used to perform
search along geodesics. The step size µk evolves in a dyadic basis. By
exploiting the properties of the exponential map, the computation of the
matrix exponential may often be avoided. Reduction in complexity by half
is achieved when Armijo method is used together with the geodesic SD
algorithm, compared to the non-geodesic SD algorithm in [137]. The com-
putational issues are addressed in detail in [Publication I], Section V.

An important property of the exponential map which can be exploited
in line search (see [Publication I] and [Publication IV]) is that it induces an
almost periodic [80] behavior of the cost function along geodesics on U(n).
The almost periodic functions is a well-studied class of functions [181]. There
are many definition for these type of functions [33,35,54,80,127]. We present
the most intuitive one as in [80,81]. A real number T is called ǫ-almost period
(or just almost period) of the function F : R→ R if

|F(t + T )−F(t)| ≤ ǫ,∀t ∈ R. (3.20)

The function F is called almost periodic if for any ǫ > 0, the set of ǫ-almost
periods is relatively dense in R [80]. An almost periodic function can also
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be expressed as a trigonometric polynomial

F(t) =

q
∑

m=1

bm exp(ωmt), (3.21)

where b1, . . . , bq ∈ C, ω1, . . . , ωq ∈ R, and q ∈ N. If the numbers ω1, . . . , ωq

are in harmonic relation, the above expression represents the classical Fourier
series of a periodic function comprised of q harmonic components. For al-
most periodic functions, the frequencies ω1, . . . , ωq are non-harmonic.

The almost periodic property of a cost function along geodesics on U(n)
is a consequence of the fact that geodesics are expressed in terms of ex-
ponential of skew-Hermitian matrices. This special property appears only
on certain manifolds such as the unitary group U(n) and the special or-
thogonal group SO(n), and it does not appear on Euclidean spaces or on
general Riemannian manifolds. For this reason, other local parametriza-
tions designed for more general Riemannian manifolds, such as Stiefel and
Grassmann manifolds [69,137] exhibit higher complexity on U(n).

It will be shown next that the almost periodic property appears for the
exponential map. For other common parametrizations such as the Euclidean
projection operator or the Cayley transform (for details see [Publication I])
the property does not appear. These parametrizations do not take into
account the special structure of the tangent vectors at the group identity.
Any search direction H̃k at Wk corresponds via right translation to a skew-
Hermitian matrix into the Lie algebra u(n):

H̃k ∈ TWk
U(n) ←→ Hk = H̃kW

H
k ∈ u(n). (3.22)

Skew-Hermitian matrices have purely imaginary eigenvalues of the form ωi,
i = 1, . . . , n. Consider the eigendecomposition of Hk

Hk = UkDkU
H
k , Uk ∈ U(n), Dk =











ω1 0 . . . 0
0 ω2 . . . 0
...

...
. . .

...
0 . . . . . . ωn











(3.23)

where Uk are the eigenvectors of Hk, and Dk is a diagonal matrix containing
the eigenvalues along the diagonal. Next, different local parametrization on
U(n) will be considered (see [Publication I]) and the differences among them
from the line search perspective are explained.

Exponential map

Geodesic update on U(n) at iteration k is expressed in terms of exponential
of skew-Hermitian matrices

Wgeod(µ) = exp(−µHk)Wk (3.24)

= Uk exp(−µDk)U
H
k Wk. (3.25)
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Figure 3.3: Behavior of the Brockett function [41, 184] (see also [Publica-
tion II] and [Publication V]) along different parametrizations on U(n). The
exponential map (3.24) is represented by continuous line. The projection
operator (3.27) is represented by dashed line. The Cayley transform (3.30)
is represented by dotted line. The exponential map induces an almost pe-
riodic behavior of the cost function along geodesics. For the other two
parametrizations, the behavior is not almost periodic.

From (3.23) it follows that the matrix exp(−µDk) is a diagonal matrix whose
diagonal elements are complex exponentials of the form e−ωiµ, i = 1, . . . , n.
Consequently, each element of Wgeod(µ) is a sum of complex exponentials,
as in Eq. (3.21). The cost function evaluated along the geodesic

Ĵgeod(µ) , J (Wgeod(µ)) (3.26)

is an almost periodic function [80], due to the fact that J is a smooth
function of Wgeod(µ). As an example, the behavior of the Brockett func-
tion [41,184] along geodesics is shown in Figure 3.3 by continuous line. The
almost periodic behavior may be exploited in line search optimization [Pub-
lication II] and [Publication IV].
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Euclidean projection map

The Euclidean projection map supposes moving along a straight line tangent
to the manifold and projecting back into the manifold [137]. The projection
operator is defined in (2.5). It approximates the matrix exponential at the
origin up the the second order, as shown in [Publication I]. The update at
iteration k may be written as:

Wproj(µ) = P{Wk − µHkWk} (3.27)

= UkP{I− µDk}U
H
k Wk. (3.28)

From (2.5) and (3.23) it follows that the matrix P{I − µDk} is a diago-
nal matrix whose diagonal entries are of the form (1 − ωiµ)/|1 − ωiµ| =
e∠(1−ωiµ), i = 1, . . . , n. Consequently, the corresponding rotation angles
∠(1− ωiµ) are all confined within the interval [0, π/2), regardless how much
µ is increased. This fact can be easily understood by taking as an exam-
ple the unit circle U(1). Moving along a straight line tangent to the circle
towards infinity, and projecting back ends up to a point which is rotated
ninety degrees from the starting point. Therefore, the projection operator
cannot produce rotations larger than ninety degrees. The exponential map,
on the other hand, can span the whole unit circle, and the cost function
is periodic along the circle. The illustrative example in Figure 2.3, Section
(2.2.3) may clarify these explanations. The variation of the rotation angle on
U(1) w.r.t. µ is shown in Figure 3.4. The exponential map is represented by
continuous line and the projection operator, by dashed line. The same angle
limitation of the projection operator appears also in the multi-dimensional
case. By increasing µ towards infinity, the projection map will converge to
a fixed matrix

lim
µ→∞

P{Wk − µHkWk} = Uk







sign(ω1) . . . 0
...

. . .
...

0 . . . sign(ωn)






UH

k Wk.

(3.29)
The values of the Brockett function [41, 184] (see also [Publication II] and
[Publication V]) along different curves on U(n) is shown in Figure 3.3. It
may be noticed that the function is not almost periodic along the curve
described by the projection operator (3.27) (dashed line), as in the case of
the exponential map (solid line).

Cayley transform

A local parametrization based on the Cayley transform is also a second-order
approximation of the matrix exponential at the origin (see [Publication I]).
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Figure 3.4: The rotation angle on the unit circle U(1) for different local
parametrizations. The initial point is the zero angle, and the tangent vector
is unit-norm. The exponential map (3.24) spans all the range [−π, π) (shown
by continuous line). The phase increases linearly with µ and is periodic.
The projection operator (3.27) spans the interval [0, π/2) (shown by dashed
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(3.30) spans the interval [0, π) (represented by dotted line), and the angle
has horizontal asymptote at π .
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The corresponding update at iteration k is given by

WCayley(µ) =
[

(I +
µ

2
Hk)

−1(I−
µ

2
Hk)

]

Wk. (3.30)

=
[

I + 2Uk

(

∞
∑

m=1

(µDk)
m

)

UH
k

]

Wk. (3.31)

From (3.23) it follows that the matrix
∑∞

m=1(µDk)
m is a diagonal matrix

whose diagonal entries are of the form ωiµ/(1 − ωiµ), i = 1, . . . , n. Con-
sequently, the Cayley transform has the same limitations as the projector
operator. The corresponding rotation angles ∠(1− ωiµ) are all confined
within the interval [0, π), regardless how much µ is increased. The varia-
tion of the rotation angle on U(1) w.r.t. µ is shown in Figure 3.4. In the
multi-dimensional case, the Cayley transform will converge to the matrix

lim
µ→∞

[

(I +
µ

2
Hk)

−1(I−
µ

2
Hk)

]

Wk = −Wk. (3.32)

Again, the behavior of the cost function along the curve described by the
Cayley transform (3.30) is not almost periodic, as in the case of the exponen-
tial map. This is shown in Figure 3.3 by dotted line, taking as an example
the Brockett function [41,184] (see also [Publication II] and [Publication V]).

In conclusion, the exponential map is suitable for line search methods due
to its almost periodic behavior, unlike other common local parametrizations.

Practical line search methods on U(n)

Many of the existing geometric optimization algorithms do not include prac-
tical line search methods [69,151], or if they do, they are too complex when
applied to optimization on U(n) [77, 137]. In some cases, the line search
methods are either valid only for specific cost functions [183], or the result-
ing search is not highly accurate [77, 122, 161]. The difficulty of finding a
closed-form solutions for a suitable step size is discussed in [122]. The accu-
racy of line search is crucial for the performance of the resulting algorithms,
especially in the case of the CG algorithm which assumes exact line search.

Two efficient high-accuracy line search methods exploiting the almost pe-
riodic property of the cost function along geodesics on U(n) are proposed in
[Publication II] and [Publication IV]. The first method finds only the first lo-
cal minimum (or maximum) of the cost function along a given geodesic. It is
based on a low-order polynomial approximation of the first-order derivative
of the cost function along geodesics and detecting its first sign change [225].
The second one finds several local minima (or maxima) of the cost function
along a given geodesic and selects the best one. It approximates the almost
periodic function by a periodic one [81], using the classical Discrete Fourier
Transform (DFT) approach.
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The almost periodic behavior of the cost function Ĵ (µ) (3.26) and its
first-order derivative dĴ /dµ along geodesic Wgeod(µ) (3.24) is shown in
Figure 3.5.
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Ĵ

/
d
µ
,
a
p
p
ro

x
im

a
ti
o
n
s

o
f
d
Ĵ

/
d
µ

cost function along geodesic Ĵ (µ)
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Figure 3.5: Performing the geodesic search for the JADE cost function [45].
The almost periodic behavior of the cost function Ĵ (µ) (3.26) and its first-
order derivative dĴ /dµ along geodesic Wgeod(µ) (3.24) may be noticed.
The first proposed line search method uses a polynomial approximation
of dĴ /dµ in order to find its smallest positive zero-crossing value which
corresponds to the first local minimum of Ĵ (µ), i.e., the desired step size
µk. The second proposed line search method uses DFT-based approximation
of dĴ /dµ (dashed line) in order to find several local minima of Ĵ (µ) along
geodesic and select the best one. Both methods sample the derivative dĴ /dµ
at equi-spaced points in order to avoid repeated computations of the matrix
exponential.

Both proposed methods find one or more zero-crossing values of the
first-order derivative of the cost function dĴ /dµ. They correspond to local
minima of the cost function J (µ). The zero-crossing values are related to the
frequency spectrum of the first-order derivative. Due to differentiation, this
spectrum corresponds to the high-pass filtered spectrum of the cost func-
tion. The approximation range is set according to the highest frequency
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component in the spectrum, which is related to the dominant eigenvalue
of the argument of the matrix exponential. The common steps of the two
line search methods in [Publication II] and [Publication IV] are summarized
in Table 3.4. The main difference between the polynomial-based approach
and the DFT-based approach is the choice of the approximation range ta
and the number of approximation points Na. Other specific characteristics
such as computational complexity issues are presented in detail in [Publi-
cation II] and [Publication IV]. An important common feature shared by
the two methods is that the matrix exponential is evaluated at equi-spaced
points (see Figure 3.5). Therefore, both proposed methods require only one
evaluation of the matrix exponential, i.e. R1 in step 4 (Table 3.4). The
other N − 1 rotations are powers of R1.

1 Given Wk ∈ U(n), −Hk ∈ u(n), compute the eigenvalue of Hk of highest
magnitude |ωmax|

2 Determine the order r of the cost function J (W) in the coefficients of W,
which is the highest degree that t appears in the expansion of J (W +
tZ), t ∈ R,Z ∈ Cn×n

3 Based on |ωmax| and r, determine an appropriate range ta for approximat-
ing the first-order derivative of the cost function along geodesics, Ĵ ′(µ).

4 Evaluate the rotation R(µ) = exp(−µHk) at Na + 1 equi-spaced points
µi ∈ {0, ta/Na, 2ta/Na, . . . , ta} as follows:
R0 , R(0) = I
R1 , R

(

ta/Na

)

= exp
(

− ta
Na

Hk

)

,

R2 , R
(

2ta/Na

)

= R1R1,
. . . ,
RNa

, R(ta) = RNa−1R1.
5 By using the computed values of Ri, evaluate:

Ĵ ′(µi) , dĴ /dµ=−2ℜ{trace
{

∂J
∂W∗(RiWk) WH

k RH
i HH

k

}

}, i = 0, . . . , N

6 Approximate Ĵ ′(µ) by using polynomial approximation, or DFT-based
approximation and find the zero-crossing values of the approximation

7 Set the step size µk to a root corresponding to the desired minimum (or
maximum) along geodesic

Table 3.4: Geodesic search algorithm on U(n).

The periodicity of functions on SO(2) was discussed and exploited in the
ICA context in [72]. This property was treated extensively later in [160,161]
for SO(2) and SO(3). A one-dimensional Newton method which uses the
first-order Fourier approximation the cost function along geodesics on SO(n)
is proposed in [161]. The main difference between the proposed DFT-based
method [Publication II] and the line search method in [160, 161] is that we
choose to approximate the first-order derivative of the cost function along
geodesics and find the corresponding zeros, instead of approximating the
cost function itself and finding a local minimum as in [160, 161]. Another
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difference is that the line search method in [160, 161] finds only one min-
imum. The proposed method finds multiple local minima and selects the
best one. For this reason, when used with a SD algorithm the proposed DFT
method leads to a performance comparable to the one of the CG algorithm,
as shown in [Publication II]. The method in [160,161] exploits the periodicity
of the cost function along geodesics which only appears on SO(2) and SO(3)
(and it does not appear even on U(2) and U(3)). For n > 3 the accuracy
of the approximation decreases, since the periodicity of the cost functions is
lost. Moreover, the proposed DFT-based approach uses multiple frequency
components for the DFT in order to approximate the almost periodic deriva-
tive. Thus, a better spectral description of the almost periodic function is
obtained. This result is demonstrated in [Publication II]. Furthermore, the
proposed algorithm avoids computing second-order derivatives, unlike the
method in [160, 161]. These derivatives are not always straight-forward to
compute and they may be computationally expensive since large matrices
(the Euclidean Hessian) may be involved.

The two proposed line search methods exploit the almost periodicity
of the cost function and its derivatives in a computationally efficient man-
ner. Other approaches are also possible. The proposed DFT-based method
opens multiple possibilities for finding better local minima. One interesting
approach would be to store several local minima at one iteration and use
them in the next iterations. Simulated annealing approach [77] may be em-
ployed in order to reduces the dimension of the search space and at the same
time avoid convergence to weak local minima. Another approach for finding
better local minima (or possibly the global minimum) is to take into account
more eigenvalues of the argument of the matrix exponential. The proposed
approaches use only the dominant eigenvalue (no eigenvectors are required).
By including several dominant eigenvalues, more precise information about
the evolution of the almost periodic cost function over a wide step size range
may be obtained. These aspects remain to be studied.

3.3 Discussion

In this chapter, the problem of optimization under unitary matrix constraint
has been addressed. Computationally efficient SD and CG algorithms along
geodesics on U(n) are proposed. Two high accuracy line search methods
specially tailored for the proposed algorithms are introduced. The algo-
rithms proposed in this chapter are compared to other existing optimization
algorithms (for details, see Chapter 2). Advantages and disadvantages of
each algorithm are summarized in Table 3.5.
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Benefits Weaknesses

Euclidean SD
with enforcing
constraint [113,
156,157,171,172,
216]

✔easy to implement (just
few equations)

✘ slow convergence
✘ computationally expensive
✘ expensive step size adapta-
tion

Lagrange
multipliers
method [97]

✔closed-form solution may
exist for simple cost func-
tions and low matrix dimen-
sion n

✘ increases even more the di-
mension of the optimization
problem (from 2n2 to 3n2)
✘ often mathematically in-
tractable

extra-penalty
method [205]

✔easy to implement (just
few equations)

✘ very slow convergence
✘ low accuracy in satisfying
the unitary constraint

non-geodesic
SD on U(n)
[137,149]

✔fast convergence (linear)
✔reduces the dimension of
the optimization problem
(from 2n2 to n2)

✘ expensive local parametri-
zation (projection of an arbi-

trary matrix)
✘ expensive line search (no
properties to be exploited)

geodesic SD on

U(n)
[Publication I],
[Publication III],
[Publication IV]

✔fast convergence (linear)
✔reduces the dimension of
the optimization problem
(from 2n2 to n2)
✔efficient computation of
the geodesics: exponential of
skew-Hermitian matrix
✔efficient line search meth-
ods (due to the almost pe-

riodic behavior of the cost
function along geodesics)

✘ less simple to implement
(more equations are needed)

geodesic CG on

U(n)
[Publication II],
[Publication V]

✔faster convergence (super-
linear)
✔reduces the dimension of
the optimization problem
(from 2n2 to n2)
✔efficient computation of
geodesics and parallel trans-
port
✔efficient line search meth-
ods

✘ less simple to implement
(more equations are needed)

geodesic and
non-geodesic
Newton algo-
rithms on U(n)
[137,149,155]

✔very fast convergence (qua-
dratic)

✘ computationally very ex-
pensive (of order O(n6))
✘ may converge to undesired
stationary points
✘ less simple to implement

Table 3.5: Comparison between different algorithms for optimization under
unitary matrix constraint. The classical approaches operating on the Eu-
clidean space vs. the differential geometry approaches operating on U(n).
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Chapter 4

Overview of blind
equalization techniques for
MIMO-OFDM systems

Multiple-Input Multiple-Output (MIMO) systems are a key technology of
the future high-rate wireless communication systems such as 3GPP long-
term evolution (LTE), IMT-2000, WiMAX and WLAN [1,4,8,10]. By using
multiple transmit and received antennas, linear increase in capacity may
be achieved [36, 194]. Spatial multiplexing produces parallel data streams
resulting into high data rates. The transmitted streams are not necessar-
ily orthogonal, therefore the co-channel interference problem must be con-
sidered. Moreover, the MIMO channel is selective in time, frequency and
space. Space-time and space-frequency codes [22,111,165,193] may be used
to increase the link reliability, especially in the absence of the CSI at the
transmitter [95]. They provide a good balance between the multiplexing
gain and diversity gain.

When MIMO techniques are combined with spectrally efficient Orthog-
onal Frequency Division Multiplexing (OFDM) modulation [106, 200], the
resulting MIMO-OFDM systems are very robust to multipath propagation.
Typically in OFDM transmission a cyclic prefix (CP) is employed. In this
way, the broadband frequency selective channel is converted into multiple or-
thogonal flat-fading channels. Moreover, OFDM modulation enables multi-
user access schemes by allocating distinct subcarriers to different users. The
resulting system is called OFDMA (Orthogonal Frequency Division Multiple
Access).

Channel estimation in MIMO systems [70,126] is a difficult problem due
to the fact that the number of unknown channel parameters grows rapidly
with the number of transmit/receive antennas. Consequently, pilot-aided
channel estimation methods require a very large number of training data
which decrease the effective data rates. Blind techniques [128] may be used
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to improve the effective data rates by exploiting the statistical and/or struc-
tural properties of the transmitted signals. They are very suitable in the
case of continuous transmissions (e.g. DVB-T) or slowly time-varying chan-
nels (e.g. ADSL). Blind algorithms are subject to inherent ambiguities (e.g.
amplitude, phase, permutation indeterminacies). A small amount of train-
ing data may be used in order to remove the ambiguities. This amount is
much smaller than what is needed for the pure training-based methods. The
resulting semi-blind methods may improve the convergence speed and track-
ing capability of the blind methods. They use both the received symbols
as well as the training data. Training-based channel estimation methods
need to wait until the next pilot is received. The training sequence may be
distorted by the channel in a way that it is not recognized at the receiver.
In conclusion, semi-blind algorithms are more feasible in practice.

The core of any semi-blind method is a blind method. In this chap-
ter we focus on blind methods for channel estimation and equalization in
MIMO-OFDM systems using P transmit antennas and Q receive antennas.
Most of the methods considered here are intended for spatial multiplexing
scenarios. The transmitted data streams are mutually independent and cor-
respond to different users or multiple streams from single user. Single and
multi-user SIMO cases are also considered. We classify the corresponding
channel estimation and equalization algorithms into three main categories.
The fist two categories include algorithms exploiting statistical properties of
signals and matrices, i.e., Second-Order Statistics (SOS) and Higher-Order
Statistics (HOS) approaches. The third category include deterministic algo-
rithms that exploit structural properties of signals and matrices (or hybrid
structural-statistical algorithms) .

4.1 Second-Order Statistics (SOS) based methods

In general, SOS-based blind methods exploit the correlation properties of the
received signals. In general, they belong to two main classes. The first class
includes SOCS (Second Order Cyclostationarity Statistics) based methods
that rely on different correlation functions. The second class includes sta-
tistical subspace methods that exploit the output covariance matrix or the
received data matrix.

4.1.1 SOCS based methods

Many man-made signals encountered in communications possess intrinsic
periodicities caused by modulation and coding, for example. Their statis-
tics such as mean or autocorrelation are periodic functions. Conventional
WSS (wide-sense stationary) models do not take into account the valuable
information contained in this periodicity. The property is called cyclosta-
tionarity and may be exploited in blind algorithms. Typically, the symbol-
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rate received signals are WSS, but by taking multiple samples within the
symbol interval, additional information is obtained. This can be done either
by oversampling in time domain, or in spatial domain by employing several
symbol-rate receivers (antenna array). Cyclostationarity may be induced at
the sampling rate also by shaping the signal statistics at the transmitter,
but this may require redundancy.

OFDM signals possess special correlation properties. The cyclic prefix
(CP), or zero-padding (ZP) induce correlation in the transmitted signals
which may be exploited. Blind channel estimation methods for MIMO-
OFDM systems based on the SOCS induced by the CP have been pro-
posed in the literature [29, 67, 68, 134]. Channel correlation properties due
to the Fourier transform have also been exploited in [90]. Special corre-
lation properties may be introduced also by precoding or space-time cod-
ing [37, 221, 222]. In addition, special signal structure helps in solving the
ambiguities inherent to all blind methods. In [37], a scheme for resolving the
multi-dimensional ambiguity up to a diagonal complex matrix is presented.
The SOCS methods in [29,37] are immune to the common channel zeros.

4.1.2 Statistical subspace methods

Another alternative to induce structure in the transmitted signals is by in-
serting zero guard bands at the end of each OFDM block i.e, the so-called
zero-padding (ZP) [226, 228]. Virtual subcarriers (VSC) [28, 180] may also
be used, which are unmodulated subcarriers at known frequencies in the
spectrum, usually in the roll-off region. Statistical subspace-methods for
blind channel estimation in MIMO-OFDM have also been proposed in liter-
ature [28,84,91–94,129,180,226,228]. They rely on a low-rank model where
the signal subspace is associated with the range space of the channel matrix.
The signal and noise subspaces are obtained either via eigendecomposition
of the sample estimate of the covariance matrix, or via singular value de-
composition of the received data matrix [110]. Receive diversity plays an
important role in building the low-rank model. Blind identification algo-
rithms for SIMO-OFDM have been considered in [23, 48, 96]. The method
in [23] is sensitive to the channel common zeros. Unlike most of the subspace
methods, in [91,92,96] the model uses the covariance matrix computed in fre-
quency domain. The advantage of this approach is the resilience to common
channel zeros. Identifiability conditions for the subspace methods applied
to OFDM have been formulated in [180,227]. Statistical subspace methods
are applied to OFDM signals with CP [84,93,94], or ZP [226,228] in MIMO
scenarios. It has been shown in [93, 94] that algorithms designed for ZP-
OFDM transmission [226, 228] may be adapted to CP-OFDM transmission
just by rewriting of the MIMO system model appropriately. In this way,
they become compatible with most of the existing OFDM standards [2–7,9]
which use CP instead of ZP. In [67, 68] a subspace method exploiting the
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CP is proposed to initialize an iterative CMA. Subspace-based methods ex-
ploiting virtual subcarriers (VSC) have been proposed in [23,28,180]. They
do not need CP, as long as VSC are used. Space-time codes have been used
in conjunction with subspace methods in [222,226].

In general, subspace methods are able to estimate the MIMO channel
up to a full-rank complex P ×P ambiguity matrix [84,91,92,226,228]. The
ambiguity is removed by exploiting the signal structure induced at the trans-
mitter via precoding or space time-coding, or by using a small amount of
training data, i.e., P symbols within one OFDM block of length N . Due to
the fact that in practice P ≪ N , semi-blind subspace methods still achieve
increased effective data rates. An extensive review on semi-blind channel
estimation methods for MIMO-OFDM systems is provided in [168]. An
efficient HOS-based blind approach for solving ambiguities remaining af-
ter the blind subspace identification was proposed in [202]. By exploiting
the independence between in-phase and in-quadrature components of the
complex-valued signal, the algorithm is able to reduce the remaining full-
rank ambiguity matrix to a diagonal matrix. Its diagonal elements corre-
spond to complex scalar gains multiplying each of the (possibly permuted)
data streams.

Most of the subspace methods involve eigendecomposition of SVD op-
erations. In general, such matrix decompositions are computationally ex-
pensive, especially when the matrix dimensions are large [99]. Complexity
reduction for the subspace methods may be often achieved. The subspace
algorithm in [228] which requires both eigendecomposition and SVD has
been reconsidered in [Publication III]. The SVD operation of a large tall
matrix was replaced by an eigendecomposition of a small square matrix.
The eigendecomposition is obtained iteratively by using Riemannian opti-
mization technique (steepest descent on the unitary group U(n)). A more
efficient solution would be optimizing the Brockett function [41,184] by using
the Riemannian conjugate gradient algorithm as in [Publication II].

4.2 Higher-Order Statistics (HOS) based methods

Typically, HOS-based blind methods need a larger sample support compared
to the SOS-based blind methods because HOS-based estimators have higher
variances. On the other hand, HOS methods may potentially have increased
noise immunity, since the higher order statistics of the Gaussian noise vanish.

4.2.1 BSS methods

Most of the HOS-based blind channel estimation methods proposed in the
literature [55, 102, 115, 173–177] use BSS (Blind Source Separation) prin-
ciples [71] in order to separate the transmitted signals. Commonly used
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Independent Component Analysis (ICA) methods [113] such as natural gra-
dient [25] and JADE [45] are applied. They rely on the mutual statistical
independence and the non-Gaussianity properties of the transmitted signals.
Therefore, due to the IDFT operation at the transmitter side, they operate
only in frequency domain. Assuming CP in the OFDM transmission, the
MIMO channel is regarded as a set of per-tone instantaneous mixing matri-
ces. The size of each mixing matrix is identical to the dimensionality of the
MIMO channel, i.e., P × Q. Consequently, the number of mixing matrices
is equal to the number of tones, which leads to computationally expensive
algorithms. In order to avoid this inconvenience, algorithms which exploit
the correlation among subcarriers in frequency domain have been proposed
in [175,177]. Correlation across subcarriers depends on the coherence band-
width and inter-carrier spacing. These figures are directly related to channel
delay spread and number of subcarriers. The channel length is considerably
smaller than the IDFT length, and the channel frequency response is a result
of the IDFT of a zero-padded channel impulse response [169]. Consequently,
high correlation among channel coefficients corresponding to adjacent sub-
carriers is introduced. In conclusion, it is sufficient to obtain channel fre-
quency response by using ICA on a number of frequency bins equal to the
maximum channel length (CP length may be used as an upper bound). For
the remaining tones the channel response is obtained by interpolation.

Other algorithms [115,174] apply the JADE only one one reference sub-
carrier, and the others subcarriers are unmixed iteratively by using a linear
MMSE receiver. This may lead to error propagation across subcarriers. Ad-
ditional successive interference cancellation (SIC) technique may be involved
to improve the performance [174]. The SIC approach has also been used
in [175] combined with a layered space-time architecture (V-BLAST) [210].
Blind source separation approach based on a natural gradient learning algo-
rithm is developed in [102]. The algorithm in [55] uses ICA and fractional
sampling. Consequently, the noise resilience is improved (more decision vari-
ables are available). On the other hand, the complexity is increased even
more in comparison to the other ICA-based methods, by a factor equal to
the inverse of the oversampling rate.

The major problem of BSS methods for MIMO-OFDM systems consid-
ered above is that they operate in frequency domain. This leads to several
drawbacks. First, the computational complexity increases linearly with the
number of subcarriers. The complexity reduction techniques become com-
pulsory even for relatively small number of subcarriers. Second, the ambigu-
ity problem is very hard to resolve. On each subcarrier, there is an unknown
complex scalar which multiplies the channel frequency response. For this
reason, convolutional coding [115,173] may be required in order to introduce
redundancy, thus decreasing the effective data rate. Non-redundant linear
precoding of each transmitted data stream has been also proposed [174,175].
This techniques introduce known correlation structure between subcarriers
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which may be exploited at the receiver. Special constellation properties have
also been considered [55].

Most of the blind algorithms considered in this section are based on
minimizing the JADE criterion [45]. Complexity reduction for JADE may
be achieved by using Riemannian conjugate gradient as in [Publication II].
This problem has also been addressed in [Publication I], [Publication IV]
and [Publication V]. The reduction in complexity is considerable if multi-
ple JADE algorithms are employed in parallel, such as the blind algorithms
considered in this section, which operate on a subcarrier basis. Moreover,
when the dimensions of the mixing matrix are large, the pairwise processing
used in the diagonalization stage of JADE leads to slow convergence [Publi-
cation II], [Publication IV], [Publication V]. Same problem occurs when the
input data streams have different distributions, i.e., they belong to different
constellations [Publication II].

4.3 Structural properties based methods

Typically, statistical blind methods require a large sample size in order to
provide unbiased channel estimates. Apart form statistical properties, sig-
nals and matrices may posses special structural properties that may be ex-
ploited in blind algorithms. These properties arise either from the modu-
lation scheme, or from different matrix structures employed in the descrip-
tion of system model. These special properties appear even for very small
sample size. For this reason, in some cases (e.g. noise-free scenarios or con-
stant modulus constellations) the channel estimation can be achieved even
from a single received data block, in a deterministic manner. In general,
deterministic methods outperform statistical methods for small number of
received data blocks. By using more received data blocks, the robustness
to noise and other imperfections is increased. In this way, some determinis-
tic methods are converted into hybrid structural-statistical methods. Such
hybrid methods require fewer observations compared to the pure statistical
methods. Reducing the size of data records enables good channel tracking
capabilities.

OFDM modulation and MIMO channel determine special signal and/or
matrix structures that may be useful in blind channel estimation. In this
subsection, the structural blind methods for multiple-antenna OFDM sys-
tems are classified into three main categories. The first one exploits the
structure of the transmitted signals arising from the known constellation
modulation scheme [30, 67, 68, 114, 126, 159, 190, 232]. The second category
includes algorithms that use the OFDM guard bands [31,49,119]. The third
category includes blind algorithms exploiting special matrix structures aris-
ing from the data model [49,100,126,166,204].

56



4.3.1 Modulation properties

Blind algorithms that rely on the properties of the modulation scheme have
been proposed in the literature [114, 159, 232]. The main properties that
are exploited are the finite-alphabet, constant envelope, or constant block
energy of the transmitted signals. In addition to these properties, some of
the methods exploit the receive diversity which is achieved by oversampling
in time or space.

Finite-alphabet methods

Digitally modulated communications signals have a finite-alphabet (FA)
structure, i.e., the transmitted symbols belong to a finite set of amplitudes
and phases. Blind methods using the FA property match the received signals
to the unknown channel taps and projects the soft-estimated symbols onto
the constellation set. Least squares methods that estimate the channel co-
efficients and the transmitted symbols alternately have been proposed [126].
The FA property was first applied to OFDM in [232] in single-antenna case.
The corresponding deterministic blind algorithm is able to identify the chan-
nel from a single OFDM block when PSK constellations are used at high
SNR conditions. The remaining phase ambiguity may be easily resolved,
since it belongs to a finite set. The algorithm is computationally expensive
due to the fact that it operates on each tone. It requires an exhaustive
search on a space which grows exponentially with the number of active
subcarriers. A sub-optimal version of the FA method is proposed in [232],
but the dimension of the search space is still exponential in the number
of channel taps. An improved version was proposed in [159]. The method
dramatically reduces the computational complexity because it operates on
clusters of subcarriers (withing the same coherence bandwidth). For this
reason, the method is sensitive to the choice of the clusters. In order to
overcome this difficulty, turbo-decoding was used in conjunction with the
FA property in [159]. The drawback of the method is that channel coding
requires redundancy. Other sub-optimal approaches for reducing the com-
plexity of the FA method were proposed in [114]. Receiver diversity may
also be employed in order to improve the performance. A deterministic
ML (maximum-likelihood) blind method for SIMO-OFDM exploiting the
FA property was considered in [30]. The method exploits the receive diver-
sity and in the absence of noise can achieve perfect channel estimation by
using single received OFDM block. The algorithm exhibits very high com-
plexity. The ML method can be decoupled into two separate LS problems,
involving the channel coefficients and the transmitted symbols, respectively.
Exhaustive search over a high-dimensional space is still needed for the sym-
bol estimation part. A comprehensive review of different FA methods until
year 2000 may be found in [126, Sec. 4.3]. For QAM constellations, FA
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methods suffer from error floor effect and high variance of the estimates.
Moreover, for higher-order constellations they require HOS of the received
signals, and therefore longer data records.

Constant modulus property

An iterative algorithm exploiting the constant envelope characteristic of the
transmitted data symbols was proposed for SIMO-OFDM in [190]. The
algorithm is based on least squares CMA (Constant Modulus Algorithm)
that takes additional benefit from the receive diversity. In [67,68] constant
modulus algorithm was employed for channel equalization on MIMO-OFDM
systems. The initialization is made by using the estimates provided by a sub-
space method. After initialization the CMA works in an adaptive fashion.
The constant modulus property has also been used to resolve the multiple
scaling ambiguities of blind algorithms operating in frequency domain [102].

Constant mean-block energy property

Iterative methods minimizing different criteria have been proposed for
OFDM. A blind equalizer based on restoring the constant mean block energy
property [218] of the received OFDM data blocks was proposed for single-
antenna case in [119]. The algorithm is called VCMA (Vector Constant
Modulus Algorithm). In addition, the structure of the CP and ZP guard
bands are exploited. A blind equalizer for MIMO OFDM systems using
VCMA and decorrelation criteria was introduced in [Publication VI]. The
algorithm has been modified in order to take into account the correlation in-
troduced when using CP in [13]. A block-Toeplitz structure of the equalizer
is enforced by averaging along diagonals. Other approaches enforcing the
Toeplitz structure are considered in [126]. The VCMA algorithm proposed
in [Publication VI] and its improved final version in [Publication VII] will
be discussed in detail in Chapter 5. The VCMA-based algorithms can also
be included in the class of HOS methods, since the corresponding criteria
use fourth order moments. We have included them in the class of structural
methods because they attempt to restore the constant mean block energy
property and do not use sample averaging, which may decrease the conver-
gence speed. In practice, they are implemented in an adaptive fashion and
the expected values are replaced by instantaneous estimates.

4.3.2 Properties of the guard interval of OFDM signal (CP
or ZP)

This type of methods rely on the guard intervals used in the OFDM trans-
mission such as CP or ZP [119]. In addition, they may exploit the receive
diversity. A blind beamformer for SIMO-OFDM systems exploiting receive
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antennas diversity and the temporal redundancy induced by the cyclic pre-
fix was proposed in [31]. A criterion which penalizes the MSE between the
CP samples and the corresponding data samples within the received OFDM
block is employed. In [49], a deterministic LS blind approach using received
diversity and CP similarity is proposed. The algorithm is able to estimate
the SIMO channel by using a single received OFDM block. The channel
response and the array response are incorporated into a global mixing ma-
trix, whose dimensions depend on the channel order. Therefore, the channel
order must be known precisely. It is estimated by using SVD of the data
matrix. The channel is found by using the SVD of a difference matrix which
penalizes the difference between the CP samples and the corresponding data
samples. The ambiguity is resolved also based on the CP redundancy.

4.3.3 Exploiting special matrix structures

Special matrix structures arising from the SIMO and MIMO models may be
exploited in blind methods [199].

Deterministic subspace methods

The full column rank property of the channel matrix is a prerequisite for
subspace-based system identification. Therefore, the model must involve
a tall channel matrix (more rows than columns). This is just a necessary
condition, but not a sufficient one. If the full column rank condition is
not met, several received data blocks may be stacked in the top of each
other. Received diversity is also a mean to build a low-rank model. In spa-
tial multiplexing scenarios, estimating the desired base of the subspaces is
not sufficient for separating the transmitted data streams. Thus, a second
constraint must be employed. Finite-alphabet, constant-modulus or specific
Hankel and Toeplitz matrices may be used in conjunction with the subspace
methods [126]. Enforcing special matrix structures enables satisfying the
second constraint needed for the estimated subspace. In this way, by prop-
erly combining the estimated basis vectors the co-channel signal cancellation
may be achieved. Cyclic prefix or zero-padding may also be exploited [49].
In some cases [49, 100, 204] the projection matrix to the noise subspace is
deterministic and known at the receiver, and the channel estimation may be
accomplished after the first received OFDM block.

In [204], a blind SIMO channel identification algorithm based on re-
ceived diversity was proposed. Special properties arising from the unitary
FFT matrix used in the OFDM transmission was exploited. The SIMO
channel estimation problem reduces to the usual problem of finding the
minimal eigenvector of a Hermitian matrix (or minimal singular vector of a
tall matrix). The algorithm may be sensitive to the common zeros on the
subchannels. Moreover, in [204] the channel length is assumed to be known
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a priori.
Special structure in the signals may be induced at transmitter by using

a redundant precoding scheme. In [100], a deterministic blind equalization
algorithm for SIMO-OFDM is proposed. The algorithm exploits the receive
antenna diversity and the structure imposed by frequency domain spreading.
Therefore, the transmission system can be viewed as a multicarrier CDMA
system. In the absence of noise, the equalization can be achieved in a single
OFDM block. A regularization approach is used in order to cope with
the problem of common zeros. The redundancy introduced by spreading
improves the system reliability. It is shown that the proposed redundant
scheme outperforms the uncoded scheme. Same data rate is achieved at
given SNR with lower bit error rate.

Other algebraic techniques

A deterministic blind channel identification method for MIMO-OFDM has
been recently proposed in [166]. It is based on an algebraic technique which
decomposes the received signal vector in a four-way tensor whose dimensions
are space, time and frequency. The method exhibits high complexity, due
to the fact that it uses large multi-dimensional matrices. In addition, it is
difficult to prove if the identifiability conditions are met in practice.

4.4 Discussion

In this chapter, the most relevant blind channel estimation and equalization
methods for multi-antenna OFDM systems have been reviewed. The main
focus was on blind methods applicable to SIMO and MIMO systems. The
methods were classified in three main classes. The first two include statisti-
cal methods (SOS and HOS) and the third one includes methods exploiting
structural properties of signals and matrices. In Table 4.1, a comparison of
the three classes of methods is given. The pros and cons of each methods
are considered, as well as the computational complexity. Both statistical
and structural methods possess benefits and drawbacks. HOS-based meth-
ods require large sample support in order to provide unbiased estimates.
In general, SOS-based methods outperform the HOS-based methods for the
same amount of received data. Subspace-based methods require computa-
tionally expensive matrix decompositions. This is valid also for some of the
structural methods. Moreover, some structural methods such as FA are just
for theoretical study, since their computational complexity is unaffordable
in practice. Finally, most of the methods require precoding or shaping the
space-time signals in order to cope with the channel common zeros. In con-
clusion, exploiting the structural properties of matrices and signals, and at
the same time taking advantage of their statistics may result into fast and
computationally efficient algorithms.
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Benefits Weaknesses

SOS methods:
SOCS [29, 37, 67,
68, 134,221,222]

✔require less received data
compared to HOS methods
✔computationally simple

✘ may require additional
precoding or oversampling
✘ may be unable to identify
nonminimum-phase channels
✘ sensitive to common zeros
unless precoding is involved
✘ require CP/ZP

subspace based
[23,28,84,91–94,
96, 129, 180, 226,
228]

✔require less received data
compared to HOS methods
✔frequency domain models
are immune to common zeros

✘ require expensive matrix
decompositions
✘ frequency domain models
are computationally complex
✘ require CP/ZP and/or VSC

HOS methods:
BSS [55,102,115,
173–177]

✔robust to Gaussian noise
✔robust to channel zeros

✘ high variance
✘ require more received data
compared to SOS methods
✘ high complexity for large
number of subcarriers
✘ ambiguities are harder to
resolve
✘ require CP/ZP

Structural
methods:
Modulation
properties (FA,
CMA, VCMA)
[30, 67, 68, 102,
190]

✔FA may achieve estimation
in single OFDM block (high
SNR and CM constellations)
✔CMA and VCMA are
adaptive
✔for VCMA, the complexity
does not grow with the num-
ber of subcarriers
✔for VCMA, ambiguities are
easier to resolve

✘ FA methods are extremely
complex
✘ for FA and CMA, ambigu-
ities are harder to resolve
✘ FA and CMA exhibit high
complexity for large number
of subcarriers
✘ FA, CMA require CP/ZP
✘ VCMA is sensitive to com-
mon zeros
✘ CMA and VCMA may
converge only locally

CP/ZP structure
[31, 49, 119]

✔estimation may be
achieved in single OFDM
block (high SNR)

✘ ambiguities are harder to
resolve
✘ require CP/ZP

Special matrix
structures
[49, 100,166,204]

✔estimation may be
achieved in single OFDM
block (high SNR)

✘ ambiguities are harder to
resolve
✘ require expensive matrix
decompositions
✘ require CP or precoding

Table 4.1: Different algorithms for blind channel estimation and equaliza-
tion for SIMO/MIMO-OFDM systems. The statistical-based methods (SOS,
HOS), and methods exploiting the structural properties.
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Chapter 5

Blind equalizer for
MIMO-OFDM systems
based on vector CMA and
decorrelation criteria

In this chapter, the problem of blind recovery of multiple OFDM data
streams in a MIMO system is addressed. We propose an equalization al-
gorithm for MIMO-OFDM receivers which optimizes a composite criterion
in order to cancel both the ISI and CCI. ISI is minimized by using a mod-
ified Vector Constant Modulus criterion while CCI is minimized by using a
decorrelation criterion. The composite criterion was introduced in [Publi-
cation VI]. The algorithms was subsequently improved in [12,13] and [Pub-
lication VII]. The convergence properties of the algorithm have also been
established. Conditions for the existence of the stable minima corresponding
to the zero forcing receiver which performs the joint blind equalization and
the co-channel signal cancellation are established in [Publication VII].

The proposed blind algorithm operates in the time domain before the
DFT operation at the receiver. Therefore, it is designed to deal with three
different cases: there is no CP at all, the CP is too short (compared to the
channel impulse response) and CP is sufficiently long. The CP may be used
for synchronization purposes, hence it is included in the algorithm deriva-
tion. However, it is not needed in finding the equalizer. The proposed blind
algorithm exploits the mutual statistical independence among the transmit-
ted data streams and the the constant mean block energy property of the
OFDM signals. Hence it is applicable to spatial multiplexing systems. The
VCMA criterion [217] penalizes the deviation of the block energy from a
dispersion constant. The VCMA cost function may be decomposed into
a constant modulus (CM) cost function [98] and an auto-correlation func-
tion of the squared magnitudes of the received signal [195]. Therefore, the
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original VCMA is not suitable for signals which have a periodic correla-
tion such as OFDM signal. When CP is used, a strong auto-correlation
in the transmitted signals is introduced. It may be stronger than the cor-
relation caused by the multipath propagation channel. Consequently, the
performance of the original VCMA degrades then significantly because it
penalizes the correlation induced by the CP [12, 13]. The modified VCMA
proposed in [Publication VII] is designed to deal with the auto-correlation
caused by the CP and to cancel ISI simultaneously.

The VCMA was applied to blind equalization for shaped constellations
in [217] and for Single-Input Single-Output (SISO) OFDM system in [119].
In [119] CP or ZP were required in order to perform the equalization. MIMO
schemes have been considered in [132, 158] using the classical CMA, for
BPSK signals. VCMA was employed in the context of DS-CDMA systems
in [206]. In a spatial multiplexing MIMO scenario, the problem becomes
more difficult. At one receive antenna we have the desired signal with its
delayed replicas caused by the channel ISI in addition to the co-channel
signals, i.e., CCI with their delayed replicas. In order to perform both the
blind equalization and signal separation, an output decorrelation criterion
is needed. This criterion assumes that the transmitted data streams are
mutually independent. Hence, it is suitable for spatial multiplexing systems.
It penalizes the correlation among the equalized outputs. Consequently, we
come up with a cost function comprised of two criteria: a modified VCMA
criterion and a decorrelation criterion.

The proposed algorithm is presented in detail in this chapter. First, the
system model is given in Section 5.1. The blind equalizer is presented in
Section 5.2.

5.1 System model for spatial multiplexing MIMO-

OFDM system

We consider a MIMO-OFDM system with P -transmit and Q-receive an-
tennas (Figure 5.1). We assume a spatial multiplexing scenario, where in-
dependent OFDM data streams are launched from each antennas. Each
data stream consists of i.i.d. complex symbols modulated by M subcarriers.
Multi-user SIMO systems have similar model. In this model we use a block
formulation similar to the one in [207]. The sample index is denoted by (·),
and the block index by [·]. Consider the complex symbols from the pth data
stream stacked in a M × 1 vector sp[k] = [sp(kM), . . . , sp(kM −M + 1)]T .
The N × 1 transmitted OFDM block of the pth data stream can be written
as:

ũp[k] = TCPFsp[k], (5.1)

where F is the M ×M normalized IDFT matrix and TCP is the N ×M
cyclic prefix addition matrix. The sequence of L + 1 consecutive transmit-
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Figure 5.1: MIMO-OFDM system model

ted OFDM samples corresponding to the antenna p is denoted by up(k) =
[up(k), . . . , up(k−L)]T . The MIMO channel branches from the pth transmit
to the qth receive antenna (see Figure 5.1) have maximum order Lc and
they are characterized by the impulse responses cpq = [cpq(0), . . . , cpq(Lc)].
Stacking the vectors up(k) corresponding to the P transmitted data streams
in a vector u(k) = [uT

1 (k), . . . ,uT
P (k)]T , the L− Lc + 1 consecutive samples

received at the antenna q, are:

yq(k) = [C1q . . . CPq]u(k) + vq(k), q = 1, . . . , Q, (5.2)

where Cpq are (L−Lc+1)×(L+1) Sylvester convolution matrices containing
the channel coefficients cpq, and vq(k) is the additive white Gaussian noise
at the qth receive antenna. Consider the MIMO channel matrix C̄ whose
blocks (p, q) are the matrices Cpq, with p = 1, . . . , P and q = 1, . . . , Q. The
Q(L−Lc + 1)× 1 array output y(k) = [yT

1 (k), . . . ,yT
Q(k)]T may be written

as:

y(k) = C̄u(k) + v(k), (5.3)

where v(k) = [vT
1 (k), . . . ,vT

Q(k)]T . The adaptive equalizers have order Le

and they are row vectors denoted by eqp[k] = [eqp(0), . . . , eqp(Le)]. The
minimum equalizer order is chosen according to the identifiability conditions
presented in [Publication VII]. In order to recover the P transmitted data
streams, a bank of P equalizers

ep[k] =
[

e1p[k], . . . , eQp[k]
]

, p = 1, . . . , P (5.4)

is used at each receive antenna (see Figure 5.1). By choosing L = Lc + Le,
the equalized sample corresponding to the pth data stream can be written
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as:

zp(k) = ep[k]y(k). (5.5)

Considering the 1 × (L + 1) global channel-equalizer impulse response
(GCEIR) ap = ep[k]C̄ corresponding to the pth data stream, the equalized
sample from this data stream may be written as:

zp(k) = apu(k). (5.6)

If the equalization is achieved, the GCEIRs are equal to the standard unit
vector multiplied by an unknown phase rotation, i.e., ap = δie

θ, where
p = 1, . . . , P, i ∈ {0, 1, . . . , L} and θ ∈ [−π, π). A permutation of the equal-
ized data streams may also be encountered. The phase and the permutation
ambiguities are inherent to all blind methods. The adaptive equalizer cor-
responding to each recovered data stream operates in a block mode, and it
outputs a block of k samples zp[k] = [zp(kN), . . . , zp(kN − N + 1)]T . The
equalized block corresponding to the pth data stream may be written as:

zp[k] =

Q
∑

q=1

Eqp[k]ỹp[k], (5.7)

where ỹp[k] = [yp(kN), . . . , yp(kN−N−Le+1)]T and Eqp[k] are N×(N+Le)
Sylvester convolution matrices built with the coefficients eqp[k].

5.2 Blind MIMO-OFDM equalizer

The proposed blind algorithm performs the equalization and the co-channel
interference cancellation. It minimizes a composite cost function comprised
of two criteria: a modified VCMA criterion and a decorrelation criterion.
These two criteria are described next.

5.2.1 Modified VCMA Criterion

In single transmitter case [217] VCMA criterion penalizes the deviation of
the equalized block energy from a given dispersion constant. In the multiple
transmitter scenario considered in this work, the energy penalty over all
data streams may be written as:

J VCMA(e1[k], . . . , eP [k]) =

P
∑

p=1

E
[

(‖zp[k]‖2 − r2)
2
]

, (5.8)

where ‖ · ‖ denotes the l2-norm of a vector. The block energy dispersion
constant is r2 = E[‖ũp[k]‖4]/E[‖ũp[k]‖2]. The original VCMA cost function
[217] is not applicable to signals which have a periodic correlation such as
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OFDM signal using cyclic prefix (CP). This is due to the fact that the
proposed criterion penalizes the both the autocorrelation and the cross-
correlations of the transmitted data streams. CP introduces autocorrelation
which may be stronger than the inter-symbol interference (ISI) caused by
the multipath channel. The proposed modified VCMA [Publication VII]
can handle both the auto-correlation caused by the CP and the channel ISI
simultaneously. For details, see [12,13].

5.2.2 Output Decorrelation Criterion

The pth equalized data stream zp[k] may contain interfering signals corre-
sponding to the other data streams zl[k], as well as their delayed replicas,
zl[n, d] = [zl(kN − d), . . . , zl(kN − d − N + 1)]T . The interference is mea-
sured by the cross-correlation matrix Rpl(d), between pth and lth equalized
outputs for a certain delay d, i.e, Rpl(d) = E

[

zp[k]zH
l [n, d]

]

. A decorre-
lation criterion must be employed because multiple copies of other signals
may be present in the desired signal, i.e., the CCI. This criterion minimizes
the squared Frobenius norm of the cross-correlation matrices. The cross-
correlation cost function over all equalized data streams is:

J xcorr(e1[k], . . . , eP [k]) =

P
∑

p,l=1

p 6=l

d2
∑

d=d1

∥

∥Rpl(d)
∥

∥

2

F
. (5.9)

The delays d1, d2 are chosen according to the maximum delay introduced by
the channel. The integer d spans the window of all possible delays, in order
to mitigate all the delayed replicas of the interference signals.

5.2.3 Composite Criterion

The VCMA cost function (5.8) has originally been designed for single trans-
mitter case [217]. Its global convergence has not been established, not even
in the single transmitter case [104, 195]. If multiple signals are present,
depending on its initialization, VCMA may converge to any of the transmit-
ted signals, usually to the ones that have the strongest power [217]. This is
due to the fact that VCMA updates the equalizers corresponding the the P
data streams independently, i.e., the equalized outputs do not influence each
other. Obviously, VCMA alone is not sufficient for equalization in a spatial
multiplexing scenario, since the problem of co-channel signals must be con-
sidered as well [158]. We propose a composite criterion which we prove to
be locally convergent. The cost functions (5.8) and (5.9) may be combined
in order to cancel both ISI and CCI. A weighting parameter 0 < λ < 1 is
used to weight the two criteria. The composite cost function is given by:

J = λJ VCMA + (1− λ)J xcorr. (5.10)

67



The composite criterion (5.10) needs to be minimized w.r.t. to the equalizer
coefficients. In addition, the unknown parameter λ needs to be found. This
is a challenging optimization problem since the function to be minimized
is a multivariate function of fourth-order in its complex-valued arguments.
The method of Lagrange multipliers [97] is the first method one would have
in mind for this type of constraint minimization problem. In that case,
the unknown parameters are the equalizer coefficients and the Lagrange
multipliers. The equalized outputs depend on both channel and equalizer
coefficients. Consequently, the corresponding Lagrangian function includes
the unknown channel impulse responses and the Lagrangian method cannot
be applied. Moreover, solving the corresponding system of equations would
be difficult even with known channel. So happens for the dual optimization
approach [32, 38]. In addition, due to the fact that the criterion is non-
convex, the dual approach does not provide an optimal solution, i.e., there
is the so-called duality gap [32, 38]. Our derivation in [Publication VII]
provides an optimal solution to the minimization problem. In order to get
rid of the unknown channel impulses response, the cost function is analyzed
in the space of the global channel-equalizer responses. In this way, the
optimum weighting parameter λ may be found. By using the obtained value,
the equalizer coefficients are updated by using a stochastic steepest descent
method

ep[k + 1] = ep[k]− µ∇E
ep
J , (5.11)

where ∇E
ep
J is the instantaneous Euclidean gradient (3.10) of the composite

cost function J (5.10), w.r.t. the pth equalizer coefficients ep (5.4) at itera-
tion k. The gradient expression is given in [Publication VII] and it includes
instantaneous estimates instead of expected values. A conjugate gradient
algorithm could also be used instead, but this would require performing an
exact line search. An accurate adaptive step size would be required, but
this is difficult due to the due to stochastic nature of the algorithm. A
closed-form expression for the optimum weighting parameter λ and an up-
per bound for the step size µ are provided in [Publication VII]. It has been
demonstrated in [Publication VII] that stable zero-forcing solutions always
exist if the value of the parameter λ is set appropriately. Local convergence
properties of the algorithm have also been established in [Publication VII].

5.2.4 Conditions for symbol recovery

The proposed algorithm guarantees both signal equalization and co-channel
interference cancellation under the conditions below. First, the existence of
the zero-forcing (ZF) equalizer must to be established. Second, conditions
for the convergence of the equalizer needs to be found.
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Existence of the blind equalizer

Two conditions are necessary for the existence of the ZF equalizer [58]. The
first condition is that the virtual polynomials associated to the MIMO chan-
nel have no common zeros. This is ensured by a sufficient antenna element
spacing w.r.t. coherence distance or by coding. The second necessary con-
dition for identifiability is the minimum equalizer length which depends on
the channel maximum order and the number of transmit/receive antennas.
For details, see [Publication VII].

Convergence properties

The global convergence properties of the original VCMA [217] have not been
established so far, not even in the fractionally-spaced case [104]. The local
convergence of VCMA has been investigated in [195]. In [Publication VII]
we prove that the proposed algorithm which is based a composite cost func-
tion convergences at least locally. The differences compared to the pure
VCMA [104, 217] are explained in detail in [Publication VII]. Once the
existence of the ZF equalizer is guaranteed, the convergence of the blind
equalizer to the ZF solution depends upon the characteristics of the surface
of the composite criterion represented in the space of the global channel-
equalizer impulse responses. We show that truly stable local minima of the
composite criterion which correspond to the zero-forcing solutions always
exist under the assumption that the parameter λ weighting the two criteria
and the step size µ are appropriately selected. It has been demonstrated
in [Publication VII] that in the absence of noise, any value 0 < λ < 1 is
appropriate. In noisy conditions, values of λ which are close to zero and one
should be avoided. A closed-form expression for optimal parameter λ and
an upper bound on the step size parameter µ are also provided and they
depend only on the system parameters.

It has been shown in [Publication VII] that other local minima than the
ones corresponding to the ZF solutions are very unlikely to exist. Even if
they would exist, the convergence can be achieved by proper initialization
of the algorithm. This can be achieved by using a very small amount of
training data. In this case the algorithm operates on a semi-blind mode.
Semi-blind methods are more feasible in practice since they also resolve the
inherent ambiguities which the blind algorithms are subjected to. Initial-
ization strategies may also be found. A basic requirement is that the initial
equalizer settings are non-zero vectors. This case of zero vectors corresponds
to a maximum of the cost function and the coefficients will remain identi-
cally zero. Moreover, the initial settings of the sub-equalizers corresponding
to different output data streams must not be identical. This is necessary
because identical initial settings may cause the same data stream to be re-
covered at the corresponding outputs. This case corresponds to a saddle

69



point. For details, see the comments related to Table 1 in [Publication VII].
The saddle points may be easily avoided in practice by ensuring the fact
that the initial gradient value is non-zero. In that case, different initializa-
tion setting may be chosen. Initialization at saddle points has extremely
low probability since these type of stationary points involve a very special
structure of the global channel-equalizer impulse responses.

5.3 Discussion

We propose a blind equalizer for spatial multiplexing MIMO-OFDM systems
based on the minimization of a composite criterion. It is able to perform
the blind equalization and co-channel interference cancellation without es-
timating the MIMO channel matrix, unlike most of the existing SOS and
HOS blind methods. For this reason, the proposed blind algorithm is com-
putationally simple. It does not require expensive operations such as matrix
inversions as usually required for the ZF and MMSE equalizers, or matrix de-
compositions employed in subspace methods [28,84,91–94,129,180,226,228]
or the algebraic techniques [100,166].

When the channel order exceeds the CP length used in the OFDM
transmission, the benefit of single-tap equalization is lost. The proposed
equalizer operates in time domain, before the FFT operation at the re-
ceiver. Consequently the equalizer is able to deal with three situations:
no CP at all, CP too short or CP sufficiently long. CP is not needed in
equalization, but it may be used for synchronization purposes, for exam-
ple. The channel identifiability is conditioned on the common zeros of the
MIMO channel branches, but this problem can be solved via non-redundant
precoding [37, 91, 92, 129, 174, 175, 221, 222]. Unitary Cayley space-time
codes [103,118,141,165] may also be used due to the fact that they preserve
the correlation properties of the transmitted space-time signals. Grassmann
space-time codes [120] are also a good alternative, since they efficiently use
the degrees of freedom of the MIMO channel [231].

Compared to the BSS methods [55, 102, 115, 173–177], or the tensor-
based method in [166], which perform the channel estimation in frequency
domain, the proposed blind algorithm has much lower complexity. More-
over, the ambiguities (inherent to all blind methods) do not affect every
subcarrier, but every transmitted data stream. The proposed algorithm
is able to recover each of the the transmitted data streams up to a phase
ambiguity and possible delay. User permutation ambiguity may be also en-
countered. These can be resolved by using P pilot symbols within a single
OFDM block. Since in practice P is much smaller than the length of the
OFDM block, the semi-blind version still provides high data rate. The same
amount pilots is necessary for subspace-based methods, but in addition these
methods require either CP, ZP or VC. The proposed blind algorithm can
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be used for channel tracking using the data symbols only. It is suitable for
MIMO-OFDM systems, under slow to moderate fading conditions such as
in wireless LANs, continuous transmissions (television and radio), and fixed
wireless communications systems.
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Chapter 6

Summary

Optimization techniques are a key part of many array and multi-channel
signal processing algorithms. Application domains include radar, multi-
antenna communications, sensor arrays, biomedical applications. Often, the
optimization needs to be performed subject to matrix constraints. In par-
ticular, orthogonal or unitary matrices play a crucial role in many tasks,
for example, adaptive beamforming, interference cancellation, MIMO trans-
mission, space-time coding, and signal separation. In order to obtain op-
timal or close to optimal performance, optimization algorithms are needed
to minimize the selected error criterion or cost function. In many practical
applications numerical optimization is the only computationally feasible so-
lution. For this reason, in this work we focus on optimization under unitary
matrix constraint.

In this thesis, reliable and computationally feasible constrained optimiza-
tion algorithms are proposed. Riemannian steepest descent and conjugate
gradient algorithms operating on the Lie group of unitary matrices U(n) are
derived. They take full benefit of the geometrical properties of the group, as
well as the recent advances in numerical techniques. Two novel line search
methods exploiting the almost periodic property of the cost function along
geodesics on U(n) are also proposed. The proposed algorithms are suitable
for performing the joint diagonalization of a set of Hermitian matrices, which
is a fundamental problem of blind source separation. They outperform the
classical JADE approach based on Givens rotations [45] in terms of converge
speed, at similar cost/iteration, as demonstrated in [Publication I], [Publica-
tion II], [Publication IV], [Publication V]. SD and CG on U(n) are used for
computing the full set of eigenvectors of a Hermitian matrix, by optimizing
the off-norm cost function [112] in [Publication III], and the Brockett cost
function [41,184] in [Publication II], [Publication V].

Multi-antenna MIMO systems and multicarrier transmission such as
OFDM are the key technologies in future wireless communication systems
such as B3G Long Term Evolution (LTE), IMT-2000 and WiMAX [1,8,10].
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In this work a blind receiver for MIMO-OFDM systems is proposed. The al-
gorithm optimizes a composite criterion in order to cancel both inter-symbol
and co-channel interference. Identifiability conditions and local convergence
properties of the algorithm are established.

Possible topics of future research include extending the proposed algo-
rithms to optimization w.r.t. non-square orthonormal matrices. When the
optimization needs to be performed w.r.t. an orthonormal matrix with more
rows than columns, the appropriate parameter space is the Stiefel manifold
of n × p orthonormal matrices, St(n, p). This is the case of applications
that require a distinct set of orthonormal vectors, such as limited-feedback
MIMO systems, unitary space-time codes, MIMO radars and sonars. If the
cost function possesses symmetries, such as invariance to right multiplica-
tion of its argument by unitary matrices, the appropriate parameter space
is the Grassmann manifold Gr(n, p) of p-dimensional subspaces of the n-
dimensional Euclidean space. This is the case of all subspace estimation and
tracking techniques. Therefore, a broad range of array and multi-channel ap-
plications may be addressed. The most important applications include blind
equalization and source separation, smart antennas, as well as biomedical
applications.

The fact that Stiefel and Grassmann manifolds are homogeneous spaces,
may be beneficial in reducing the computational complexity of optimization
algorithms. Stiefel and Grassmann manifolds are quotient spaces arising
form the unitary group U(n) (for complex-valued matrices) of from orthog-
onal group O(n) (for real-valued matrices). There are many properties in-
herited from the corresponding Lie groups that may be exploited. In con-
clusion, the fact that the proposed algorithms focus only on U(n) does not
have to be seen as a limitation to n× n unitary matrices.

Line search methods are crucial for the performance of the optimiza-
tion algorithms. New approaches exploiting the almost periodicity of the
cost function along geodesics are possible and they remain to be studied.
The proposed DFT-based line search method opens multiple possibilities
for finding better local minima (or to reach the global minimum faster).

Computationally efficient Riemannian Newton algorithms may also be
addressed in future work. An important goal is to achieve complexity of
order O(n3) per iteration by fully exploiting the properties of U(n). Trust-
region methods [15, 18] present particular interest due to their desirable
global convergence properties, which classical Newton algorithms do not
possess, in general.

Another possible research topic for the future is developing algorithms for
joint blind equalization and carrier frequency-offset compensation in MIMO-
OFDM systems. This may lead to computationally efficient algorithms that
enable high user mobility.
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