2,584 research outputs found

    New Constructions of Zero-Correlation Zone Sequences

    Full text link
    In this paper, we propose three classes of systematic approaches for constructing zero correlation zone (ZCZ) sequence families. In most cases, these approaches are capable of generating sequence families that achieve the upper bounds on the family size (KK) and the ZCZ width (TT) for a given sequence period (NN). Our approaches can produce various binary and polyphase ZCZ families with desired parameters (N,K,T)(N,K,T) and alphabet size. They also provide additional tradeoffs amongst the above four system parameters and are less constrained by the alphabet size. Furthermore, the constructed families have nested-like property that can be either decomposed or combined to constitute smaller or larger ZCZ sequence sets. We make detailed comparisons with related works and present some extended properties. For each approach, we provide examples to numerically illustrate the proposed construction procedure.Comment: 37 pages, submitted to IEEE Transactions on Information Theor

    A Ternary Zero-Correlation Zone Sequence Set Having Wide Inter-Subset Zero-Correlation Zone

    No full text

    Firewall Policy Diagram: Novel Data Structures and Algorithms for Modeling, Analysis, and Comprehension of Network Firewalls

    Get PDF
    Firewalls, network devices, and the access control lists that manage traffic are very important components of modern networking from a security and regulatory perspective. When computers were first connected, they were communicating with trusted peers and nefarious intentions were neither recognized nor important. However, as the reach of networks expanded, systems could no longer be certain whether the peer could be trusted or that their intentions were good. Therefore, a couple of decades ago, near the widespread adoption of the Internet, a new network device became a very important part of the landscape, i.e., the firewall with the access control list (ACL) router. These devices became the sentries to an organization's internal network, still allowing some communication; however, in a controlled and audited manner. It was during this time that the widespread expansion of the firewall spawned significant research into the science of deterministically controlling access, as fast as possible. However, the success of the firewall in securing the enterprise led to an ever increasing complexity in the firewall as the networks became more inter-connected. Over time, the complexity has continued to increase, yielding a difficulty in understanding the allowed access of a particular device. As a result of this success, firewalls are one of the most important devices used in network security. They provide the protection between networks that only wish to communicate over an explicit set of channels, expressed through the protocols, traveling over the network. These explicit channels are described and implemented in a firewall using a set of rules, where the firewall implements the will of the organization through these rules, also called a firewall policy. In small test environments and networks, firewall policies may be easy to comprehend and understand; however, in real world organizations these devices and policies must be capable of handling large amounts of traffic traversing hundreds or thousands of rules in a particular policy. Added to that complexity is the tendency of a policy to grow substantially more complex over time; and the result is often unintended mistakes in comprehending the complex policy, possibly leading to security breaches. Therefore, the need for an organization to unerringly and deterministically understand what traffic is allowed through a firewall, while being presented with hundreds or thousands of rules and routes, is imperative. In addition to the local security policy represented in a firewall, the modern firewall and filtering router involve more than simply deciding if a packet should pass through a security policy. Routing decisions through multiple network interfaces involving vendor-specific constructs such as zones, domains, virtual routing tables, and multiple security policies have become the more common type of device found in the industry today. In the past, network devices were separated by functional area (ACL, router, switch, etc.). The more recent trend has been for these capabilities to converge and blend creating a device that goes far beyond the straight-forward access control list. This dissertation investigates the comprehension of traffic flow through these complex devices by focusing on the following research topics: - Expands on how a security policy may be processed by decoupling the original rules from the policy, and instead allow a holistic understanding of the solution space being represented. This means taking a set of constraints on access (i.e., firewall rules), synthesizing them into a model that represents an accept and deny space that can be quickly and accurately analyzed. - Introduces a new set of data structures and algorithms collectively referred to as a Firewall Policy Diagram (FPD). A structure that is capable of modeling Internet Protocol version 4 packet (IPv4) solution space in memory efficient, mathematically set-based entities. Using the FPD we are capable of answering difficult questions such as: what access is allowed by one policy over another, what is the difference in spaces, and how to efficiently parse the data structure that represents the large search space. The search space can be as large as 288; representing the total values available to the source IP address (232), destination IP address (232), destination port (216), and protocol (28). The fields represent the available bits of an IPv4 packet as defined by the Open Systems Interconnection (OSI) model. Notably, only the header fields that are necessary for this research are taken into account and not every available IPv4 header value. - Presents a concise, precise, and descriptive language called Firewall Policy Query Language (FPQL) as a mechanism to explore the space. FPQL is a Backus Normal Form (Backus-Naur Form) (BNF) compatible notation for a query language to do just that sort of exploration. It looks to translate concise representations of what the end user needs to know about the solution space, and extract the information from the underlying data structures. - Finally, this dissertation presents a behavioral model of the capabilities found in firewall type devices and a process for taking vendor-specific nuances to a common implementation. This includes understanding interfaces, routes, rules, translation, and policies; and modeling them in a consistent manner such that the many different vendor implementations may be compared to each other

    Design of sequences with good correlation properties

    Get PDF
    This thesis is dedicated to exploring sequences with good correlation properties. Periodic sequences with desirable correlation properties have numerous applications in communications. Ideally, one would like to have a set of sequences whose out-of-phase auto-correlation magnitudes and cross-correlation magnitudes are very small, preferably zero. However, theoretical bounds show that the maximum magnitudes of auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if a set of sequences possesses good auto-correlation properties, then the cross-correlation properties are not good and vice versa. The design of sequence sets that achieve those theoretical bounds is therefore of great interest. In addition, instead of pursuing the least possible correlation values within an entire period, it is also interesting to investigate families of sequences with ideal correlation in a smaller zone around the origin. Such sequences are referred to as sequences with zero correlation zone or ZCZ sequences, which have been extensively studied due to their applications in 4G LTE and 5G NR systems, as well as quasi-synchronous code-division multiple-access communication systems. Paper I and a part of Paper II aim to construct sequence sets with low correlation within a whole period. Paper I presents a construction of sequence sets that meets the Sarwate bound. The construction builds a connection between generalised Frank sequences and combinatorial objects, circular Florentine arrays. The size of the sequence sets is determined by the existence of circular Florentine arrays of some order. Paper II further connects circular Florentine arrays to a unified construction of perfect polyphase sequences, which include generalised Frank sequences as a special case. The size of a sequence set that meets the Sarwate bound, depends on a divisor of the period of the employed sequences, as well as the existence of circular Florentine arrays. Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and III propose infinite families of optimal ZCZ sequence sets with respect to some bound, which are used to eliminate interference within a single cell in a cellular network. Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ sequence sets with favorable inter-set cross-correlation, which can be used in multi-user communication environments to minimize inter-cell interference. In particular, Paper~II employs circular Florentine arrays and improves the number of the optimal ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.Doktorgradsavhandlin

    Performance Evaluation of Impulse Radio UWB Systems with Pulse-Based Polarity Randomization

    Full text link
    In this paper, the performance of a binary phase shift keyed random time-hopping impulse radio system with pulse-based polarity randomization is analyzed. Transmission over frequency-selective channels is considered and the effects of inter-frame interference and multiple access interference on the performance of a generic Rake receiver are investigated for both synchronous and asynchronous systems. Closed form (approximate) expressions for the probability of error that are valid for various Rake combining schemes are derived. The asynchronous system is modelled as a chip-synchronous system with uniformly distributed timing jitter for the transmitted pulses of interfering users. This model allows the analytical technique developed for the synchronous case to be extended to the asynchronous case. An approximate closed-form expression for the probability of bit error, expressed in terms of the autocorrelation function of the transmitted pulse, is derived for the asynchronous case. Then, transmission over an additive white Gaussian noise channel is studied as a special case, and the effects of multiple-access interference is investigated for both synchronous and asynchronous systems. The analysis shows that the chip-synchronous assumption can result in over-estimating the error probability, and the degree of over-estimation mainly depends on the autocorrelation function of the ultra-wideband pulse and the signal-to-interference-plus-noise-ratio of the system. Simulations studies support the approximate analysis.Comment: To appear in the IEEE Transactions on Signal Processin

    Quantum mechanical study of point and molecular defects in perovskite nano-systems

    Get PDF
    PhD ThesisStrontium titanate is a perovskite dielectric material with a wide band-gap of 3.25 eV and a large relative dielectric permittivity of 300 at room temperature. The combi- nation of these properties makes SrTiO₃ a promising candidate for various industrial applications. However, there is growing evidence that oxygen vacancies have a sig- nificant impact upon its use, with the diffusion and deep donor level of the oxygen vacancy leading to electrical leakage. A qualitative understanding of the diffusion and electrical properties of oxygen vacancies can help to provide a clearer picture of many phenomena such as resistive switching and leakage current. Utilising SrTiO₃ thin films in various devices leads it to be in contact with other substances such as metal electrodes or other oxides. The lattice-mismatch between thin film SrTiO₃ and other material means that thin film SrTiO₃ is grown under bi-axial strain. The magnitude and the value of strain are driven by the lattice parameters of the material it is in contact with and the strain might be compressive or tensile. Here, the results of first principle density functional theory calculations performed using the AIMPRO code are presented. It is found that thin film SrTiO₃undergoes a transition from cubic to tetragonal structure with polarisation along the [001] and [110] directions under compressive and tensile (001) strain respectively. As a key parameter for tailoring the properties of SrTiO₃, the diffusivity of oxygen vacancies under bi-axial tensile or com- pressive strain has been investigated. The structural transition yields anisotropy in oxygen vacancy diffusion for diffusion within and between planes parallel to the plane of strain. Under (001) compressive strain it is found that, in the range of strains consistent with common substrate materials, diffusion energies in different directions are significantly affected, and for high values of strain may be altered by as much as a factor of two. The resulting diffusion anisotropy is expected to impact upon the rate at which oxygen vacancies are injected into the film under bias. By contrast, under (001) tensile strain, the diffusion of oxygen vacancies is predicted to increase in all directions (in-plane and inter-plane), albeit more so in the direction perpendicular to the plane of strain. Doping with a foreign element, namely a transition metal, is an alternative proce- dure for controlling the properties of SrTiO₃. The structural, thermodynamic, electri- cal and electronic properties of zinc-doped SrTiO₃ have been studied in the framework of density functional theory. The interaction of Zn with oxygen vacancies, which is a central theme in this thesis, has also been considered. In oxygen-lean conditions, however, the formation of oxygen vacancies is strongly favoured. It is found that VO may be bound to ZnTi with a binding energy of around 0.81±0.08 eV and no states in the gap. The role that ZnTi may have in the compensation for or capture of oxy- gen vacancy effects is discussed, along with the thermodynamics of Zn under various growth conditions.The Iraqi Ministry of Higher Education and Scientific Research (MOHESR)

    Correlated Activity and Corticothalamic Cell Function in the Early Mouse Visual System

    Get PDF
    Vision has long been the model for understanding cortical function. Great progress has been made in understanding the transformations that occur within some primary visual cortex (V1) layers, like the emergence of orientation selectivity in layer 4. Less is known about other V1 circuit elements, like the shaping of V1 input via corticothalamic projections, or the population structure of the cortico-cortical output in layer 2/3. Here, we use the mouse early visual system to investigate the structure and function of circuit elements in V1. We use two approaches: comparative physiology and optogenetics. We measured the structure of pairwise correlations in the output layer 2/3 using extracellular recordings. We find that despite a lack of organization in mouse V1 seen in other species, the specificity of connections preserves a correlation structure on multiple timescales. To investigate the role of corticogeniculate projections, we utilize a transgenic mouse line to specifically and reversibly manipulate these projections with millisecond precision. We find that activity of these cells results a mix of inhibition and excitation in the thalamus, is not spatiotemporally specific, and can affect correlated activity. Finally, we classify mouse thalamic cells according to stimuli used for cell classification in primates and cats, finding some, but not complete, homology to the processing streams of primate thalamus and further highlighting fundamentals of mammalian visual system organization

    Exploring Multicomponent Phase Space to Discover New Materials

    Get PDF
    Multicomponent phase space has been shown to consist of an enormous number of materials with different compositions, the vast majority of which have never been made or investigated, with great potential, therefore, for the discovery of exciting new materials with valuable properties. At the same time, however, the enormous size of multicomponent phase space makes it far from straightforward to identify suitable strategies for exploring the plethora of potential material compositions and difficult, therefore, to be successful in discovering desirable new materials. Unfortunately, all our knowhow and understanding has been developed for materials with relatively few components in relatively limited proportions, with most of our scientific theories relying essentially on linear assumptions of component dilution and independence that no longer apply in concentrated multicomponent materials. Trial and error, controlled substitution, parameterisation, thermodynamic modelling, atomistic modelling and machine learning techniques have all been employed as methods of exploring multicomponent phase space, with varying levels of success, but ultimately none of these techniques has proved capable of delivering consistent or guaranteed results. This paper provides an overview of the different techniques that have been used to explore multicomponent phase space, indicates their main advantages and disadvantages, and describes some of their successes and failures

    Origin and evolution of planetary atmospheres

    Get PDF
    This report concerns several research tasks related to the origin and evolution of planetary atmospheres and the large-scale distribution of volatile elements in the Solar System. These tasks and their present status are as follows: (1) we have conducted an analysis of the volatility and condensation behavior of compounds of iron, aluminum, and phosphorus in the atmosphere of Venus in response to publish interpretations of the Soviet Venera probe XRF experiment data, to investigate the chemistry of volcanic gases, injection of volatiles by cometary and asteroidal impactors, and reactions in the troposphere; (2) we have completed and are now writing up our research on condensation-accretion modeling of the terrestrial planets; (3) we have laid the groundwork for a detailed study of the effects of water transport in the solar nebula on the bulk composition, oxidation state, and volatile content of preplanetary solids; (4) we have completed an extensive laboratory study of cryovolcanic materials in the outer solar system; (5) we have begun to study the impact erosion and shock alteration of the atmosphere of Mars resulting from cometary and asteroidal bombardment; and (6) we have developed a new Monte Carlo model of the cometary and asteroidal bombardment flux on the terrestrial planets, including all relevant chemical and physical processes associated with atmospheric entry and impact, to assess both the hazards posed by this bombardment to life on Earth and the degree of cross-correlation between the various phenomena (NO(x) production, explosive yield, crater production, iridium signature, etc.) that characterize this bombardment. The purpose of these investigations has been to contribute to the developing understanding of both the dynamics of long-term planetary atmosphere evolution and the short-term stability of planetary surface environments
    • …
    corecore