27,021 research outputs found

    Efficient MRF Energy Propagation for Video Segmentation via Bilateral Filters

    Get PDF
    Segmentation of an object from a video is a challenging task in multimedia applications. Depending on the application, automatic or interactive methods are desired; however, regardless of the application type, efficient computation of video object segmentation is crucial for time-critical applications; specifically, mobile and interactive applications require near real-time efficiencies. In this paper, we address the problem of video segmentation from the perspective of efficiency. We initially redefine the problem of video object segmentation as the propagation of MRF energies along the temporal domain. For this purpose, a novel and efficient method is proposed to propagate MRF energies throughout the frames via bilateral filters without using any global texture, color or shape model. Recently presented bi-exponential filter is utilized for efficiency, whereas a novel technique is also developed to dynamically solve graph-cuts for varying, non-lattice graphs in general linear filtering scenario. These improvements are experimented for both automatic and interactive video segmentation scenarios. Moreover, in addition to the efficiency, segmentation quality is also tested both quantitatively and qualitatively. Indeed, for some challenging examples, significant time efficiency is observed without loss of segmentation quality.Comment: Multimedia, IEEE Transactions on (Volume:16, Issue: 5, Aug. 2014

    Temporal multimodal video and lifelog retrieval

    Get PDF
    The past decades have seen exponential growth of both consumption and production of data, with multimedia such as images and videos contributing significantly to said growth. The widespread proliferation of smartphones has provided everyday users with the ability to consume and produce such content easily. As the complexity and diversity of multimedia data has grown, so has the need for more complex retrieval models which address the information needs of users. Finding relevant multimedia content is central in many scenarios, from internet search engines and medical retrieval to querying one's personal multimedia archive, also called lifelog. Traditional retrieval models have often focused on queries targeting small units of retrieval, yet users usually remember temporal context and expect results to include this. However, there is little research into enabling these information needs in interactive multimedia retrieval. In this thesis, we aim to close this research gap by making several contributions to multimedia retrieval with a focus on two scenarios, namely video and lifelog retrieval. We provide a retrieval model for complex information needs with temporal components, including a data model for multimedia retrieval, a query model for complex information needs, and a modular and adaptable query execution model which includes novel algorithms for result fusion. The concepts and models are implemented in vitrivr, an open-source multimodal multimedia retrieval system, which covers all aspects from extraction to query formulation and browsing. vitrivr has proven its usefulness in evaluation campaigns and is now used in two large-scale interdisciplinary research projects. We show the feasibility and effectiveness of our contributions in two ways: firstly, through results from user-centric evaluations which pit different user-system combinations against one another. Secondly, we perform a system-centric evaluation by creating a new dataset for temporal information needs in video and lifelog retrieval with which we quantitatively evaluate our models. The results show significant benefits for systems that enable users to specify more complex information needs with temporal components. Participation in interactive retrieval evaluation campaigns over multiple years provides insight into possible future developments and challenges of such campaigns

    Adaptation of scalable multimedia documents

    Full text link
    Several scalable media codecs have been standardized in recent years to cope with heterogeneous usage conditions and to aim at always providing audio, video and image content in the best possible quality. Today, interactive multimedia presentations are becoming accessible on handheld terminals and face the same adaptation challenges as the media elements they present: quite diversified screen, memory and processing power capabilities. In this paper, we address the adaptation of multimedia documents by applying the concept of scalability to their presentation. The Scalable MSTI document model introduced in this paper has been designed with two main requirements in mind. First, the adaptation process must be simple to execute because it may be performed on limited terminals in broadcast scenarios. Second, the adaptation process must be simple to describe so that authored adaptation directives can be transported along with the document with a limited bandwidth overhead. The Scalable MSTI model achieves both objectives by specifying Spatial, Temporal and Interactive scalability axes on which incremental authoring can be performed to create progressive presentation layers. Our experiments are conducted on scalable multimedia documents designed for Digital Radio services on DMB channels using MPEG-4 BIFS and also for web services using XHTML, SVG, SMIL and Flash. A scalable image gallery is described throughout this article and illustrates the features offered by our document model in a rich multimedia example

    A Framework for Composition, Verification and Real-Time Performance of Multimedia Interactive Scenarios

    Get PDF
    International audienceInteractive Scores (IS) is a formalism for composing and performing interactive multimedia scenarios. In IS, the composer defines temporal relations (TRs) between temporal objects (TOs) in order to specify the temporal organization of the scenario. During execution, the performer may trigger interaction points to modify the star/stop times of TOs, while the system guarantees that all the TRs are satisfied. IS is implemented in the tool I-SCORE and its semantics is formally defined as a Hierarchical Time Stream Petri Net (HTSPN). However, this model is not able to represent branching behaviors that are necessary to properly deal with applications such as video games and museum installations. Moreover, HTSPN does not provide tools for the automatic verification of critical properties of scenarios. In this work we define a semantics for IS based on Timed Automata (TA) and we show that such model yields to a complete framework to compose, verify and execute interactive scenarios. More precisely, we show that: 1) our model is able to deal with conditional statements in IS; 2) efficient verification techniques can be now used to reason about the written scenarios; and 3) our model allows for a directly implementation on a reconfigurable device, thus guaranteeing a real-time performance

    Multi-View Video Packet Scheduling

    Full text link
    In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time

    Toward a model of computational attention based on expressive behavior: applications to cultural heritage scenarios

    Get PDF
    Our project goals consisted in the development of attention-based analysis of human expressive behavior and the implementation of real-time algorithm in EyesWeb XMI in order to improve naturalness of human-computer interaction and context-based monitoring of human behavior. To this aim, perceptual-model that mimic human attentional processes was developed for expressivity analysis and modeled by entropy. Museum scenarios were selected as an ecological test-bed to elaborate three experiments that focus on visitor profiling and visitors flow regulation
    • …
    corecore