191 research outputs found

    Toward Global Localization of Unmanned Aircraft Systems using Overhead Image Registration with Deep Learning Convolutional Neural Networks

    Get PDF
    Global localization, in which an unmanned aircraft system (UAS) estimates its unknown current location without access to its take-off location or other locational data from its flight path, is a challenging problem. This research brings together aspects from the remote sensing, geoinformatics, and machine learning disciplines by framing the global localization problem as a geospatial image registration problem in which overhead aerial and satellite imagery serve as a proxy for UAS imagery. A literature review is conducted covering the use of deep learning convolutional neural networks (DLCNN) with global localization and other related geospatial imagery applications. Differences between geospatial imagery taken from the overhead perspective and terrestrial imagery are discussed, as well as difficulties in using geospatial overhead imagery for image registration due to a lack of suitable machine learning datasets. Geospatial analysis is conducted to identify suitable areas for future UAS imagery collection. One of these areas, Jerusalem northeast (JNE) is selected as the area of interest (AOI) for this research. Multi-modal, multi-temporal, and multi-resolution geospatial overhead imagery is aggregated from a variety of publicly available sources and processed to create a controlled image dataset called Jerusalem northeast rural controlled imagery (JNE RCI). JNE RCI is tested with handcrafted feature-based methods SURF and SIFT and a non-handcrafted feature-based pre-trained fine-tuned VGG-16 DLCNN on coarse-grained image registration. Both handcrafted and non-handcrafted feature based methods had difficulty with the coarse-grained registration process. The format of JNE RCI is determined to be unsuitable for the coarse-grained registration process with DLCNNs and the process to create a new supervised machine learning dataset, Jerusalem northeast machine learning (JNE ML) is covered in detail. A multi-resolution grid based approach is used, where each grid cell ID is treated as the supervised training label for that respective resolution. Pre-trained fine-tuned VGG-16 DLCNNs, two custom architecture two-channel DLCNNs, and a custom chain DLCNN are trained on JNE ML for each spatial resolution of subimages in the dataset. All DLCNNs used could more accurately coarsely register the JNE ML subimages compared to the pre-trained fine-tuned VGG-16 DLCNN on JNE RCI. This shows the process for creating JNE ML is valid and is suitable for using machine learning with the coarse-grained registration problem. All custom architecture two-channel DLCNNs and the custom chain DLCNN were able to more accurately coarsely register the JNE ML subimages compared to the fine-tuned pre-trained VGG-16 approach. Both the two-channel custom DLCNNs and the chain DLCNN were able to generalize well to new imagery that these networks had not previously trained on. Through the contributions of this research, a foundation is laid for future work to be conducted on the UAS global localization problem within the rural forested JNE AOI

    Fastaer det: Fast aerial embedded real-time detection

    Get PDF
    Automated detection of objects in aerial imagery is the basis for many applications, such as search and rescue operations, activity monitoring or mapping. However, in many cases it is beneficial to employ a detector on-board of the aerial platform in order to avoid latencies, make basic decisions within the platform and save transmission bandwidth. In this work, we address the task of designing such an on-board aerial object detector, which meets certain requirements in accuracy, inference speed and power consumption. For this, we first outline a generally applicable design process for such on-board methods and then follow this process to develop our own set of models for the task. Specifically, we first optimize a baseline model with regards to accuracy while not increasing runtime. We then propose a fast detection head to significantly improve runtime at little cost in accuracy. Finally, we discuss several aspects to consider during deployment and in the runtime environment. Our resulting four models that operate at 15, 30, 60 and 90 FPS on an embedded Jetson AGX device are published for future benchmarking and comparison by the community

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle Imagery: Review and Experimental Comparisons

    Full text link
    With the advancement of maritime unmanned aerial vehicles (UAVs) and deep learning technologies, the application of UAV-based object detection has become increasingly significant in the fields of maritime industry and ocean engineering. Endowed with intelligent sensing capabilities, the maritime UAVs enable effective and efficient maritime surveillance. To further promote the development of maritime UAV-based object detection, this paper provides a comprehensive review of challenges, relative methods, and UAV aerial datasets. Specifically, in this work, we first briefly summarize four challenges for object detection on maritime UAVs, i.e., object feature diversity, device limitation, maritime environment variability, and dataset scarcity. We then focus on computational methods to improve maritime UAV-based object detection performance in terms of scale-aware, small object detection, view-aware, rotated object detection, lightweight methods, and others. Next, we review the UAV aerial image/video datasets and propose a maritime UAV aerial dataset named MS2ship for ship detection. Furthermore, we conduct a series of experiments to present the performance evaluation and robustness analysis of object detection methods on maritime datasets. Eventually, we give the discussion and outlook on future works for maritime UAV-based object detection. The MS2ship dataset is available at \href{https://github.com/zcj234/MS2ship}{https://github.com/zcj234/MS2ship}.Comment: 32 pages, 18 figure

    Dynamic scene understanding using deep neural networks

    Get PDF

    Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks

    Full text link
    Semantic labeling (or pixel-level land-cover classification) in ultra-high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction. In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) state-of-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time. We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.Comment: Accepted in IEEE Transactions on Geoscience and Remote Sensing, 201

    Road Condition Detection and Emergency Rescue Recognition Using On-Board UAV in the Wildness

    Get PDF
    Unmanned aerial vehicle (UAV) vision technology is becoming increasingly important, especially in wilderness rescue. For humans in the wilderness with poor network conditions and bad weather, this paper proposes a technique for road extraction and road condition detection from video captured by UAV multispectral cameras in real-time or pre-downloaded multispectral images from satellites, which in turn provides humans with optimal route planning. Additionally, depending on the flight altitude of the UAV, humans can interact with the UAV through dynamic gesture recognition to identify emergency situations and potential dangers for emergency rescue or re-routing. The purpose of this work is to detect the road condition and identify emergency situations in order to provide necessary and timely assistance to humans in the wild. By obtaining a normalized difference vegetation index (NDVI), the UAV can effectively distinguish between bare soil roads and gravel roads, refining the results of our previous route planning data. In the low-altitude human–machine interaction part, based on media-pipe hand landmarks, we combined machine learning methods to build a dataset of four basic hand gestures for sign for help dynamic gesture recognition. We tested the dataset on different classifiers, and the best results show that the model can achieve 99.99% accuracy on the testing set. In this proof-of-concept paper, the above experimental results confirm that our proposed scheme can achieve our expected tasks of UAV rescue and route planning

    An analysis of rotation matrix and colour constancy data augmentation in classifying images of animals

    Get PDF
    In this paper, we examine a novel data augmentation (DA) method that transforms an image into a new image containing multiple rotated copies of the original image. The DA method creates a grid of cells, in which each cell contains a different randomly rotated image and introduces a natural background in the newly created image. We investigate the use of deep learning to assess the classification performance on the rotation matrix or original dataset with colour constancy versions of the datasets. For the colour constancy methods, we use two well-known retinex techniques: the multi-scale retinex and the multi-scale retinex with colour restoration for enhancing both original (ORIG) and rotation matrix (ROT) images. We perform experiments on three datasets containing images of animals, from which the first dataset is collected by us and contains aerial images of cows or non-cow backgrounds. To classify the Aerial UAV images, we use a convolutional neural network (CNN) architecture and compare two loss functions (hinge loss and cross-entropy loss). Additionally, we compare the CNN to classical feature-based techniques combined with a k-nearest neighbour classifier or a support vector machine. The best approach is then used to examine the colour constancy DA variants, ORIG and ROT-DA alone for three datasets (Aerial UAV, Bird-600 and Croatia fish). The results show that the rotation matrix data augmentation is very helpful for the Aerial UAV dataset. Furthermore, the colour constancy data augmentation is helpful for the Bird-600 dataset. Finally, the results show that the fine-tuned CNNs significantly outperform the CNNs trained from scratch on the Croatia fish and the Bird-600 datasets, and obtain very high accuracies on the Aerial UAV and Bird-600 datasets
    • …
    corecore