13,934 research outputs found

    Resolving Architectural Mismatches of COTS Through Architectural Reconciliation

    Get PDF
    The integration of COTS components into a system under development entails architectural mismatches. These have been tackled, so far, at the component level, through component adaptation techniques, but they also must be tackled at an architectural level of abstraction. In this paper we propose an approach for resolving architectural mismatches, with the aid of architectural reconciliation. The approach consists of designing and subsequently reconciling two architectural models, one that is forward-engineered from the requirements and another that is reverse-engineered from the COTS-based implementation. The final reconciled model is optimally adapted both to the requirements and to the actual COTS-based implementation. The contribution of this paper lies in the application of architectural reconciliation in the context of COTS-based software development. Architectural modeling is based upon the UML 2.0 standard, while the reconciliation is performed by transforming the two models, with the help of architectural design decisions.

    Proceedings of the 3rd Workshop on Domain-Specific Language Design and Implementation (DSLDI 2015)

    Full text link
    The goal of the DSLDI workshop is to bring together researchers and practitioners interested in sharing ideas on how DSLs should be designed, implemented, supported by tools, and applied in realistic application contexts. We are both interested in discovering how already known domains such as graph processing or machine learning can be best supported by DSLs, but also in exploring new domains that could be targeted by DSLs. More generally, we are interested in building a community that can drive forward the development of modern DSLs. These informal post-proceedings contain the submitted talk abstracts to the 3rd DSLDI workshop (DSLDI'15), and a summary of the panel discussion on Language Composition

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    CREOLE: a Universal Language for Creating, Requesting, Updating and Deleting Resources

    Get PDF
    In the context of Service-Oriented Computing, applications can be developed following the REST (Representation State Transfer) architectural style. This style corresponds to a resource-oriented model, where resources are manipulated via CRUD (Create, Request, Update, Delete) interfaces. The diversity of CRUD languages due to the absence of a standard leads to composition problems related to adaptation, integration and coordination of services. To overcome these problems, we propose a pivot architecture built around a universal language to manipulate resources, called CREOLE, a CRUD Language for Resource Edition. In this architecture, scripts written in existing CRUD languages, like SQL, are compiled into Creole and then executed over different CRUD interfaces. After stating the requirements for a universal language for manipulating resources, we formally describe the language and informally motivate its definition with respect to the requirements. We then concretely show how the architecture solves adaptation, integration and coordination problems in the case of photo management in Flickr and Picasa, two well-known service-oriented applications. Finally, we propose a roadmap for future work.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Adjoint exactness

    Get PDF
    Plato's ideas and Aristotle's real types from the classical age, Nominalism and Realism of the mediaeval period and Whitehead's modern view of the world as pro- cess all come together in the formal representation by category theory of exactness in adjointness (a). Concepts of exactness and co-exactness arise naturally from ad- jointness and are needed in current global problems of science. If a right co-exact valued left-adjoint functor ( ) in a cartesian closed category has a right-adjoint left- exact functor ( ), then physical stability is satis ed if itself is also a right co-exact left-adjoint functor for the right-adjoint left exact functor ( ): a a . These concepts are discussed here with examples in nuclear fusion, in database interroga- tion and in the cosmological ne structure constant by the Frederick construction

    Modular Moose: A new generation software reverse engineering environment

    Get PDF
    Advanced reverse engineering tools are required to cope with the complexity of software systems and the specific requirements of numerous different tasks (re-architecturing, migration, evolution). Consequently, reverse engineering tools should adapt to a wide range of situations. Yet, because they require a large infrastructure investment, being able to reuse these tools is key. Moose is a reverse engineering environment answering these requirements. While Moose started as a research project 20 years ago, it is also used in industrial projects, exposing itself to all these difficulties. In this paper we present ModMoose, the new version of Moose. ModMoose revolves around a new meta-model, modular and extensible; a new toolset of generic tools (query module, visualization engine, ...); and an open architecture supporting the synchronization and interaction of tools per task. With ModMoose, tool developers can develop specific meta-models by reusing existing elementary concepts, and dedicated reverse engineering tools that can interact with the existing ones

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications
    • 

    corecore