5,889 research outputs found

    mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization

    Full text link
    Self-adaptive software systems are often structured into an adaptation engine that manages an adaptable software by operating on a runtime model that represents the architecture of the software (model-based architectural self-adaptation). Despite the popularity of such approaches, existing exemplars provide application programming interfaces but no runtime model to develop adaptation engines. Consequently, there does not exist any exemplar that supports developing, evaluating, and comparing model-based self-adaptation off the shelf. Therefore, we present mRUBiS, an extensible exemplar for model-based architectural self-healing and self-optimization. mRUBiS simulates the adaptable software and therefore provides and maintains an architectural runtime model of the software, which can be directly used by adaptation engines to realize and perform self-adaptation. Particularly, mRUBiS supports injecting issues into the model, which should be handled by self-adaptation, and validating the model to assess the self-adaptation. Finally, mRUBiS allows developers to explore variants of adaptation engines (e.g., event-driven self-adaptation) and to evaluate the effectiveness, efficiency, and scalability of the engines

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    A survey on engineering approaches for self-adaptive systems (extended version)

    Full text link
    The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore, it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation

    Kompics: a message-passing component model for building distributed systems

    Get PDF
    The Kompics component model and programming framework was designedto simplify the development of increasingly complex distributed systems. Systems built with Kompics leverage multi-core machines out of the box and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic debugging and reproducible performance evaluation of unmodified Kompics distributed systems. We describe the component model and show how to program and compose event-based distributed systems. We present the architectural patterns and abstractions that Kompics facilitates and we highlight a case study of a complex distributed middleware that we have built with Kompics. We show how our approach enables systematic development and evaluation of large-scale and dynamic distributed systems

    Architectural Support for Software Performance in Continuous Software Engineering: A Systematic Mapping Study

    Full text link
    The continuous software engineering paradigm is gaining popularity in modern development practices, where the interleaving of design and runtime activities is induced by the continuous evolution of software systems. In this context, performance assessment is not easy, but recent studies have shown that architectural models evolving with the software can support this goal. In this paper, we present a mapping study aimed at classifying existing scientific contributions that deal with the architectural support for performance-targeted continuous software engineering. We have applied the systematic mapping methodology to an initial set of 215 potentially relevant papers and selected 66 primary studies that we have analyzed to characterize and classify the current state of research. This classification helps to focus on the main aspects that are being considered in this domain and, mostly, on the emerging findings and implications for future researc
    • 

    corecore